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Abstract

This paper presents a real-time rhythm track-
ing system that recognizes a rhythmic structure
in musical audio signals without drum-sounds.
Most previous systems dealt with MIDI sig-
nals and had difficulty in processing, in real
time, audio signals containing sounds of vari-
ous instruments and in tracking rhythm above
the quarter-note level. Our system not only
tracks beats at the quarter-note level but also
recognizes rhythmic structure at the half-note
and measure levels. To make musical decisions
about the audio signals, we propose a method
of detecting chord changes that does not rely
on chord name identification. The method en-
ables the system to understand music at differ-
ent rhythmic levels — for example, to find the
beginnings of half notes and measures — and
to select the best of various hypotheses about
beat positions. Experimental results show that
our system is robust enough to handle audio
signals sampled from compact discs of popular
music.

1 Introduction

Although a great deal of music-related research has been
undertaken, it is still difficult to build a computer system
that can understand music. In terms of computational
auditory scene analysis, one of the goals is to implement
a computational model that can understand musical au-
dio signals in a human-like fashion. A popular approach
to this goal is to build an automatic music transcription
system or a sound source separation system, which typ-
ically transforms audio signals into a symbolic represen-
tation such as a musical score or MIDI data. Although
such detailed-transcription technologies are important,
they have difficulty in dealing with compact disc audio
signals in general. Because only a trained listener can
identify musical notes and chord names, we can infer
that musical transcription is an advanced skill difficult

even for human beings to acquire.

On the other hand, an untrained listener understands
music to some extent without mentally representing au-
dio signals as musical scores. For example, even a listener
who cannot identify chord names can sense harmony and
chord changes. A listener who cannot completely segre-
gate and identify every musical note can nevertheless
track musical beats and keep time to music by hand-
clapping or foot-tapping. We therefore think that it is
important to first build a computer system that can un-
derstand music the way untrained human listeners do,
without relying on transcription, and then extend the
system so that it can understand music the way musi-
clans do.

Our approach is to build a real-time rhythm-tracking
system that recoguizes a hierarchical musical structure
of three rhythmic levels in real-world audio signals, such
as those sampled from popular compact discs. Rhythm
tracking is an important part of the computational mod-
eling of music understanding because rhythm is funda-
mental, for both trained and untrained listeners, to the
perception of Western music. Our system can under-
stand music at the three rhythmic levels: the quarter-
note level, the half-note level, and the measure (bar)
level.! It not only finds the pulse sequence correspond-
ing to the beats at the quarter-note level but also finds
the beginnings of half notes and measures under the as-
sumption that the time-signature is 4/4.

Most previous rhythm-tracking related systems [Dan-
nenberg and Mont-Reynaud, 1987; Desain and Hon-
ing, 1989; 1994; 1995; Allen and Dannenberg, 1990;
Driesse, 1991; Rosenthal, 1992a; 1992b; Rowe, 1993;
Large, 1995; Smith, 1996] have dealt with MIDI sig-
nals or used onset times as their input. Since it is
quite difficult to obtain complete MIDI representations
from audio data, MIDI-based systems are limited in

! Although our system does not rely on score representa-
tion, for convenience here we use score-representing termi-
nology like [Rosenthal, 1992a; 1992b]. The quarter-note level
indicates the temporal basic unit that a human feels in music
and that usually corresponds to a quarter note in scores.
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their application. Although some systems [Schloss, 1985;
Katayose et al., 1989; Vercoe, 1994; Todd, 1994; Todd
and Lee, 1994; Scheirer, 1996] dealt with audio signals,
they either did not consider higher-level musical struc-
ture such as the half-note and measure levels or did not
process, in real time, popular music sampled from com-
pact discs. We developed a real-time beat-tracking sys-
tem for audio signals [Goto and Muraoka, 1994; 1995a;
1995b], but it assumed that the input contained drum-
sounds (a bass drum and a snare drum) and was not
generally able to track beats in audio signals without
drum-sounds. Moreover, it did not recognize rhythmic
structure at the measure level.

In the following sections we describe how we extended
our previous system so that it can deal with drumless
audio signals and recogunize the higher-level rhythmic
structure. To make musical decisions about the audio
signals, we propose a method of detecting chord changes.
Because our method does not rely on identifying chord
names, it can detect chord changes in audio signals sam-
pled from compact discs, where chord identification is
generally difficult.

