
Pacific Graphics 2018
H. Fu, A. Ghosh, and J. Kopf
(Guest Editors)

Volume 37 (2018), Number 7

Decomposing Images into Layers with Advanced Color Blending

Yuki Koyama and Masataka Goto

National Institute of Advanced Industrial Science and Technology (AIST), Japan

(N/A) normal hard-light multiply

Input image Decomposed layers

Bo�om layer Top layer

Edited image

Figure 1: Our method decomposes an input image (Left) into layers that can reproduce the image by composition with advanced color-blend
modes such as hard-light and multiply (Middle). Users can specify the color-blend mode and desired color distribution for each layer, as
well as the number of layers. Output layers are useful for non-trivial image manipulation such as lighting-aware color editing (Right). Input
image courtesy of David Revoy.

Abstract
Digital paintings are often created by compositing semi-transparent layers using various advanced color-blend modes, such
as “color-burn,” “multiply,” and “screen,” which can produce interesting non-linear color effects. We propose a method of
decomposing an input image into layers with such advanced color blending. Unlike previous layer-decomposition methods,
which typically support only linear color-blend modes, ours can handle any user-specified color-blend modes. To enable this, we
generalize a previous color-unblending formulation, in which only a specific layering model was considered. We also introduce
several techniques for adapting our generalized formulation to practical use, such as the post-processing for refining smoothness.
Our method lets users explore possible decompositions to find the one that matches for their purposes by manipulating the target
color-blend mode and desired color distribution for each layer, as well as the number of layers. Thus, the output of our method is
a layered, easily editable image composition organized in a way that digital artists are familiar with. Our method is useful for
remixing existing illustrations, flexibly editing single-layer paintings, and bringing physically painted media (e.g., oil paintings)
into a digital workflow.

CCS Concepts
•Computing methodologies → Image processing;

1. Introduction

Digital paintings are often created by compositing multiple layers
using software such as Adobe Photoshop [Adob], GIMP [The], or
Krita [KDE]. Layers are used mainly to manage different parts in an
illustration (e.g., separating a background layer and a main object
layer) and create special effects on colors (e.g., adding glow, shadow,
and highlight). For the latter purpose, digital artists often use various
advanced color-blend modes for blending colors between layers,
such as multiply, screen, and color-burn, rather than just us-
ing the basic color-blend mode (i.e., normal). For example, the

multiply mode can create shading effects, and the overlay and
color-dodge modes can create vivid contrast and lighting effects
(c.f., [Nie16, Jel17] and Figure 2). There are many combinations
of color-blend modes and blended colors, which create various dif-
ferent effects, and there is no single correct way for such layering;
every digital art work may use different creative layering styles.
Once a painting is complete, it is exported as a bitmap image, which
no longer has layer information. Once layer information is lost, it
becomes much more difficult to manipulate the “baked” effects to
revise the art work or create derivative works.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

This is the accepted version of the following article: Yuki Koyama and Masataka Goto. 2018. Decomposing Images into Layers with Advanced Color Blending. Comput. Graph. Forum 37, 7 (2018), which has
been published in final form at http://onlinelibrary.wiley.com. This article may be used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy [https://authorservices.
wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html].

http://onlinelibrary.wiley.com
https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html
https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html


Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

(N/A) normal multiply hard-light screen

Figure 2: Example of layer composition. Various advanced color-
blend modes are combined to create effects of shadow, highlight,
etc.

Our goal is to provide digital artists with a means of decomposing
a bitmap image into semi-transparent layers that can reproduce the
original image by composition. This problem has been addressed
by many researchers recently [CRA11, TLG16, AASP17, LFDH17,
IRWM17, TEG18]. However, previous methods are formulated as-
suming specific layering models, for example, the linear additive
model [AASP17, LFDH17, TEG18] (in which colors are blended
simply by adding their RGB values). Although it is desirable for
digital artists to be able to organize decomposed layers in a way
that they are familiar with or in a way depending on inputs or situa-
tions (i.e., taking manipulations after decomposition into account),
previous methods do not satisfy this demand.

We propose a method for layer decomposition that can handle
any user-specified advanced color-blend modes. To the best of our
knowledge, this is the first method for accomplishing this. Our
method enables digital artists to organize decomposed layers flexibly
using advanced color blending (for example, separate layers based
on semantics such as shading and lighting), and the output is easily
editable by the user as the representation is the one that the user
is familiar with. Figure 1 shows an example of our decomposition;
the user specified desired color distributions for each of the layers
and the normal, hard-light and multiplymodes for the second,
third, and fourth layers, respectively, so that the layers could extract
color effects separately. The resulting layers are useful for non-trivial
image manipulation; in this case, by filling the color channels of the
hard-light layer by a gradation of different colors, the user could
easily achieve lighting-aware color editing. In addition, animated
effects (e.g., blinking the glow) can be easily created based on the
decomposed layers (see the accompanying video).

Our method is based on a generalized formulation of color un-
blending (or color unmixing; we favor using the former for consis-
tency with other terms). Color unblending is a problem of finding
each layer’s RGB alpha (RGBA) value that can together repro-
duce the input color by composition and each layer color reason-
ably fits the desired layer-associated color distribution. We gen-
eralize the previous color-unblending formulation by Aksoy et
al. [AAPS16, AASP17], which solved this problem by assuming
a specific linear model. This generalization is achieved by using a
general recursive composition rule. To efficiently solve the color-
unblending problem, it is necessary that the partial derivatives of
generalized constraints can be calculated; for this, we show that
these can be calculated in a recursive manner using the chain rule.
We also introduce several techniques for adapting our generalized
formulation to practical use, including how to refine resulting layers
by considering spatial smoothness, how to choose an initial solution
for color unblending, and how to produce grayscaled layers by mod-
ifying constraints. Our method facilitates a variety of non-trivial

image manipulations such as remixing existing illustrations in a
complex way, applying layer-based effects to single-layer paintings,
and bringing physical paintings into a digital workflow.

Contributions. Our contributions are summarized as follows.

• We present the first method of decomposing images into layers
with advanced color blending. Our method allows users to flexi-
bly organize decomposed layers by manipulating the number of
layers and specifying any color-blend mode and desired color
distribution for each layer.

