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Fig. 1. Sequential Gallery is an interactive framework for exploring an n-dimensional design space formed by a set of n sliders and then finding an

appropriate parameter set from that space. This framework lets the user sequentially select the most preferable option from the options displayed in a
grid interface. To enable this framework, we propose a new Bayesian optimization method called sequential plane search, which decomposes the original

high-dimensional search problem into a sequence of two-dimensional search (i.e., plane-search) subtasks.

Visual design tasks often involve tuning many design parameters. For exam-
ple, color grading of a photograph involves many parameters, some of which
non-expert users might be unfamiliar with. We propose a novel user-in-the-
loop optimization method that allows users to efficiently find an appropriate
parameter set by exploring such a high-dimensional design space through
much easier two-dimensional search subtasks. This method, called sequential
plane search, is based on Bayesian optimization to keep necessary queries
to users as few as possible. To help users respond to plane-search queries,
we also propose using a gallery-based interface that provides options in
the two-dimensional subspace arranged in an adaptive grid view. We call
this interactive framework Sequential Gallery since users sequentially select
the best option from the options provided by the interface. Our experiment
with synthetic functions shows that our sequential plane search can find
satisfactory solutions in fewer iterations than baselines. We also conducted a
preliminary user study, results of which suggest that novices can effectively
complete search tasks with Sequential Gallery in a photo-enhancement
scenario.
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1 INTRODUCTION

Visual design tasks often involve many parameters that should be
carefully adjusted via sliders. The purpose of tweaking these pa-
rameters is, for example, to reproduce the desired design in mind
or to make the design as aesthetically pleasing as possible. This
process is, however, often difficult because the parameters may af-
fect the design in combination and the space of possible parameter
configurations is very broad due to the high dimensionality. More-
over, evaluating a certain parameter configuration is also difficult
without actually manipulating the slider values and seeing the cor-
responding visual representation, which thus requires many trials
and errors. All this is especially true when users are unfamiliar with
the design parameters. For example, photo retouch software has
many sliders for color enhancement, including advanced ones such
as “shadows (red)” and “highlights (red)” [Adobe 2017a; Instagram,
Inc. 2019], which both affect shades of red but in different ways and
can produce various effects in combination with other parameters.
This complexity requires users to try many slider configurations at
the beginning to understand what effects are possible and tweak
the slider values little by little alternately in the last fine-tuning
step. Similar parametric design scenarios appear in many graphics
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applications, including, but not limited to, material appearance de-
sign [McAuley et al. 2012; Ngan et al. 2006], procedural modeling
and animation [SideFX 2019], rigged character animation [Lewis
et al. 2014], personalized fabrication [Shugrina et al. 2015], digital
composition [The Foundry Visionmongers Ltd. 2020], and genera-
tive design using learned models [Jin et al. 2017; Yumer et al. 2015].
Parametric design is also actively used in other domains, such as
architecture and product design [Robert McNeel & Associates 2019].

We propose a user-in-the-loop optimization method, called se-
quential plane search, that allows users to tactically explore such a
high-dimensional design space and efficiently find an appropriate
parameter set. Its novelty is that it decomposes the original search
problem into a sequence of much easier two-dimensional search sub-
tasks, called plane-search subtasks. This method is based on Bayesian
optimization (BO), which is a black-box optimization technique that
has recently become popular in the machine learning community
[Shahriari et al. 2016]. BO automatically balances exploration (i.e.,
encouragement to visit unobserved regions) and exploitation (i.e.,
encouragement to visit high expectation regions) on the basis of
Bayesian inference, by which it tries to minimize the number of
necessary observations to find a good solution. By taking advan-
tage of this characteristic in determining plane-search subtasks, our
sequential plane search enables users to perform a structured and
efficient design exploration guided by a computational strategy.

We also propose an interactive framework, called Sequential
Gallery, that provides a gallery-based interface to help users effec-
tively perform plane-search subtasks; see Figure 1 for the overview.
The interface is called zoomable grid and works as follows. It dis-
plays a finite set of clickable visual options from the search plane
in a grid. At the beginning of a plane-search subtask, it provides a
wide variety of options by mapping the entire region of the plane.
Then, it lets users “zoom” into a relevant region by selecting the
best option among displayed ones. After a few zooms, this sub-
task finishes with the best option in the search plane. Users repeat
this coarse-to-fine selection process (i.e., perform the plane-search
subtasks sequentially) until they find a satisfactory design. This
gallery-based interface allows users to efficiently grasp possible
designs in the subtask without actively manipulating sliders even
when they are unfamiliar with the target design space at the begin-
ning of the task.