2 Rhythm Tracking Problem

In this section we specify the rhythm tracking problem
that we are dealing with and present the main difficulties
of tracking rhythm.

2.1 Problem Specification

In our formulation, rhythm tracking is defined as a
process that organizes music into a hierarchical musi-
cal structure with three levels of rhythm: the quarter-
note level, the half-note level, and the measure level
(Figure 1). The first step in solving our rhythm track-
ing problem is thus obtaining an appropriate sequence of
beat times in an input musical audio signal. Beat times
are temporal positions of almost regularly spaced heats
corresponding to quarter notes and the sequence of beat
times is called the quarter-note level. We then address
the problem of finding the beginnings of half notes and
The sequence of half-note times (temporal
positions of strong beats?) is obtained by determining
whether a beat is strong or weak (half-note-level type).
The sequence of measure times (temporal positions of
the beginnings of measures) is obtained by determining
whether a half note is the beginning or the middle of a
measure (measure-level type). The sequence of half-note
times is called the half-note level and the sequence of
measure times is called the measure level. Both half-
note-level and measure-level types are called the beat
types.

measures.

?Under the assumption that the time-signature of an input
song is 4/4, in this paper a strong beat is either the first or
third quarter note in a measure; a weak beat is the second or
fourth.
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Figure 1: Rhythm tracking problem.

2.2  Acoustic Rhythm-Tracking Issues

The difficulties of tracking the rhythm in real-world mu-
sical acoustic signals can be summarized as (1) detect-
ing rhythm-tracking cues in audio signals, (2) examining
multiple hypotheses about beat positions, and (3) mak-
ing musical decisions.

In detecting tracking cues, it is necessary to detect
several cues for different purposes: finding beat times
and recognizing the higher-level rhythmic structure. Our
previous system [Goto and Muraoka, 1995b] addressed
the first purpose by detecting onset times using fre-
quency analysis and then obtaining beat times using au-
tocorrelation and cross-correlation of the onset times.
The tracking cues for the higher-level rhythmic struc-
ture of drumless audio signals, however, were not dealt
with.

The multiple-hypothesis issue was addressed in our
previous system [Goto and Muraoka, 1994; 1995a; 1996]
by managing multiple agents that examined parallel hy-
potheses according to different strategies.

With regard to the musical-decision issue, our previ-
ous system [Goto and Muraoka, 1995a; 1995b] made use
of prestored drum patterns, which were matched with
the currently detected drum pattern of the input. Al-
though this method was effective for audio signals with
drum-sounds, it cannot be applied to the drumless audio
signals we are considering here.

In this paper we address the main issue in extend-
ing the previous system to drumless audio signals and
higher-level rhythm understanding. The issue is that
higher-level processing using musical knowledge in ad-
dition to lower-level signal processing is indispensable
for recognizing the higher-level rhythmic structure and
evaluating which is the best interpretation of beat posi-
tions in an ambiguous situation. Musical knowledge that
is useful for analyzing musical scores or MIDI signals,
however, cannot immediately be applied to raw audio
signals because of the difficulty of obtaining MIDI-like
representations of those signals.
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3 Chord Change Detection for Musical
Decisions

To address the above-mentioned higher-level processing
issue, we propose a method for making musical decisions
based on chord changes. In the following sections, we
first describe a method of detecting chord changes for ob-
taining rhythm-tracking cues for the higher-level rhyth-
mic structure (Section 3.1), and then explain a way of
making semantic decisions with heuristic musical knowl-
edge based on the detected chord changes (Section 3.2).

3.1 Chord Change Detection

By making use of provisional beat times obtained on
the basis of onset times (i.e., making use of top-down
information from a beat-position hypothesis), this de-
tection method examines possibilities of chord changes
in a frequency spectrum without identifying any musical
notes or chord names. The idea for this method came
from the observation that a listener who cannot identify
chord names can nevertheless sense chord changes.

When all frequency components which are included in
chord tones and their harmonic overtones® are consid-
ered, they are found to tend to change significantly when
a chord is changed and to be relatively stable when a
chord is not changed. Although it is generally difficult to
extract all frequency components from audio signals cor-
rectly and completely, dominant frequency components
during a certain period of time can be estimated roughly
by using a histogram of frequency components.

This method therefore calculates two kinds of possi-
bilities of chord changes, at the quarter-note level and
at the eighth-note level, by slicing the frequency spec-
trum into strips at the provisional beat times (top-down
information). We call the former the quarter-note chord
change possibility and the latter the eighth-note chord
change possibility. The quarter-note and eighth-note
chord change possibilities respectively represent how a
chord is likely to change on each quarter-note position
and on each eighth-note position under the current beat-
position hypothesis. As described in Section 3.2, these
possibilities are used for different purposes.