• We present a generalized formulation of the color-unblending
problem, which is derived from a general recursive composition
rule. We show that necessary partial derivatives can be calculated
in a recursive manner with this generalized formulation. We
also introduce several techniques for adapting this formulation to
practical use.

• We demonstrate a variety of applications of our method, in which
users can carry out different decompositions depending on in-
puts or image-manipulation scenarios, and then edit decomposed
layers using layer-wise operations.

2. Related Work

2.1. Layer Decomposition

Layer decomposition is a problem of decomposing an input image
into multiple layers. This is useful for non-trivial image manip-
ulation, such as editing colors in an illumination-aware way and
applying visual effects (e.g., glow and blur) selectively.

Tan et al. [TLG16] presented a method of decomposing digi-
tal paintings into layers based on geometric operations in RGB
space. This method was then extended in an arXiv paper [TEG18]
to analyze the geometry in RGBXY space (the 5-dimensional space
formed by the RGB color axes and XY position axes), which pro-
duces more spatially coherent results. These methods heavily rely on
the linearity of the specific blending models (i.e., the simple alpha
blending model [TLG16] and the linear additive model [TEG18]);
thus, layers with non-linear color-blend modes (e.g., color-burn)
cannot be produced. Lin et al. also presented a method based on the
linear additive model in their arXiv paper [LFDH17].

Some methods were designed to decompose images into vector
graphics layers [RLMB∗14, FLB17]. These methods are based on
the parametric nature of vector graphics; thus, take different ap-
proaches from our pixel-wise approach. Note that they only take
into account the simple alpha blending model and do not sup-
port advanced color-blend modes. Some other methods were de-
signed to support specific types of inputs, such as physical paintings
[TDLG18, AMSL17] and time-lapse videos of paintings [TDSG15].

Intrinsic image decomposition is a special class of layer decompo-
sition. The main goal is to decompose an input photograph into an
albedo and irradiance layers [BBS14]. These two layers are usually
composited using the multiply mode to reproduce the input photo-
graph. Some methods use more complex layering models. For exam-
ple, the method proposed by Innamorati et al. [IRWM17] incorpo-
rates a specular layer with the add (also known as linear-dodge)
mode and occlusion layer with the multiply mode. The method

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

proposed by Carroll et al. [CRA11] further decomposes an irra-
diance layer into direct and indirect illumination layers that are
composited with the add mode. While their target images are pho-
tographs with consistent lighting, ours are artistic paintings, where
every artist can use different layering models to create various ef-
fects. For example, the irradiance effect is not always expressed
with the multiply mode in paintings. Thus, we need a general
formulation that is capable of handling any layering model.

Aksoy et al. [AAPS16, AASP17] presented layer-decomposition
methods based on color unblending, on which our method is built.
While our purpose of layer decomposition is to separate colors,
Aksoy et al.’s main purpose was to separate regions of an image
(i.e., soft segmentation) for region-based image manipulation such
as green-screen keying. Their color unblending was formulated by
assuming the linear additive model, and we introduce how it can be
generalized for handling advanced color blending.

2.2. Extraction of Representative Colors

Palette extraction is a problem of extracting a small number of
representative colors from an image. Chang et al. [CFL∗15] pro-
posed a palette-extraction method based on k-means clustering and
used it for photo recoloring. Tan et al. [TLG16] proposed a palette-
extraction method that is closely tied to their layer-decomposition
method (and later a more efficient method was proposed in an arXiv
paper [TEG18]). Instead of extracting colors, extracting color distri-
butions is more useful in some scenarios. Aksoy et al. [AASP17]
proposed a method of building a small number of representative
color-distribution models from an image, in which each distribution
is represented as a Gaussian kernel in RGB space (we also use this
representation as explained later).

In our problem setting, none of the above automatic extraction
methods is directly useful because they are not designed to be used
with advanced color blending but designed to be used with the
simple alpha blending or linear additive models. Our target users
are likely to have their unique expectations about color distributions
of resulting layers. Thus, instead of automatically estimating color
distribution models, we enable users to interactively specify them.

2.3. Color-Blend Modes

Advanced color blending has been intensively used in software
for digital painting (e.g., [Adob, The, KDE]) and visual effects (e.g.,
[Adoa]). In addition, it has recently been supported by web browsers
and vector graphics software because it was added to CSS and SVG
specifications [W3C11, W3C15]; thus, it has been more and more
universal and its importance in visual design has been increasing.
Advanced color blending is used not only for compositing layers
but also for processing individual brush strokes. Some digital artists
favor adding strokes in a single layer rather than in separated layers,
but even in this case advanced color blending is often used to achieve
various color effects (c.f., [Rev15]).

Our method supports such advanced color blending. Specifically,
we tested our method with 13 popular color-blend modes that ap-
peared in a SVG specification [W3C11]. It is extendable for support-
ing other color-blend modes such as linear-burn and pin-light,

as long as they are functions that take two RGB values as input and
return an RGB value and are differentiable (at almost every point).
Other color-blend strategies that do not fit this condition (e.g., the
Kubelka-Munk model [TDLG18,AMSL17] requires absorption and
scattering coefficients of physical pigments and the dissolvemode
relies on randomness) are out of the scope of this paper.

3. Basics of Color Blending and Composition

This section describes the basics of how multiple layers are compos-
ited into an image in general cases [W3C11, W3C15]. We include
this section for readers who are not familiar with the general com-
position model.

Terminology. Color-blend modes (e.g., normal, multiply,
screen, and add) are for blending two input colors and speci-
fied by blend functions. Composition operators are the operators
defining how two layers are composited together. These were de-
fined by Porter and Duff [PD84], including 12 basic operators (e.g.,
source-over, destination-over, and xor) and an additional
operator called plus. The layering model refers to a specific com-
bination of a blend mode and composition operator. For example,
the linear additive model refers to the combination of the add mode
and plus operator. (Note that this model is called by many different
names; for example, “plus” [W3C11], “lighter” [W3C15], “alpha
add” [AASP17,Adoa], and “additive color mixing model” [TEG18].)
The simple alpha blending model refers to the combination of the
normal mode and source-over operator.