We demonstrate the generality and applicability of our approach
by using two different scenarios: enhancing colors of photographs
(12 dimensions) and generating human body shapes using a learned
generative model (10 dimensions). To evaluate our sequential plane
search, we conducted a simulated experiment using synthetic func-
tions. This experiment revealed that this method could find good
solutions in fewer iterations than baseline methods, including the re-
cently proposed sequential-line-search method [Koyama et al. 2017],
on top of which our method is built. We also conducted a preliminary
user study with the photo enhancement scenario, which suggested
that novices could effectively complete parameter tweaking tasks
and produce satisfactory designs with Sequential Gallery.

In summary, our contribution is twofold.

e We propose a novel method called sequential plane search for
user-in-the-loop visual design optimization, which requires
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fewer iterations to find a satisfactory design parameter set
than the previous method [Koyama et al. 2017]. We evaluate
its performance against baselines through simulated experi-
ments.

e We use a zoomable grid interface in combination with our
sequential-plane-search method, which enables users to effec-
tively explore the design space and perform the search. We
tested this interactive framework, named Sequential Gallery,
through a small user study.

2 RELATED WORK
2.1 Interfaces for Exploration and Parameter Tweaking

Exploratory design is a design process in which the goal is only
loosely specified at the beginning but becomes more and more
concrete (or even changes) through exploration [Talton et al. 2009].
To facilitate this process, researchers have investigated gallery-based
design interfaces. The seminal work by Marks et al. [1997], called
Design Gallery, visually displays representative design options on a
two-dimensional screen by low-dimensional embedding. Followers
have demonstrated gallery-based interfaces for effectively exploring
complex design spaces of image recoloring [Shapira et al. 2009]
and material reflectance design [Ngan et al. 2006] using domain-
specific formulations. The Brainstorm tool [Adobe 2017b] aimed
at providing users with inspiration, especially at the beginning of
exploration, by showing a gallery of randomly sampled designs. Lee
et al. [2010] reported how a gallery of example designs could help
users obtain inspiration to improve design work. Our grid interface
follows these gallery-based approaches since our target scenario is
similar to exploratory design (though we do not assume that users’
preferences drift over time as described in Section 3).

Another common approach to facilitating parameter tweaking
is to augment slider interfaces for more effective direct manipula-
tion. Side Views [Terry and Mynatt 2002], a mechanism to augment
graphical user interface widgets, can augment sliders with design
previews. VisOpt Slider [Koyama et al. 2014, 2016] visualizes esti-
mated “goodness” of slider values using a colormap so that it gently
guides users to relevant regions of the target design space during
slider manipulation. Desai et al. [2019] further extended this in-
terface and used it for robotic motion design. In contrast to these
parameter-wise editing approaches, we take the what-you-see-is-
what-you-get (WYSIWYG) approach: users can explore the space by
interacting with visual representations without caring about raw
parameter values, which eliminates the need for being familiar with
(or creating a mental model of) the design parameters.

To help users complete plane-search subtasks, we propose using a
zoomable grid interface instead of using two sliders with a preview.
This interface follows the concept of “zoom-and-pick” (e.g., [Forlines
et al. 2005]): users can select a point from the target space precisely
by zooming around the relevant region.

2.2 Bayesian Optimization and Preference Learning

Bayesian approaches have been drawing more and more atten-
tion in building interactive systems [Kristensson et al. 2019]. Our
sequential-plane-search method is based on one such approach,
called Bayesian optimization (BO) [Brochu et al. 2010b; Shahriari



et al. 2016], which is a black-box global optimization technique.
BO tries to minimize the number of necessary queries to obtain
the optimal solution on the basis of Bayesian inference, and thus
it is suitable when the target function is expensive to evaluate. For
example, BO has been successful in hyperparameter tuning tasks for
deep neural networks [Snoek et al. 2012] as each run of the training
is expensive.