These possibilities are calculated as follows:

1. Slicing the frequency spectrum into spectrum strips
The frequency spectrum (power spectrum) is calcu-
lated using the Fast Fourier Transform of the digi-
tized audio signal (Section 4.1). In preparation for
evaluating the quarter-note chord change possibility
C'qy, the frequency spectrum is sliced into spectrum
strips S¢n at the quarter-note times (beat times):

Sqn = {p(t, f)}7 Tq, <t <Tqup (1)

3In the case of actual songs, frequency components of a
melody and other parts are also considered. These compo-
nents tend to be in harmony with chord tones.

where Tq,, is the n-th beat time and p(¢, f) is the
power of the spectrum of frequency f at time t.*
On the other hand, in preparation for evaluating
the eighth-note chord change possibility Ce,,, the
spectrumn is sliced into spectrum strips Se,, at the
eighth-note times T'e,, interpolated from 7'g,:

Sep = {‘P(ta f)}a Te, <t < TCn+1 (2)

Tqny2 (n mod 2 = 0)

(Tqn-1)72 + Tanrny2)/2 ()
(nmod 2 =1)

Ten =

2. Forming histograms
The system forms histograms Hq,(f) and He,(f)
(after this, we will use abbreviations such as
Hin(f) (i = q,e)) summed up along the time axis
in the corresponding strip Sq, and Se,:

Tipni1—Gin

min= Y

t=Ti,+Gin

p(t, f) (4)

where Gy, (equal to (Tipg41 — T4y)/5 in our current
implementation) is a margin to avoid influences of
noises and unstable frequency components around
the note onset.

3. Detecting dominant frequencies

First, peaks Ki,(f) along the frequency axis in

Hi,(f) are given by

Hin(f) if Hin(f) 2
Ki,(f) = Hi,(f+1) (5)
0 otherwise

Our current implementation considers only peaks
whose frequency is between 10 Hz and 1 kHz. These
peaks can be considered the dominant tones’ fre-
quencies in each strip and tend to correspond to
frequency components of a chord or a melody.
These peaks are then transformed in order to avoid
detecting unnecessary noise peaks during a silent
period such as a rest and to consider that the previ-
ous chord continues during its period. Considering
temporal transition of the maximum mi,, of Ki,(f),
we can express the transformed peaks Qi,,(f) as

Qin(f) = lip(YKi,(f) / Mi,) (6)

Mi, = max(miy,, ®Mi,_1) (7)
0 (z<0)

cdip(z)=¢ z (0<z<1) (8)
1 (1<)

where ¥ (= 5) and @ (= 0.99) are constant values.
Finally the desired peaks Pi,(f) in each strip are
*f and t are integers, and 1f and 1¢ are respectively equal

to the frequency resolution (10.77 Hz) and the discrete time
step (11.61 ms).
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calculated so that the previous peaks Pi,_1(f) can
be regarded as continuing during a relatively silent
period in which the sum of Qi,(f) is low:

Qin(f) i X, Qin(f) >
Pin_1(f) otherwise

where © (= 0.1) is a constant value. This makes
it possible to prevent the chord change possibilities
from increasing rapidly after every silent period.

4. Comparing frequencies between adjacent strips

The chord change possibilities are calculated by
comparing peaks between adjacent strips: Pi,_1(f)
and Pi,(f). When a chord is changed at the bound-
ary time T, between those strips, different peaks
tend to occur in Pi,(f) compared with Pi,_1(f).
Considering temporal transition of positive differ-
ences ci,, we can express the quarter-note chord
change possibility C'q,, and the eighth-note chord
change possibility Ce,, as

C'i‘u, = Cin/dju (10)

Cip = zclip(Pin(f) = Pi,_1(f)) (11)
f

di, = max(ciy,, ®di,_;) (12)

Figure 2 shows examples of two kinds of chord change
possibilities. ~ The thin vertical lines represent the
quarter-note times T'q,, in (a) and the eighth-note times
Te, in (b). The beginning of measure occurs at every
four quarter-note times from the extreme left in (a), and
the beat occurs at every two eighth-note times from the
extreme left in (b). In each of (a) and (b), the horizontal
lines above represent the peaks Pi,(f) in each strip and
the thick vertical lines below represent the chord change
possibility C',,.