Notations. Each pixel in a single layer has an RGBA value:

x =
[
cT

α
]T

=
[
cr cg cb

α
]T ∈ [0,1]4. (1)

In this paper, we do not use the pre-multiplied color-component
notation [PD84] to avoid confusion. In what follows, s and d stand
for source (corresponding to the top layer) and destination (corre-
sponding to the bottom layer), respectively.

3.1. General Color-Blending and Composition Formulation

Concept. The composition and color blending can be considered as
a two-step process as follows. Given source and destination RGBA
values, a blended RGB value is first calculated from the source and
destination RGB values using the blend function, and the blended
pixel opacity is set to the source opacity. Then, it is composited
with the destination RGBA value using Porter-Duff’s composition
operator. This process is performed independently for each pixel.

General Formulation. The two-step process can be performed
simultaneously using a single general equation for any combination
of the color-blend mode and composition operator [W3C11]:

compc(xs,xd)

=
f (cs,cd)αsαd +Y αs(1−αd)cs +Zαd(1−αs)cd

compα(αs,αd)
, (2)

compα(αs,αd) = Xαsαd +Y αs(1−αd)+Zαd(1−αs), (3)

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

where compc and compα correspond to RGB and opacity channels,
respectively,

f : [0,1]3× [0,1]3→ [0,1]3 (4)

is a blend function and defined for each color-blend mode (see
[W3C15] for the definitions), and

X ,Y,Z ∈ {0,1,2} (5)

are defined for each Porter-Duff’s operator [W3C11]. For conve-
nience, we concisely represent the equations as

comp(xs,xd) =

[
compc(xs,xd)
compα(αs,αd)

]
. (6)

Discussion. This formulation can be found in an obsolete SVG
specification [W3C11]. The latest specification [W3C15] has a dif-
ferent formulation with the same expressiveness. Instead of using
three operator-specific constant values X ,Y,Z, the latest one uses
two operator-specific functions of source and destination alpha val-
ues. We favor the above formulation since it was useful in calculating
its partial derivatives more concisely.

Specialization. The linear additive model can be obtained by spec-
ifying the add blend function and the plus operator: f (cs,cd) =
cs + cd ,X = 2,Y = Z = 1. Similarly, the simple alpha blending
model can be obtained by specifying the normal blend function and
the source-over operator: f (cs,cd) = cs,X = Y = Z = 1.

3.2. Recursive Layering

When there are n layers (n≥ 2), the composited RGBA value x̂n =[
ĉT

n α̂n
]T

is recursively calculated by the rule:

x̂k =

{
x1 (k = 1)
compk(xk, x̂k−1) (otherwise)

, (7)

where compk is the composition operation associated with the k-
th layer, a variable with a “hat” indicates that it is the result of the
composition of the layer itself and the layers below, and the subscript
indicates the layer index (the 1st layer is the bottom and the n-th
layer is the top).

4. Generalized Color Unblending Formulation

In this section, we present a color-unblending formulation by gen-
eralizing Aksoy et al.’s formulation [AAPS16, AASP17] using the
general composition formulation. While their formulation is specific
to the linear additive model, our formulation can also cover more
general cases. At this moment, we focus on the principle of the
color-unblending formulation and keep the discussion as mathemat-
ically simple as possible; we will present more specific techniques
for adapting this formulation to practical usages in the next section
(e.g., how user control is offered).

Problem Setting. The input for this problem consists of a target
image, target number of layers n, and configurations for each of
the n layers. A layer configuration consists of a color-blend mode,
composition operator, and color model (which is explained later).
Note that a color-blend mode and composition operator are not

necessary specified for the bottom layer since they do not affect
composition. Given such an input, color unblending is carried out
for each pixel independently. Let xtarget be a pixel’s RGBA value
of the target image. The goal of color unblending is to find RGBA
values x1, . . . ,xn that can reproduce the target RGBA value xtarget

when they are composited and reasonably fit the associated color
models. For convenience, we represent them as

x =
[
xT

1 · · · xT
n
]T ∈ R4n. (8)

Overview. An optimization-based approach is taken to solve this
problem. Specifically, a constrained optimization problem is solved;
an objective function is minimized such that several (hard) equality
constraints are satisfied.

4.1. Objective Function

An energy function E(x) is defined in the same way as Aksoy et
al.’s method [AAPS16]:

E(x) =
n

∑
i=1

αiDi(ci), (9)

where Di(ci) is the distance (or deviation) from the i-th layer’s RGB
values to the i-th layer’s color model. This energy function is used as
the objective function to be minimized. Note that we do not include
the sparsity term [AASP17] in the objective function since it is for
improving soft segmentation but our interest is not segmentation.

A color model is defined as a Gaussian distribution in RGB space
following [AAPS16]. The distance is calculated using the squared
Mahalanobis distance. Following [AASP17], we visualize a color
model as a hexagon whose center color represents the center of the
Gaussian kernel and color variation is determined by putting the
principal axes of its covariance matrix to the diagonals.

4.2. Hard Constraints

Special Case. Aksoy et al.’s formulation [AAPS16,AASP17] takes
the following equality constraints:

n

∑
i=1

αici = ctarget,
n

∑
i=1

αi = αtarget, (10)

along with box constraints. These equations are derived by specifi-
cally assuming the linear additive model.

It is worth noting that their actual equality constraints are de-
scribed differently; they formulate the equality constraints such that
the element-wise squared deviations of these equations equal to
zeros. However, it is not necessary for the deviations to be squared;
thus, we prefer to represent them in simpler (not squared) forms.