Preference learning is a category of machine learning which han-
dles preference information (e.g., A is preferred to B) [Chu and
Ghahramani 2005; Koyama et al. 2014]. Brochu et al. [2007] com-
bined BO and preference learning [Chu and Ghahramani 2005] to
enable humans to perform optimization using their preferences. We
refer to this human-in-the-loop approach as preferential Bayesian
optimization (PBO)!, and our sequential plane search is along this
line. Researchers have proposed various interaction forms of PBO
[Brochu et al. 2010a; Chong et al. 2019; Koyama et al. 2017]. Among
them, our method is particularly inspired by the sequential-line-
search method [Koyama et al. 2017], which was originally devel-
oped for crowdsourcing settings. We review these previous PBO
methods in detail in Section 3. Also, our experiment shows that
our sequential-plane-search method drastically outperforms the
sequential-line-search method. Chong et al. [2019] proposed a gen-
erative image modeling method that constructs a multi-dimensional
search subspace and lets the user explore it, which is similar to ours
at the concept level. Whereas their method relies on domain-specific
formulations, ours is formulated as a general method so that it is
applicable to various domains. Moreover, whereas their method sim-
ply uses multiple sliders, our sequential plane search is formulated
to be tightly coupled with the gallery-based interface to effectively
facilitate users’ design exploration.

2.3 Optimization-Based Design

Researchers have proposed various methods and systems for find-
ing desired design parameters by formulating design processes as
mathematical optimization problems. In the computer graphics com-
munity, this computational design approach has been often taken
for fabrication-oriented design scenarios [Bacher et al. 2014; Bharaj
et al. 2015; Li et al. 2016; Prévost et al. 2013; Umetani et al. 2014].
This approach has also been taken in the human-computer interac-
tion community for optimizing user interface design [Bailly et al.
2013; Dudley et al. 2019; Karrenbauer and Oulasvirta 2014; Todi
et al. 2016] and building advanced creativity support tools [Koyama
and Goto 2018; O’Donovan et al. 2015]. Our work is along this line,
but our target problem involves handling a perceptual objective
function as described in the next section.

Interactive evolutionary computation (IEC) methods [Takagi 2001]
also aim at involving human evaluation to produce artifacts. In con-
trast to the IEC-based approach, our sequential plane search mainly
aims to minimize the number of necessary queries to a human by in-
corporating BO techniques. In addition, our sequential plane search
is designed so that it can be performed effectively with a gallery-
based interface. Design optimization using human evaluation has
also been investigated in the mechanical engineering domain [Ren

Note that we use the term PBO in a broader sense than Gonzales et al. [2017].
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and Papalambros 2011]; our approach is applicable to this domain as
long as designs can be visually evaluated through a grid interface.

3 PROBLEM DESCRIPTION AND BACKGROUND

In this section, we first describe our target problem using the termi-
nologies in numerical optimization. Then, we review the existing
methods for this problem in detail.

3.1 Problem Description

We consider a parametric visual design task that involves n design
parameters. We assume that the parameters are all continuous and
thus are typically adjusted by sliders and that their visual effects are
also continuous (but not necessarily linear). The primary goal of this
task is to search for the slider configuration that produces the “best”
design (i.e., the most preferable design for the user who performs the
task) among all possible designs achievable via slider manipulation.
We can interpret this task as an n-dimensional continuous numerical
optimization problem from a mathematical viewpoint; here, we can
consider that the user’s preference plays the role of the objective
function of this optimization problem and the user tries to find a
maximizer of this function though exploration [Koyama and Igarashi
2018].

Let X be the n-dimensional design space that the user is going
to explore (i.e., the search space). We assume X = [0, 1]" without
loss of generality by applying normalization. An element in this
space, x € X, represents a slider configuration. The goal of this
task is to find the best parameter set, x* € X. The goodness of a
parameter set is evaluated by a perceptual function, which is called a
goodness function [Koyama et al. 2014, 2016, 2017], and we represent
itas g : X — R. Then, we can write the task in the form of an
optimization problem as

x" = arg max g(x). (1)
xeX

However, solving this problem is not easy. The goodness function g
is infeasible to formulate as a simple mathematical function since
the function g is tightly coupled with the user’s preference and even
the user him/herself usually does not know what it looks like before
exploring the design space X. Thus, we cannot apply standard opti-
mization techniques, which usually expect the objective function
to be executable by computers, to this problem. This has motivated
researchers to develop human-in-the-loop optimization methods.
Note that our target problem is similar to but different from ex-
ploratory design (e.g., [Talton et al. 2009]), where users’ preferences
can change over time during the task. In contrast, we assume that
the perceptual function g does not change over time.

Asking a user to provide feedback about goodness requires spe-
cial care; it is not feasible for the user to reliably and consistently
rate visual designs using absolute values. That is, we should not
query the goodness value g(x) directly for a certain parameter set
x. One reason is that such a value can be reliably determined only
when the user is familiar with the design space X and can imagine
other possible options in X. However, this is not true in most cases,
especially when the user does not have a clear goal vision at the
beginning of the design process. Also, as discussed by Brochu et
al. [2010a], drift (i.e., the subjective scale may change over time)
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and anchoring (i.e., the subjective scale may be dominated by earlier
experiences) effects might cause inconsistencies.