3.2 Musical Decisions

By utilizing the two kinds of chord change possibilities,
the system recognizes the higher-level rhythmic struc-
ture (i.e., determines the half-note times and the mea-
sure times) and selects the best hypothesis from various
agent-generated hypotheses about beat positions. For
these purposes, we introduce the following two kinds of
heuristic musical knowledge.

(1) Quarter-note-level knowledge
Chords are more likely to change at the beginnings
of measures than at other positions. In other words,
the quarter-note chord change possibility tends to
be higher on a strong beat than on a weak beat and
higher on the strong beat at the beginning of a mea-
sure than on the other strong beat in the measure.

(2) Eighth-note-level knowledge
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Figure 2: Examples of peaks in sliced frequency spec-
trum and of chord change possibilities.

Chords are more likely to change on beats (quarter
notes) than on other positions between two succes-
sive correct beats. In other words, the eighth-note
chord change possibility tends to be higher on beats
than on eighth-note displacement positions.

To recognize the higher-level rhythmic structure, the
system utilizes the quarter-note-level knowledge (1). It
first calculates Ug,, which represents a past tendency of
every other quarter-note chord change possibility and
Uh, which represents a past tendency of every four
quarter-note chord change possibility:

U(Jn =)\ []%1—2 + A CQn (13)
Uhn = )\1 Uhn,4 + )\2 C'qn (14)
where Ay (= 0.99) and Ay (= 0.2) are constant values.
If Ugn — Ugn-1 > pg, it then judges that the posi-
tion of a half-note time is T'q,, where pg (= 0.3) is
a constant threshold. If Tq, is a half-note time and
Uh, —Uh,_2 > pup, it judges that the position of a mea-
sure time is T'qp, where pp, (= 0.2) is a constant thresh-
old. The reliabilities of these judgements are defined as
LQn = Clip(l—]%z - U.erfl) (15)
Lh,, = clip(Uh,, — Uhy,—9) (16)
Based on the previous position of a half-note time and
a measure time, the following beat types (half-note-

—138 -



level type and measure-level type) are determined un-
der the assumptions that strong and weak alternate on
beat times and that beginning and meddle alternate on
half-note times.

To select the best hypothesis, the system utilizes
the eighth-note-level knowledge (2). As described in
Section 4.2, the final output is determined on the ba-
sis of the appropriate hypothesis that has the highest
reliability. To evaluate the reliability of a hypothesis,
the system calculates Le,,, which is the reliability of the
judgement that T'q,, (= Teay,) is the position of a beat:

L(Zn = )\1 L(’/n,1 + )\2 (C’Czn - C(’/gn+1) (17)

If Le,, becomes higher (i.e., the eighth-note chord change
possibility keeps on being higher on beats than on other
positions), the reliability is increased so that the system
can select the hypothesis under which the appropriate
Ce, is obtained. The reliability is also evaluated by
different viewpoints as described in Section 4.2.

4 System Description

The system for musical audio signals without drum-
sounds® assumes that the time-signature of an input song
is 4/4 and that its tempo is constrained to be between

5A detailed description of our beat-tracking system for
audio signals that include drum-sounds is presented in [Goto

and Muraoka, 1995a; 1995b].
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Figure 3: Overview of our rhythm tracking system.

61 M.M. (Mélzel’s Metronome: the number of quarter
notes per minute) and 120 M.M., and is roughly con-
stant. The system maintains, as the real-time output, a
description called beat information (BI) that counsists of
the beat time, its beat types, and the current tempo.

Figure 3 shows an overview of our rhythm tracking
system. The system first digitizes an input audio sig-
nal in the A/D Conversion stage. In the Frequency
Analysis stage, multiple onset-time finders detect onset
times in different ranges of the frequency spectrum, and
those results are transformed into vectorial representa-
tion (called onset-time vectors) by onset-time vectoriz-
ers. In the Beat Prediction stage, the system manages
multiple agents that, according to different strategies,
make parallel hypotheses based on those onset-time vec-
tors. Each agent first calculates the wnter-beat wnterval
(the temporal difference between two successive beats)
and predicts the next beat time. By communicating with
a chord change checker, it then determines its beat types
and evaluates the reliability of its own hypothesis. A hy-
potheses manager gathers all hypotheses and then deter-
mines the final output on the basis of the most reliable
one. Finally, in the BI Transmission stage, the system
transmits BI to other application programs via a com-
puter network.