General Case. The above equality constraints are for ensuring
that the composited RGBA value becomes equivalent to the target
RGBA value but derived from a specific layering model. We gener-
alize these constraints for various cases. Specifically, the equality
constraints can be represented as

ĉn = ctarget, α̂n = αtarget, (11)

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

Bo�om layer Top layer

Color models:

Input image

plus
add

plus
add

plus
add

(N/A)
(N/A)

source-over
normal

source-over
normal

source-over
normal

(N/A)
(N/A)

source-over
color-dodge

source-over
multiply

source-over
overlay

(N/A)
(N/A)

Composited
image

Composited
image

Composited
image

Figure 3: Our generalized unblending formulation can produce various layer decompositions (even with same color models) by specifying
different composition operators and color-blend modes. In the first row, the plus operator and add blend mode are specified to produce
the (so-called) linear additive model; the result is identical to that generated using Aksoy et al.’s formulation [AAPS16, AASP17]. In the
second and third rows, the source-over operator is specified. The second row uses the normal blend mode, so the results can be composited
using the standard alpha blending. The third row uses advanced color-blend modes (i.e., color-dodge, multiply and overlay) to extract
semantically meaningful effects (i.e., shading). Input image courtesy of David Revoy.

where α̂n and ĉn are obtained by the recursive application of general
composite operations (Equation 2 and Equation 3). These constrains
are simply written as

C(x) = 0, where C(x) = x̂n−xtarget ∈ R4. (12)

4.3. Solver

Following [AAPS16], these equality constraints are handled by the
augmented Lagrangian method [NW06] (also called the original
method of multipliers). Specifically, to solve the constrained min-
imization problem, the augmented Lagrangian method iteratively
solves a sequence of unconstrained minimization problems:

min
x∈[0,1]4n

L(x), where L(x) = E(x)−λλλ
TC(x)+ ρ

2
‖C(x)‖2, (13)

where the parameters λλλ ∈ R4 and ρ ∈ R are updated after each
unconstrained minimization. See [AAPS16] for the details of the
parameter settings and stop criteria of this iteration. As the solver for
the unconstrained minimization, we use L-BFGS method [LN89].

4.4. Derivatives

To solve the unconstrained minimization problem (Equation 13), it
is necessary to calculate the partial derivatives:

∂L(x)
∂x

=
∂E(x)

∂x
+

∂C(x)
∂x

(ρC(x)−λλλ). (14)

The energy function is easily differentiated given that the distance
function D is differentiable. Calculating the derivative of the equality
constraints is less trivial. First, the derivative is a concatenation of
the derivatives of the composited RGBA values with respect to xi:

∂C(x)
∂x

=
∂x̂n

∂x
=
[

∂x̂n
∂x1

T
· · · ∂x̂n

∂xn

T
]T
∈ R4n×4. (15)

Due to the recursive nature of composition, it is difficult to express
the derivatives in a single equation. Yet, they can be calculated
recursively using the chain rule; the derivative of the RGBA values
obtained by compositing the bottom k layers with respect to the
RGBA values of the i-th layer is calculated by recursively applying

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

the following rule:

∂x̂k
∂xi

=


I (i = k = 1)

∂

∂xk
compk(xk, x̂k−1) (i = k 6= 1)

∂x̂k−1
∂xi
· ∂

∂x̂k−1
compk(xk, x̂k−1), (otherwise)

. (16)

Note that the case of i > k never appears in the recursive calculation.
The general composition rules for compositing two layers (Equa-
tion 2 and Equation 3) are easily differentiated by the source RGBA
values xs or the destination RGBA values xd given that the blend
function f is differentiable.

4.5. Results and Reproduction of Previous Method

Our general formulation can be specialized by choosing a specific
color-blend mode and composition operator to be used. By choosing
the add mode and plus operator, we can derive equations identical
to Aksoy et al.’s ones [AAPS16]; thus our method can reproduce
results identical to theirs (Figure 3; Top). Using the same formu-
lation but choosing the source-over operator and normal mode,
we can generate different results even with the same color models
(Figure 3; Middle). Finally, by specifying the source-over op-
erator and advanced color-blend modes, it generates results with
advanced blending (Figure 3; Bottom). These examples demonstrate
the generality of our method. Note that these results were generated
with the refinement techniques described in [AASP17] (Top) and
the next section (Middle, Bottom), and the same color models were
specified for every case only for explanatory purposes.

5. Techniques for Adapting Our Formulation to Practical Use

5.1. Additional Assumptions

Considering practical use of our method, we introduce the following
additional assumptions.

Always Source-Over Advanced color-blend modes are virtually
always used with the source-over operator. For example, the
latest specification of CSS and SVG [W3C15] explains them with
only the source-over operator. Furthermore, popular software
[Adob, The, KDE] does not support other operators. Thus, it is
reasonable to limit the available operator in this way from a
practical viewpoint.

Opaque Background Like painting with physical media, digital
painting is often created with a fully opaque layer at the bottom.
We examined over 10 online tutorials by professionals and found
that all follow this condition.

5.2. Modifying Formulation

Omitting Alpha Constraint. As a result of the above two assump-
tions, composited pixels are ensured to be fully opaque. Thus, we can
remove the alpha component from the equality constraints (Equa-
tion 12) as it is always satisfied; thus redundant.

Resolving Ambiguity. When using the normal mode, the solution
of the color-unblending optimization may be ambiguous (i.e., there
could be many solutions that are equally optimal). For example,
when a top layer has a fully opaque region, the region in the lay-
ers below can have arbitrary RGBA values without changing the

Without maximum transparency

With maximum transparency

Input
image

Figure 4: Toy example showing that some pixels’ alpha values can
be arbitrary. The pointed region will be hidden by the above yellow
layer when compositing, so the alpha values from optimization can
be ambiguous. We solve this ambiguity by favoring transparency.

composite RGBA value (see Figure 4; Top). We provide an option
to solve this ambiguity by preferring these arbitrary pixels to be
fully transparent (see Figure 4; Bottom) to reduce redundant paint-
ings. This is achieved by adding the following term to the objective
function: ε∑

n
i=1 αi, where ε can be small (we set ε = 0.01).

Handling Grayscale Layers. Digital artists sometimes use
grayscale layers to draw shading or lighting effects. Our method
is capable of handling grayscale layers if necessary. When the i-th
layer is specified as grayscaled, the following additional equality
constraint is added:

√
3ci−‖ci‖

[
1 1 1

]T
= 0. (17)

5.3. User Control

Users specify the number of layers and then the color-blend mode,
color model, and option of grayscaling for each layer. As for the
color model specification, a Gaussian kernel in RGB space has nine
degrees of freedom in total (three for the center and six for the
covariance), but we expose only four sliders to users to control the
center RGB value and single variance parameter σ. The covariance
matrix is simply set as σI, and we found that this simplified input is
expressive enough in practice.