Instead, asking about relative preference is more promising. The
simplest form of such a preference query could be pairwise compar-
ison, in which the user is provided with two visual options, say x*
and x?, and then chooses his/her preferred one [Tsukida and Gupta
2011]. We can interpret this information as either g(x%) > g(xb ) or
g(x?) < g(x?) depending on the response. The important point is
that the user can provide a preference without being familiar with
the entire design space or imagining other possible options. Also,
we can expect that the drift and anchoring effects will not critically
affect responses to preference queries.

Another issue that we need to consider is that human evaluation
is much more expensive than typical executable objective functions.
For example, a user cannot feasibly be expected to perform a task
involving 10, 000 subjective evaluations, whereas a computer can do
so efficiently. This is our motivation to use BO [Shahriari et al. 2016],
which is specifically designed to find a solution with as few queries
as possible. In the next subsection, we review previous BO-based
methods for preference queries, on which our method is built.

3.2 Preferential Bayesian Optimization Methods

PBO is a variant of BO, which is based on preference (i.e., relative-
comparison) queries instead of function-value (i.e., absolute-value)
queries. By a preference query, the PBO method obtains feedback
in the following form:

Xchosen N {XU)};ZP )

where > means that the goodness value at the left-side parameter set
is likely to be larger than any goodness values at the right-side m pa-
rameter sets. We call this relational information preference data. The
likelihood of any preference data can be modeled by the Thurstone-
Mosteller model [Brochu et al. 2007; Chu and Ghahramani 2005] (for
m = 1) or Bradley-Terry-Luce model [Koyama et al. 2017; Tsukida
and Gupta 2011] (for any number m). Note that we may omit the
right-hand side curly bracket when m = 1 for simplicity.

Brochu et al. [2007] proposed using a pairwise-comparison task
(also known as two-alternative forced choice (2AFC)), in which the
user is provided with two visual options and asked to choose one.
Suppose that the method has received i — 1 query responses from
the user and is going to determine the i-th query. Let x] € X be
the “current-best” parameter set among the observed parameter
sets and xls‘l € X be the parameter set that is chosen by BO for the
i-th iteration of the optimization. Refer to Appendix A for the exact
definitions of these parameter sets, but an intuition for the latter
is as follows: the point XIIT:I is defined as the point that maximizes
a criterion called expected improvement (EI), which evaluates the
effectiveness of a point as the next query (we will explain this in
slightly more detail in Section 5). The i-th pairwise-comparison task
is then formulated using x;r and xll.:‘I. As a result of user feedback,
the method obtains new preference data of either

x;’ > x];:l or xlEI > x;r, (3)

depending on the user’s choice.
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Koyama et al. [2017] proposed using a single-slider-manipulation
task, in which the user is provided with a single slider and a pre-
view widget that is dynamically updated in accordance with the
slider value and asked to find the best slider tick position. From a
mathematical viewpoint, the user is considered to solve a line-search
query. Koyama et al. proposed constructing the one-dimensional
subspace for the i-th iteration, S;, as

Si={(1-t)xF + 11|t e [0, 1]} (4)
Then, the task for the user is described as
x?hosen = arg max g(x), (5)
x€S;
and the user’s feedback for this task is interpreted as
Xchosen > {X+,XEI}. (6)

Note that more points from S; can be added into the right-side
set, but this may increase the computational cost unnecessarily. A
notable advantage of this approach over the pairwise-comparison
approach is that a single query can obtain important information
on an additional parameter set chosen from the continuous sub-
space, whereas the pairwise-comparison approach can obtain only
information on discrete parameter sets. This makes the number of
iterations necessary to obtain a good solution much smaller.

4  APPROACH OVERVIEW AND USER INTERACTION

We propose a new variant of PBO called sequential plane search, in
which plane-search queries are used for human evaluation to enable
the optimization to be even more efficient. We also propose using
a zoomable grid interface for the user to perform tasks involving
plane-search queries. We refer to the entire interactive framework
consisting of the sequential-plane-search backend and the zoomable-
grid-interface frontend as Sequential Gallery (see Figure 1). This
framework lets the user sequentially perform plane-search subtasks
using the gallery-based interface to solve the target visual design
optimization problem.