4.1 Frequency Analysis

In the Frequency Analysis stage, the frequency spectrum
and several sequences of N-dimensional onset-time vec-
tors are obtained for later processing (Figure 4). The full
frequency band is split into several frequency ranges, and
each dimension of the onset-time vectors corresponds to
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Figure 4: Example of a frequency spectrum and an
onset-time vector sequence.
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a different frequency range. This representation makes
it possible to consider onset times of all the frequency
ranges at the same time.

Fast Fourier Transform (FFT)

The frequency spectrum is calculated with the FFT us-
ing the Hanning window. Each time the FFT is applied
to the input signal, the window is shifted to the next
frame.

In our current implementation, the input signal is dig-
itized at 16 bit / 22.05 kHz, and two kinds of FFT are
calculated. One FFT, for extracting onset components
in the Frequency Analysis stage, is calculated with a win-
dow size of 1024 samples, and the window is shifted by
256 samples. The frequency resolution is consequently
21.53 Hz and the discrete time step (1 frame-time®) is
11.61 ms. The other FFT, for examining chord changes
in the Beat Prediction stage, is simultaneously calcu-
lated in audio down-sampled at 16 bit / 11.025 kHz with
a window size of 1024 samples, and the window is shifted
by 128 samples. The frequency resolution and the time
step are consequently 10.77 Hz and 1 frame-time.

Extracting Onset Components
The frequency component p(t, f) that fulfills Condi-
tion (18) is extracted as an ounset compouent.

min(p(t, f), p(t+ 1, f)) > pp (18)
pp = Hl&}{(p(t - 17 f)q])(t - ]., f =+ 1)) (19)

Its degree of onset d(t, f) (rapidity of increase in power)
is given by

max(p(t, f),p(t + 1, f)) — pp
if Condition (18) is fulfilled (20)

0 otherwise

At f) =

Onset-time Finders

Multiple onset-time finders (seven in our current imple-
mentation) detect onset times in several different fre-
quency ranges (0-125 Hz, 125-250 Hz, 250-500 Hz, 500
Hz-1 kHz, 1-2 kHz, 2-4 kHz, and 4-11 kHz). Each
onset time is given by the peak time found by peak-
picking in the sum D(t) along the time axis, where
D(t) = > d(t, f). D(t) is linearly smoothed with a con-
volution kernel before its peak time is calculated. Limit-
ing the frequency range of Zf makes it possible to find
onset times in the different frequency ranges.

Onset-time Vectorizers

Each onset-time vectorizer transforms the results of all
onset-time finders into a sequence of onset-time vectors:
the same onset times in all the frequency ranges are put
together into one vector. In the current system, three
vectorizers transform onset times from seven finders into

8The frame-time is the unit of time used in our system,
and the term time in this paper is the time measured in units
of the frame-time.

Onset-time
vectorizers |Parameter
Frequency focus typ
Agents
N D
Chord change Parameters
checkers Frequency focus type
Autocorrelation period
Inter-beat interval range
Initial peak selection
Hypothesis Hypothesis
Next beat time Next beat time
Beat types Beat types
I nter-beat interval Inter-beat interval
Figure 5: Relations between onset-time vectorizers,
agents, and chord change checkers.
Agent 1-1 | | |
pair tinhibit'
Agent 1-2 | |
. prediction
time now feld

Figure 6: Agent interaction through a prediction field.

three sequences of seven-dimensional onset-time vectors
with the different sets of frequency weights (focusing on
all/low/middle frequency ranges). These results are sent
to agents in the Beat Prediction stage.

4.2 Beat Prediction

Multiple agents interpret the sequences of onset-time
vectors according to different strategies and maintain
their own hypotheses. Each hypothesis consists of a pre-
dicted next-beat time, its beat types (half-note-level type
and measure-level type), and the current inter-beat in-
terval (Figure 5). These hypotheses are gathered by the
manager and the most reliable one is considered the final
output.

All agents are grouped into pairs.” Two agents in
the same pair examine the same inter-beat interval and
cooperatively predict the next beat times; their two pre-
dictions will always differ by half the inter-beat inter-
val. For this purpose, one agent interacts with the other
agent through a prediction field, which is an expectancy
curve® that represents the time that the next beat is ex-

7

"In our current implementation there are twelve agents
grouped into six agent-pairs.