Optionally, users can use automatic color-model extraction as a
starting point to explore possible decompositions. In this case, color
models are determined using Aksoy et al.’s method [AASP17], and
all the layers are specified to use the normal mode.

Performing the color-unblending process to a full-resolution im-
age takes a few minutes or more using a consumer-level laptop,
which prohibits users from efficiently exploring possible decomposi-
tions. For this problem, we introduce a simple solution: we let users
efficiently perform exploration with a down-sampled image (e.g.,
100×100 pixels), which runs less than ten seconds in most cases
and is considered sufficiently fast for the trial-and-error purpose,
and then runs our method with the full resolution.

5.4. Initial Solution

We choose the initial solution for optimization by the following rule.
For color channels, we simply fill each layer using the center color

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

of its corresponding color distribution. For alpha channels, we set
all to 0.5 (except for the background layer; the background layer’s
alpha is set to one). The reason we do not use 0 or 1 for initial
alphas is that the derivatives with respect to some layer colors could
vanish with such alphas at the beginning of optimization, which is
not desirable. Although this initialization rule is simple, it works
well without any noticeable problem.

Note that Aksoy et al. [AAPS16, AASP17] use a different rule.
For each pixel, their method “assigns” the target color to a layer that
has the closest distance to its color distribution with full opacity,
and the other layers are set to transparent. Thus, with the linear
additive model, the initial solution is ensured to reproduce the target
image. However, this rule is not reasonable in our case because this
solution does not reproduce the target image with advanced color-
blend modes. Note that the augmented Lagrangian method does not
require the initial solution to satisfy the equality constraints.

5.5. Refinement for Spatial Smoothness

The techniques discussed thus far are performed for each pixel in-
dependently. Thus, generated layers may be noisy (although the
composited image can be smooth). To ensure better spatial consis-
tency, we use the alpha matte refinement procedure proposed by
Aksoy et al. [AASP17]. Their original idea can be summarized as
follows.

1. Perform color unblending for each pixel independently and ob-
tain (possibly) noisy layers.

2. Apply the guided filter [HST13] to the alpha channel of each
layer using the input image as guidance and obtain smoothed
alpha channels.

3. Normalize the smoothed alpha values for each pixel such that
the composited alpha value becomes 1.

4. Perform color unblending for each pixel again, but this time the
smoothed and normalized alpha values are used as additional
hard constraints.

To adapt this procedure to our problem setting, small modifica-
tions to the original method are made. First, thanks to the opaque-
background assumption, we do not need to normalize alpha values
after applying smoothing; regardless of the non-background layers’
alpha values, the composited image always becomes fully opaque.

Second, we apply the guided filter not only to the alpha chan-
nels but also to the background RGB channels, and then use the
smoothed channels as additional hard constraints in the second color
unblending. The reason for this modification is that, unlike the origi-
nal case, smoothing the alpha channel of the background layer does
not contribute to spatial smoothness in the resulting background
layer. Thus, to obtain a smooth background layer, its RGB chan-
nels need to be directly smoothed. Figure 5 shows the effect of this
modification.

Note that there is a limitation in the second modification. Depend-
ing on the other layers’ color-blend modes, there is no guarantee
that the original image will be reproduced perfectly from the final
(smoothed) results. For example, if an image is decomposed into
two layers and the top layer has the darken blend mode, it is impos-
sible to reproduce a color that is lighter than the background color

(N/A) normal screen

With
background
smoothness

Without
background
smoothness

Close up

Figure 5: Results of decomposition by not enforcing (Top) and
enforcing (Bottom) background layer smoothness.

Input image Composited image Error 0.00

0.25

Figure 6: Deviation caused by enforcing smoothness of background
layer. (Left) Input image. (Middle) Composited image using the
layers generated with background smoothness in Figure 5. (Right)
Error between the two images in RGB-space Euclidean distance.

regardless of the top color. However, we found that this modification
produces only very small (unnoticeable in most cases) deviations
from the input image in practical cases. Figure 6 shows an example
of deviation caused by this modification.

6. Results and Applications

Editing Existing Illustrations. Figure 1 and Figure 7 illustrate
applications of our method in which it is used for editing existing
illustrations by taking into account lighting effects. For the case
of Figure 7, suppose that the user wants to replace the blue sky
background to a sunset one. Naïvely compositing the character
region with a sunset background does not work well because the
bluish lighting effect does not match to the sunset scene (Figure 7;
Leftmost). Our method can extract the bluish lighting effect as, in
this case, an overlay layer. By manipulating this layer’s hue, the
composited image becomes a better fit to the sunset scene.

Using Layers in Animations. Advanced color blending is used for
creating not only static images but also animations [Adoa]; thus,
decomposed layers by our method can be useful for animation au-
thoring. See the accompanying video for examples of this scenario.

Decomposing Physical Paints. Our method is also useful for bring-
ing physically painted media into digital workflows. Figure 8 shows
an example of this scenario. In this case, a scanned oil painting
was decomposed into layers and then layer-based digital effects
were applied. Note that we do not intend to reproduce the underly-
ing physical pigment distributions (c.f., [TDLG18,AMSL17]) but
intend to create layers that are useful in later digital workflows.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

Hue change
Original image Manual segmentation

Re-composition
a�er layer editing

Composition with
a di�erent background

(No edit)(No edit)

normal normal overlay

Decomposed layers and edits on themNaïve composition with 
a di�erent background

Figure 7: Example use of our method, in which the blue sky background is replaced with a sunset one. With our method, the character region
is decomposed into three layers: the bottom two layers roughly correspond to albedo, and the top layer roughly corresponds to lighting by the
blue sky represented as an overlay layer. To match the lighting in sunset, the top layer’s hue is modified. Finally, the layers are re-composited
with the sunset background. Note that naïvely compositing the character region with the sunset background (the leftmost image) does not look
good because lighting is mismatched. Input image courtesy of David Revoy.

(N/A) normal normal multiply

Scanned physical paint Decomposed layers Digital e�ects

soft-light

Figure 8: Applying layer-based digital effects (e.g., adding glow to highlights, coloring shadows with gradation, etc.) to a physical painting.