4.1 Plane-Search Query

We define a plane-search query as follows. Let £ denote a two-
dimensional manifold in the n-dimensional design space X (also
simply called a plane) and P; denote the plane for the i-th step (we
will explain how P; is parameterized and constructed in Section 5).
For each step, our sequential plane search asks the user to search
for the best parameter set on the plane #;. From a mathematical
viewpoint, the task for the user is described as

x?hosen = arg max ¢(x). 7)

xeP;

Note that this is analogous to a line-search query (Equation 5), but
our method involves two-dimensional subspaces instead of one-
dimensional ones.

4.2 Task Execution with Zoomable Grid Interface

A straightforward way of performing the plane-search task (Equa-
tion 7) is to use two sliders mapped to the plane with a preview of
the visual representation that can be dynamically updated in accor-
dance with the slider values. However, this approach requires the



Fig. 2. lllustration of the mapping from a search plane ? in the target
n-dimensional design space to the zoomable grid interface.

user to actively try many combinations of those two slider values
at the beginning of the task to understand the design variation in
the current subspace and then to adjust the slider values alternately
and little by little at the fine-tuning stage.

We instead use a zoomable grid interface to execute the plane-
search task. This interface takes advantage of the fact that the sub-
space and display are both two-dimensional; it displays clickable
visual options in a grid so that their corresponding parameter sets
are spatially mapped to the plane (see Figure 2). At the initial coars-
est zoom level, the entire plane is mapped to the grid. Once the user
clicks an option, the interface goes to the next zoom level with a
short zooming animation (around 1.5 seconds). The center element
of the new grid is the one chosen in the previous zoom level. In the
current implementation, we set the zooming factor as two; that is,
the new grid is mapped to an area one-quarter of that in the previous
zoom level. Note that extrapolation along the plane is performed
when the user selects an option at an edge of the grid. After a certain
number of clicks (four in our implementation), this plane-search
task finishes, and the method receives the parameter set that the
user selected in the finest zoom level. The procedure is illustrated
in Figure 3.

This interface involves only discrete selection, and thus we need
to consider the effect of discretization. The use of this interface
approximates Equation 7 to

x?hosen ~ arg max ¢(x), 8)
X€G;

where Gi C P; is the finite set of the parameter sets that can be
accessed by the zooming procedure. Despite the discretization of
P;, we can still consider that the resulting parameter set is virtually
chosen from a continuous space because G; contains a large number
of samples thanks to the hierarchical zooming procedure.

Thus, in a Sequential Gallery session, the user sequentially solves
Equation 8 for i = 1,2, ... until a satisfactory design is found.

5 METHOD: SEQUENTIAL PLANE SEARCH

This section describes the technical aspect of the sequential plane
search, which is used inside Sequential Gallery. Note that we omit
details that the sequential plane search shares with the previous
methods [Brochu et al. 2007; Koyama et al. 2017] and are not neces-
sary to understand its novelty. Those who want to implement the
proposed method from scratch should refer to these papers as well.
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5.1 Plane Construction Strategy

To make a sequential-plane-search procedure effective, search planes
must be constructed appropriately. For the requirements for an ef-
fective algorithm, we consider two conditions as the basic design
goals.

o The plane should be constructed such that it is likely to mini-
mize the number of iterations necessary for finding a satis-
factory parameter set. For this, we propose a new tailored
measure (i.e., a new acquisition function) to evaluate the ef-
fectiveness of search planes (Section 5.3).

o The plane should include the parameter set, xF, as in the
previous methods [Brochu et al. 2007; Koyama et al. 2017].
This is important from a theoretical viewpoint to ensure that
the plane includes the optimal solution in the ideal case that
Bayesian inference is perfectly correct. Additionally, this en-
sures that sequential plane search always performs better
than (or at least equivalent to) the previous methods because
the subspaces in the previous methods are always a subset of
our subspace.

We also consider two additional design goals from the user experi-
ence perspective.

o The current-best parameter set, x*, should always be centered
at the plane. This ensures that the position of the current-best
design in the zoomable grid interaction is consistent.

e The plane should be planar in the mathematical sense. That
is, we do not want the plane to be curved or folded in the
design space. This ensures that any set of options aligned in
a direction in the grid view exhibits linear parameter changes
and should help users recognize the presented subspace in
many cases. See Figure 4 for an illustration.