#Other systems [Desain, 1992; Desain and Honing, 1994;
Vercoe, 1994] have used a similar concept of expectancy curve
for predicting future events, but not for managing interac-
tions between agents.
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pected to occur (Figure 6). The height of each local peak
in the prediction field can be interpreted as the proba-
bility that the next beat is at that position. The two
agents interact with each other by inhibiting the pre-
diction field in the other agent. The beat time of each
hypothesis reduces the probability of a beat in the tem-
porally corresponding neighborhood in the other’s field.
Each agent has the following four parameters that
determine its strategy for making the hypothesis
(Figure 5). Initial settings of the parameters are listed
in Table 1.
1. frequency focus type
This determines which vectorizer an agent receives
onset-time vectors from. This value is chosen from
among type-all, type-low, and type-mid, respectively
corresponding to vectorizers focusing on all fre-
quency ranges, low frequency ranges, and middle
frequency ranges.

2. autocorrelation period

This determines the window size for calculating
the vectorial autocorrelation (described later) of the
onset-time vector sequence. The greater this value,
the older the onset-time information considered.

3. nter-beat wnterval range
This controls the range of possible inter-beat inter-
vals. As described later, this limits the range of
selecting a peak in the result of the vectorial auto-
correlation.

4. wnitial peak selection
This takes a value of either primary or secondary.
When the value is promary, the largest peak in the
prediction field is initially selected, and the peak is
considered the next beat time; when the value is sec-
ondary, the second largest peak is initially selected.
This helps generate a variety of hypotheses.

Table 1: Initial settings of the strategy parameters.

pair- | frequency auto- inter-beat initial
agent | focus type | correlation | interval peak
period range selection
1-1 type-all 500 f.t. 43-85 f.t. primary
1-2 type-all 500 f.t. 43-85 f.t. | secondary
2-1 type-all 1000 f.t. 43-85 f.t. primary
2-2 type-all 1000 f£.t. 43-85 f.t. | secondary
3-1 type-low 500 f.t. 43-85 f.t. primary
3-2 type-low 500 f.t. 43-85 {.t. | secondary
4-1 type-low 1000 f.t. 43-85 f.t. primary
4-2 type-low 1000 f.t. 43-85 f.t. | secondary
5-1 type-mid 500 f.t. 43-85 f.t. primary
5-2 type-mid 500 f.t. 43-85 f.t. | secondary
6-1 type-mid 1000 f£.t. 43-85 f.t. primary
6-2 type-mid 1000 f.t. 43-85 {.t. | secondary

“f.t.” is the abbreviation of frame-time (11.61 ms).

The following describe the formation of hypotheses,
the chord change checkers, and the management of hy-
potheses.

Beat-predicting Agents
Each agent makes a hypothesis as follows and sends it to
the one-to-one corresponding chord change checker and
the manager.

(1) Determining the inter-beat interval

To determine the inter-beat interval, each agent re-
ceives the sequence of onset-time vectors and calculates
its vectorial autocorrelation.” The windowed and nor-
malized vectorial autocorrelation function Ac(7) is de-
fined as

*1

)

Ae(r) =

2 ime—w Win(c — £, W) ()5 t)- ot - (21)

Doy Win(e —t, W) (a(t) - 3(t))

where 3(t) is the N-dimensional onset-time vector at time
t, c is the current time, and W is the strategy parameter
autocorrelation period. The window function win(t, s)
whose window size is s is given by

t
win(t,s) = 1.0 — 0.5 — (22)
B ;

The inter-beat interval is given by the 7 with the max-
imum height in Ae(7) within the range limited by the
parameter inter-beat interval range. If the reliability of
a hypothesis becomes high enough, its agent tunes this
parameter to narrow the range of possible inter-beat in-
tervals so that it examines only a neighborhood of the
current appropriate one.

(2) Predicting the next beat time

To predict the next beat time, each agent forms a pre-
diction field (Figure 7). The prediction field is the result
of calculating the windowed cross-correlation function
Cc(7) between the sum O(t) of all dimensions of 3(¢) and
the provisional beat time sequence By, (t) whose interval
is the inter-beat interval obtained using Equation (21):

Z (win{c — t,V) O(t)

t=c—-V

Z(St—

m=1

(c+7)) (23

t—1I(t) (m=1)

B (t) = {Bm_l(t) CIBuar(t)) (m>1) 24
5(;(:) = { (1) E; ; 8% (25)

where I(t) is the inter-beat interval at time ¢, V
(= QI(c)) is the window size for calculating cross-
correlation, and £ (= 12) is a constant value. The

9The paper [Vercoe, 1994] also proposed the use of a vari-
ant of autocorrelation for rhythmic analysis.
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Figure 7: Predicting the next beat.

prediction field is thus given by Cc¢(7r) where 0 < 7 <
I(c) — 1.