Fixing Deep Colorization. Automatic colorization of line sketches
using deep neural networks has become popular [Pre, SLF∗17]. A
problem with this approach is that a generated image is not likely to
be perfect. Thus, the user has to carry out a difficult manual fix or
give up using it and start painting from scratch. Our method enables
a new digital painting workflow by effectively using such a deep-
colorized image as a good starting point. Figure 9 illustrates this
workflow. Instead of directly editing the generated single-layered
image, the user can decompose it into layers with familiar advanced
color blending then individually edit each unsatisfactory layer by
adding strokes, changing hue, etc.

Remixing Multiple Illustrations. Our method facilitates remixing
of illustrations to create derivative works; users can easily harmonize
colors of target illustrations via decomposed layers (see Figure 10).

Intrinsic Decomposition. Although our main goal is to decom-
pose artistic digital paintings, it is interesting to see how this
works for photographs. Figure 11 shows the results of decom-
posing photographs in the manner of intrinsic decomposition
[BBS14, IRWM17]. Our method successfully produced high-quality

decompositions. Note that our method requires manual specifica-
tions of color models unlike with automatic methods, and we do not
intend to argue that our method is superior.

7. Evaluation

Computational Cost. We show results of performance tests in Fig-
ure 12. For this, we used the image and similar layer configurations
in Figure 1. Like as the previous method [AAPS16, AASP17], our
method basically runs for each pixel independently except for the
guided filtering part; thus, it can gain benefits of parallelization
(Figure 12; Left) and it linearly scales with respect to the number
of pixels (Figure 12; Middle). We also evaluated how the number
of layers affects its performance (Figure 12; Right). Note that our
parallelization is based on CPU multi-threading; by implementing
our method on GPU may improve its performance. It is also possible
to improve the performance by reusing unblending results of some
pixels as initial solutions for other pixels with similar colors, which
we leave as a future work.

Compared to Aksoy et al.’s linear additive formulation [AAPS16],
our formulation requires recursive calculations, which potentially

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

(N/A) overlay overlay (N/A) multiply

Sketch
& scribbles

Deep-colorized
image

Composited
image

Final image
with e�ects

Figure 9: New digital painting workflow possible with our method, where a deep-colorized image is used as a good starting point. First,
the user generates a colorized image from a sketch using deep colorization (e.g., PaintsChainer [Pre]). To fix the generated image, which is
unlikely to be perfect, the user decomposes each region (e.g., hair and skin) into layers with advanced blending. Then, she manually edits each
layer individually if necessary (in this case, the user fixes shading by adding strokes). Finally, she re-composites the image and optionally adds
post effects (e.g., overlaying textures).

Input images RemixAdjusted images

Figure 10: Remixing illustrations to create a derivative work, in
which our method is used to harmonize colors of target images.
Input images courtesy of David Revoy.

(N/A) multiply

(N/A) multiply screen

Figure 11: Examples of applying our method to photographs. We in-
tend to produce results similar to intrinsic decomposition. Grayscale
constraints are used for the multiply layers for both cases. Input
images are provided by [IRWM17].

makes our method slower even when our method handles linear
additive cases. To evaluate this aspect, we implemented Aksoy
et al.’s formulation by replacing our recursive calculation parts
with Aksoy et al.’s (non-recursive) ones and then compared its
performance with ours using the same image, color models, and
layer configurations (i.e., the plus operator and the add mode).
While they produced identical results, our formulation was about
1.4x, 2.8x, and 3.8x slower than Aksoy et al.’s when specifying 2, 4,
and 6 layers, respectively.

0 s

350 s

700 s

1,050 s

1,400 s

1 12 72

Number of CPU cores

0 s

125 s

250 s

375 s

500 s

0 k 500 k 1,000 k

Number of pixels

0 s

40 s

80 s

120 s

160 s

2 3 4 5 6

Number of layers

Figure 12: Performance of our method. We used Intel Xeon Gold
6150 Processor 2.70 GHz. By default, we used 72 cores and specified
an image with 600×600 resolution and 5 as the number of layers.
We varied the number of cores (Left), the image size (Middle), and
the number of layers (Right), respectively.

Advanced Blending vs. Linear Blending. Digital paintings cre-
ated using advanced color blending are probably better decomposed
by the originally used color-blend modes. To confirm this, we decom-
posed an image synthesized using the multiply and color-dodge
modes (Figure 13; Top) using two different conditions: the origi-
nally used layering model and the linear additive model. In the latter
condition, three color models were automatically selected by the
method by Aksoy et al. [AASP17]. Figure 13 shows the results.
Both models produced visually plausible decompositions, and es-
pecially the former one could produce the layers very similar to
the original layers (though a slight difference is noticeable). We
visualize maps of “color inhomogeneity” value (the alpha-weighted
sum of the Euclidean distances between the pixel RGB value and the
center of the desired color distribution for each layer). The choice
of color-blend modes affected the color homogeneity of each layer;
the former condition produced more homogeneous layers in terms
of color distributions.

Random Test. To see how robustly our method can produce fea-
sible results for possibly invalid inputs, we generated results with
random settings. For each layer, we randomly assigned a color-blend
mode from the 13 options and randomly generated a Gaussian color
distribution. The number of layers was specified as either 2, 4, or
8. Figure 14 shows the results. Even when the input seemed unrea-
sonable, our method could still robustly produce feasible results.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

(N/A)

2 layers 4 layers 8 layers

Random
blend modes

& color models

Generated
layers

add exclu-
sion(N/A) overlay differ-

ence (N/A) color-
burn lighten color-

burn
color-
burn darkendarken hard-

light

Figure 14: Experimental results with randomly chosen color-blend modes and color models. Even with this challenging setting of unreasonable
specifications, our method could still robustly produce feasible decompositions. Input image courtesy of David Revoy.

multi-
ply Input image

color-
dodge(N/A)

multi
ply

color-
dodge(N/A)

0.5

0.0

Color
inhomogeneity

plus
add

plus
add

(plus)
(add)

Color
inhomogeneity

0.5

0.0

Decomposition by 
the original 

advanced blending

Decomposition by 
the linear additive 

model

Figure 13: Decomposition of a synthetic image (Top) using two
different conditions. (Middle) Using the originally used color-blend
modes. (Bottom) Using the linear additive model with the same
number of layers. The former produces layers that are similar to the
original ones and are more homogeneous in terms color.

Our method assigned zero alphas for the layers that were not useful
for reasonable decomposition. This indicates that our method is not
very sensitive to input configurations. More results can be found in
the accompanying video.

8. Discussion and Future Work

Reproduction of Original Layers. Layer decomposition is inher-
ently an ill-posed problem, where many feasible solutions can exist.
Thus, there is no guarantee that our method can reproduce original
layers from a composited image, even when appropriate color-blend
modes and color distributions are specified. For example, Figure 13
(Middle) is an example of trying to reproduce original layers, which
looks mostly successful, but there is some noticeable difference
even for this simple case. Note that our goal is not to enable “reverse
engineering” but to provide a flexible means of image manipulation
that users want to perform.

Differentiability of Blend Functions. Some blend functions are
not differentiable at every point. For example, the overlay function
is defined in a per-channel manner as f (cs,cd) = 2cscd if cd < 0.5
and f (cs,cd) = 1−2(1− cs)(1− cd) otherwise [W3C15]; thus, it

is not differentiable at cd = 0.5. We have so far not observed any
problem regarding this issue (e.g., numerical instability).

Identical Colors. Our method is purely based on colors and does
not take into account either semantics of decomposed regions (c.f.,
[AOP∗18]) or spatial distributions of pixels (c.f., [TEG18]). Thus,
identical color pixels cannot be decomposed in different ways even
when they do not belong to the same region or are spatially distant.

Color-Blend Mode and Color Model Selection. We assume that
users have their own expected decompositions in mind. Thus, we
enable users to interactively specify both color-blend modes and
color models directly via an interface. A few trials and errors of
fine-tuning color models (especially adjusting RGB values; vari-
ances were not changed from default in most cases) were typically
performed to obtain the results shown in this paper; we consider
this is not a substantial burden for users in practice. Nevertheless,
investigating (semi-)automatic approaches to determine reasonable
color-blend modes and color models for initial suggestions, which
would facilitate efficient specification, will be important. Also, it
would be worth investigating to optimize the color models simulta-
neously during layer decomposition.

Color Model Representation. Our method uses a Gaussian model
following the previous methods [AAPS16, AASP17]. Investigating
more expressive models (e.g., Gaussian mixture model) is proba-
bly useful for more controllable decompositions. In this case, user
interfaces for controlling color models may need to be investigated.

Other Possible Applications. Typical intrinsic and illumination
decomposition methods use relatively simple layering models. These
methods may be improved by incorporating our generalized color
unblending formulation since it supports non-linear color blending.

Data-Driven Layer Decomposition. To support those who are not
familiar with advanced color blending, we believe that using data-
driven approaches is a promising direction. For example, if a number
of professional digital paintings with layer information are available,
we might be able to extract templates of layer structures and learn
typical color distributions [NRS15] while taking layer semantics
into account. By investigating this direction, a future system could
suggest an initial decomposition to the user rather than having her
begin to specify layer configurations from scratch.

Acknowledgments

This work was supported in part by JST ACCEL Grant Number
JPMJAC1602, Japan.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Yuki Koyama & Masataka Goto / Decomposing Images into Layers with Advanced Color Blending

References
[AAPS16] AKSOY Y., AYDIN T. O., POLLEFEYS M., SMOLIĆ A.: Inter-

active high-quality green-screen keying via color unmixing. ACM Trans.
Graph. 35, 5 (Aug. 2016), 152:1–152:12. doi:10.1145/2907940. 2, 3,
4, 5, 6, 7, 8, 10

[AASP17] AKSOY Y., AYDIN T. O., SMOLIĆ A., POLLEFEYS M.:
Unmixing-based soft color segmentation for image manipulation. ACM
Trans. Graph. 36, 2 (Mar. 2017), 19:1–19:19. doi:10.1145/3002176.
2, 3, 4, 5, 6, 7, 8, 9, 10

[Adoa] ADOBE SYSTEMS INC.: Adobe After Effects CC. http://www.
adobe.com/products/aftereffects.html. 3, 7

[Adob] ADOBE SYSTEMS INC.: Adobe Photoshop CC. http://www.
adobe.com/products/photoshop.html. 1, 3, 6

[AMSL17] AHARONI-MACK E., SHAMBIK Y., LISCHINSKI D.:
Pigment-based Recoloring of Watercolor Paintings. In Proc. NPAR ’17
(2017), pp. 1:1–1:11. doi:10.1145/3092919.3092926. 2, 3, 7

[AOP∗18] AKSOY Y., OH T.-H., PARIS S., POLLEFEYS M., MATUSIK
W.: Semantic soft segmentation. ACM Trans. Graph. 37, 4 (July 2018),
72:1–72:13. doi:10.1145/3197517.3201275. 10

[BBS14] BELL S., BALA K., SNAVELY N.: Intrinsic images in the wild.
ACM Trans. Graph. 33, 4 (July 2014), 159:1–159:12. doi:10.1145/
2601097.2601206. 2, 8

[CFL∗15] CHANG H., FRIED O., LIU Y., DIVERDI S., FINKELSTEIN
A.: Palette-based photo recoloring. ACM Trans. Graph. 34, 4 (July 2015),
139:1–139:11. doi:10.1145/2766978. 3

[CRA11] CARROLL R., RAMAMOORTHI R., AGRAWALA M.: Illu-
mination decomposition for material recoloring with consistent inter-
reflections. ACM Trans. Graph. 30, 4 (July 2011), 43:1–43:10. doi:
10.1145/2010324.1964938. 2, 3

[FLB17] FAVREAU J.-D., LAFARGE F., BOUSSEAU A.: Photo2clipart:
Image abstraction and vectorization using layered linear gradients. ACM
Trans. Graph. 36, 6 (Nov. 2017), 180:1–180:11. doi:10.1145/3130800.
3130888. 2

[HST13] HE K., SUN J., TANG X.: Guided image filtering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 35, 6 (June 2013),
1397–1409. doi:10.1109/TPAMI.2012.213. 7

[IRWM17] INNAMORATI C., RITSCHEL T., WEYRICH T., MITRA N. J.:
Decomposing single images for layered photo retouching. Comput. Graph.
Forum 36, 4 (July 2017), 15–25. doi:10.1111/cgf.13220. 2, 8, 9