Each agent then selects the next beat time from local
peaks in the prediction field after the field is inhibited by
its paired agent. When the reliability of a hypothesis is
low, the agent initially selects the peak in the prediction
field according to the parameter initial peak selection,
and then tries to pursue the peak close to the sum of the
previously selected one and the inter-beat interval.

(3) Judging the beat types

Each agent determines the beat types of the predicted
beat time according to the half-note time and the mea-
sure time. As described in Section 3.2, these times are
obtained from the quarter-note chord change possibility
received from the corresponding chord change checker.

(4) Evaluating the reliability of its own hypothesis

Each agent finally evaluates the reliability of its own
hypothesis in the following three steps. First, the re-
liability is evaluated according to how the next beat
time predicted on the basis of the onset times coincides
with the time extrapolated from the past beat times
(Figure 7). If they coincide, the reliability is increased;
otherwise, the reliability is decreased. Second, the re-
liability 1s evaluated according to how appropriate the
eighth-note chord change possibility is. If Le,, (defined
in Section 3.2) is higher, the reliability is increased; oth-
erwise, the reliability is decreased. Third, the reliability
is evaluated according to how appropriate the quarter-
note chord change possibility is. If Lg, is higher, the
reliability is increased a little.

Chord Change Checkers

Each chord change checker examines the two kinds of

chord change possibilities as described in Section 3.1. It
analyzes the frequency spectrum on the basis of beat
times (top-down information) received from the corre-
sponding agent, and it sends the possibilities back to
the agent (Figure 5).

Hypotheses Manager

The manager classifies all agent-generated hypotheses
into groups according to beat time and inter-beat in-
terval. Each group has an overall reliability given by
the sum of the reliabilities of the group’s hypotheses.
The manager then selects the dominant group that has
the highest reliability. Since an incorrect group could be

selected if temporarily unstable beat times split the ap-
propriate dominant group, the manager repeats grouping
and selecting three times while narrowing the margin of
beat times allowable for being classified into the same
group. The reliable hypothesis in the most dominant
group is thus selected as the output and sent to the BI
Transmission stage.

The manager updates the beat types in the output
using only the beat types that were labeled when Lg,
and Lh, were high compared with the recent maximum,
since the beat types labeled by each agent might be in-
correct because of a local irregularity of chord changes
or a detection error.

5 Experiments and Results

We tested the system implemented on a distributed-
memory parallel computer, the Fujitsu AP1000, con-
sisting of 64 processing elements. In the following,
we describe an experimental result of testing the pro-
posed method of detecting chord changes (Section 5.1)
and describe the overall recognition rates of the system
(Section 5.2).

5.1 Performance Test of Chord Change
Detection

We tested the basic performance of the proposed method
of chord change detection by using a random chord pro-
gression. This chord progression consisted of one hun-
dred chord transitions of 101 chords that were randomly
selected from sixty kinds of chords: the twelve kinds of
root (A, At, B, C, Ct, D, D, E, F, Ft, G, Gt) with the
five chord types (major triad, minor triad (m), dominant
7th chord (7), minor Tth chord (m7), major 7th chord
(M7)). These chords were so selected that the adjacent
chords were different. Using a synthesizer’s piano tone,
we played them in the basic root position (close position
voicing). The fundamental frequency of the chord root
note was between 110 Hz and 208 Hz. To examine the
case in which the chord did not change, we played each
chord twice with the duration of a quarter note (600 ms)
under the tempo 100 M.M.

The mean, standard deviation (SD), maximum, and
minimum of the quarter-note chord change possibility
Cq,, and the eighth-note chord change possibility Ce,

Table 2

: Results of testing chord change detection.

Cq, Ce,
CH | NC | on T'q, (CH, NC) | off T'q,
mean | 0.73 | 0.01 | 0.56 (0.81, 0.30) 0.03
SD | 0.22 | 0.02 | 0.29 (0.18, 0.08) 0.05
max. | 1.00 | 0.10 | 1.00 (1.00, 0.48) 0.21
min. | 0.28 | 0.00 | 0.12 (0.37, 0. 12) 0.00

CH: chord change.  NC: no chord change.
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when the appropriate beat times were provided for slic-
ing the frequency spectrum are listed in Table 2. The
“CH” and “NC” of the C'q,, in Table 2 respectively mean
the C'q,, when a chord was changed at T'q,, and the C'q,
when a chord was not changed at T'q,,. The values listed
in these columns indicate that the C'q,, at chord changes
(CH) were appropriately higher than at the others (NC).