[Jel17] JELARTS: How to use layer modes in digital art // multiply, overlay,
etc. https://youtu.be/OAv1CkQR4o4, 2017. 1

[KDE] KDE: Krita. https://krita.org/. 1, 3, 6

[LFDH17] LIN S., FISHER M., DAI A., HANRAHAN P.: Layerbuilder:
Layer decomposition for interactive image and video color editing, 2017.
arXiv:1701.03754v2. 2

[LN89] LIU D. C., NOCEDAL J.: On the limited memory bfgs method
for large scale optimization. Math. Program. 45, 3 (Dec. 1989), 503–528.
doi:10.1007/BF01589116. 5

[Nie16] NIEVES M.: How to shade easily with layer
blend modes. https://design.tutsplus.com/articles/
how-to-shade-easily-with-layer-blend-modes--cms-25895,
2016. 1

[NRS15] NGUYEN C. H., RITSCHEL T., SEIDEL H.-P.: Data-driven
color manifolds. ACM Trans. Graph. 34, 2 (Mar. 2015), 20:1–20:9.
doi:10.1145/2699645. 10

[NW06] NOCEDAL J., WRIGHT S. J.: Numerical Optimization. Springer,
2006. doi:10.1007/978-0-387-40065-5. 5

[PD84] PORTER T., DUFF T.: Compositing digital images. SIGGRAPH
Comput. Graph. 18, 3 (Jan. 1984), 253–259. doi:10.1145/964965.
808606. 3

[Pre] PREFERRED NETWORKS: PaintsChainer. https:
//paintschainer.preferred.tech/. 8, 9

[Rev15] REVOY D.: Painting with blending-modes. https://youtu.
be/AybFWViT-3Q, 2015. 3

[RLMB∗14] RICHARDT C., LOPEZ-MORENO J., BOUSSEAU A.,
AGRAWALA M., DRETTAKIS G.: Vectorising bitmaps into semi-
transparent gradient layers. Comput. Graph. Forum 33, 4 (2014), 11–19.
doi:10.1111/cgf.12408. 2

[SLF∗17] SANGKLOY P., LU J., FANG C., YU F., HAYS J.: Scribbler:
Controlling deep image synthesis with sketch and color. In Proc. CVPR

’17 (2017), pp. 6836–6845. doi:10.1109/CVPR.2017.723. 8

[TDLG18] TAN J., DIVERDI S., LU J., GINGOLD Y.: Pigmento: Pigment-
based image analysis and editing. IEEE Trans. Vis. Comput. Graph.
(2018). doi:10.1109/TVCG.2018.2858238. 2, 3, 7

[TDSG15] TAN J., DVOROŽŇÁK M., SÝKORA D., GINGOLD Y.: De-
composing time-lapse paintings into layers. ACM Trans. Graph. 34, 4
(July 2015), 61:1–61:10. doi:10.1145/2766960. 2

[TEG18] TAN J., ECHEVARRIA J., GINGOLD Y.: Palette-based image
decomposition, harmonization, and color transfer, 2018. arXiv:1804.
01225. 2, 3, 10

[The] THE GIMP TEAM: GNU Image Manipulation Program (GIMP).
https://www.gimp.org/. 1, 3, 6

[TLG16] TAN J., LIEN J.-M., GINGOLD Y.: Decomposing images into
layers via rgb-space geometry. ACM Trans. Graph. 36, 1 (Nov. 2016),
7:1–7:14. doi:10.1145/2988229. 2, 3

[W3C11] W3C: SVG compositing specification, 2011. URL: https:
//www.w3.org/TR/2011/WD-SVGCompositing-20110315/. 3, 4

[W3C15] W3C: Compositing and blending level 1, 2015. URL: https:
//www.w3.org/TR/2015/CR-compositing-1-20150113/. 3, 4, 6,
10

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1145/2907940
http://dx.doi.org/10.1145/3002176
http://www.adobe.com/products/aftereffects.html
http://www.adobe.com/products/aftereffects.html
http://www.adobe.com/products/photoshop.html
http://www.adobe.com/products/photoshop.html
http://dx.doi.org/10.1145/3092919.3092926
http://dx.doi.org/10.1145/3197517.3201275
http://dx.doi.org/10.1145/2601097.2601206
http://dx.doi.org/10.1145/2601097.2601206
http://dx.doi.org/10.1145/2766978
http://dx.doi.org/10.1145/2010324.1964938
http://dx.doi.org/10.1145/2010324.1964938
http://dx.doi.org/10.1145/3130800.3130888
http://dx.doi.org/10.1145/3130800.3130888
http://dx.doi.org/10.1109/TPAMI.2012.213
http://dx.doi.org/10.1111/cgf.13220
https://youtu.be/OAv1CkQR4o4
https://krita.org/
http://arxiv.org/abs/1701.03754v2
http://dx.doi.org/10.1007/BF01589116
https://design.tutsplus.com/articles/how-to-shade-easily-with-layer-blend-modes--cms-25895
https://design.tutsplus.com/articles/how-to-shade-easily-with-layer-blend-modes--cms-25895
http://dx.doi.org/10.1145/2699645
http://dx.doi.org/10.1007/978-0-387-40065-5
http://dx.doi.org/10.1145/964965.808606
http://dx.doi.org/10.1145/964965.808606
https://paintschainer.preferred.tech/
https://paintschainer.preferred.tech/
https://youtu.be/AybFWViT-3Q
https://youtu.be/AybFWViT-3Q
http://dx.doi.org/10.1111/cgf.12408
http://dx.doi.org/10.1109/CVPR.2017.723
http://dx.doi.org/10.1109/TVCG.2018.2858238
http://dx.doi.org/10.1145/2766960
http://arxiv.org/abs/1804.01225
http://arxiv.org/abs/1804.01225
https://www.gimp.org/
http://dx.doi.org/10.1145/2988229
https://www.w3.org/TR/2011/WD-SVGCompositing-20110315/
https://www.w3.org/TR/2011/WD-SVGCompositing-20110315/
https://www.w3.org/TR/2015/CR-compositing-1-20150113/
https://www.w3.org/TR/2015/CR-compositing-1-20150113/