On the other hand, the “on T'q,,” and “off T'q,,” of the
Ce, respectively mean the Ce, on beats (n mod 2 =
0) and the Ce, on eighth-note displacement positions
(n mod 2 = 1). In the case of the “on Tq,,” because the
chord-change case (CH) alternated with the no-chord-
change case (NC), these cases were also analyzed sepa-
rately. The values listed in these columns indicate that
chord changes were appropriately detected using Ce,,.
The Ce, of NC of “on Tq,” tended to be higher than
the Ce,, of “off T'q,,” because the chord notes were always
played at a beat time, whereas all frequency components
on an eighth-note displacement position had lasted from
the previous beat time.

5.2 Overall Recognition Rates

We tested the system on monaural audio signals that
were sampled from commercial compact discs of popular
music and contained the sounds of various instruments
(not including drums). The initial one or two minutes of
40 songs performed by 28 artists were used as the inputs.
The time-signature was 4/4 and the tempi ranged from
62 M.M. to 116 M.M. and were roughly constant.

In our experiment the system obtained the correct
beat time (tracked beats at the quarter-note level) in
35 of the 40 songs (87.5 %)'* and determined the cor-
rect half-note-level type (tracked beats at the half-note
level) in 34 of the 35 songs (97.1 %) in which the correct
beat times were obtained. Moreover, it determined the
correct measure-level type (tracked beats at the mea-
sure level) in 32 of the 34 songs (94.1 %) in which the
half-note-level type was correct.

We evaluated how quickly the system started to track
the correct rhythm stably at each rhythmic level. The
mean, standard deviation, maximum, and minimum of
the tracking start time of all the correctly tracked songs

10 . .-

In evaluating the recognition accuracy of our system, we
did not count unstably tracked songs in which correct beats
were obtained just temporarily.

Table 3: Start time of tracking the correct rhythm at
the quarter-note, half-note, and measure levels.

rhythmic level | Quarter-note | Half-note | Measure
mean 10.71 sec 14.70 sec | 20.70 sec

SD 9.05 sec 9.21 sec 9.95 sec
max. 35.77 sec 42.56 sec | 42.56 sec
min. 0.79 sec 3.42 sec 3.42 sec

Figure 8: Virtual dancers synchronized with musical
beats.

are listed in Table 3. In each song where the rhythmic
structure was eventually determined correctly, the sys-
tem initially had trouble determining the beat types even
though the beat time was correct.

The beat times were not obtained correctly in the
five songs because onset times were very few and irregu-
lar or the tempo fluctuated temporarily. Consequently,
the chord change possibilities in those songs could not
be obtained appropriately. The main reason why the
half-note-level or measure-level type was incorrect in the
other mistaken songs was irregularity of chord changes,
such as chords changing at every quarter-note or every
other quarter-note.

These results show that the system is robust enough
to deal with real-world musical signals and that it rec-
ognizes the musical structure of three rhythmic levels.!!
We have also developed an application of our rhythm-
tracking system that displays real-time computer graph-
ics dancers whose motions change in time to musical
beats (Figure 8) and confirmed that the system is useful
in the real application.

6 Conclusion

We have described the main rhythm-tracking problem
and solution in dealing with drumless audio signals and
have described the configuration and implementation of
our real-time rhythm-tracking system. The experimental
results show that the system can track, in real time,
beats at the quarter-note level, the half-note level, and
the measure level in audio signals sampled from compact
discs of popular music.

We proposed a method for detecting chord changes by
analyzing the frequency spectrum sliced at provisional
beat times (top-down information). We think that such

UThe rhythm-tracking results are further evaluated in
[Goto and Muraoka, 1997].
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an approach, without chord name identification, is mean-
ingful because a person generally does not perceive music
as musical symbols. This method enabled our system to
determine the beat types in audio signals without drum-
sounds and to select the appropriate hypothesis from
multiple agent-generated hypotheses.

We plan to upgrade the system to generalize to other
musical genres, to follow tempo changes, and to make
use of other higher-level musical structure.
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