5.2 Plane Construction

Our method supposes a plane to always be a rhombus or diamond
(i.e., diagonal lines are orthogonal and crossed at their centers) to
avoid constructing unnecessarily skewed quadrangles. On the basis
of this, we parameterize a plane P by its center ¢ € R” and two
vectors u,v € R” such that the four vertices are represented as
{c £ u, c + v} (see Figure 5). We represent this as P(c, u, v).

The basic idea to construct the plane for the i-th step, denoted by
P;, is to solve the following optimization problem:

P; =arg max AP Di_q) 9)
P
PcX
s.t s 10
{ Elep (10)
where G is an acquisition function to evaluate the effectiveness

of search planes, which we will define in Equation 14, and D;_1
denotes the preference data obtained by the end of the (i — 1)-th
iteration.

From a practical viewpoint, we solve the above optimization
problem in a simplified manner as follows. First, on the basis of the
design goal, we always set ¢; = x7. Then, we find the parameter set
that maximizes the EI xF!, by solving an optimization problem as
in the previous methods [Brochu et al. 2007; Koyama et al. 2017];
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Fig. 3. Zooming procedure in the zoomable grid interface. The user clicks the best option displayed in the grid, and then the interface goes to the next
finer zoom level. After a certain number of clicks (four in this example), this plane-search subtask ends. If the user wants to continue exploration, our method

constructs a new search plane and then asks the user to start another zooming procedure.

Non-planar subsapce

Planar subsapce

Fig. 4. Importance of planarity of the search subspace. When the
search subspace is planar (Left), the grid exhibits linear parameter changes
across all directions. In many cases, this makes it easier for users to grasp
the current plane than when the search subspace is not planar (Right).

that is,
X = arg max a®l(x; D;_y), (11)
xeX
where aF! is an acquisition function to evaluate the effectiveness

of search points, used in standard BO methods [Snoek et al. 2012];
see the appendix for details. Note that 4E! in Equation 9 takes a
search plane as an argument whereas aP! takes a search point as an
argument. Then, we set u; = x! —x*, which ensures that the plane
satisfies the second constraint in Equation 10. The remaining one,
v;, is then obtained by solving

v; =arg max a” (P(c;, u;, v); Di—1) (12)
v
u;-v=20
s.t. { civeX (13)

where the equality constraint in Equation 13 is added for ensuring
the two vectors are orthogonal and thus the plane is a rhombus.

Although the vertex XI;:I = x] + u; is always inside the design
space X, its opposite-side vertex, x; — u;, might be outside of X
(though the probability is very small). If we detect this, we correct
the vertex position by simply moving it along the diagonal-line
direction to the closest bound of X. Note that it is also possible not
to correct the vertex position; in this case, the grid interface does
not display options whose parameter sets are outside of X.

At the first step of a sequential-plane-search procedure, no pref-
erence data is available. For this case, our current implementation
simply constructs a fixed-sized square centered at the center of the
search space X with a random direction.
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. {x(1>7...,x(25>}

Fig. 5. (Left) Parameterization of a plane #. (Right) Sampling points
used in our implementation for approximating the surface integral (Equa-
tion 14).

5.3 Acquisition Function

An acquisition function evaluates the effectiveness of a search query
and is used to determine the next search query so that it is as
effective as possible [Shahriari et al. 2016]. To increase the likelihood
of finding a good solution, a search fquery must observe a region
that is (1) likely to have a higher value (i.e., exploitation) and (2)
less certain because of the lack of observations around the region
(i.e., exploration). Several different acquisition functions can be
used; among them, we choose the EI since it is commonly chosen
[Brochu et al. 2007; Koyama et al. 2017; Snoek et al. 2012] and it
balances exploitation and exploration without needing additional
hyperparameter adjustment.

In the standard BO setting, in which determining a query is equiv-
alent to finding an appropriate sampling point, such a point is defined
as a maximizer of the acquisition function [Shahriari et al. 2016].
However, how we should determine a query in our sequential-plane-
search setting is not trivial, since the query is determined by finding
a plane, not a point. The previous sequential-line-search method
[Koyama et al. 2017] finds a line by simply connecting the current-
best point and the maximizer of the acquisition function as explained
in Equation 4. Although this simple approach was demonstrated to
work well, it only considers the two ends of the line.

To overcome this limitation, we propose an acquisition function
tailored for evaluating the effectiveness of a plane as a search sub-
space for the next iteration. We define it as a surface integral of the
density of the EI value over the plane:

#pi) = 5 [ D, (1)

where A is the area of the plane #. In practice, we approximate it
by a summation at N sampling points on the plane, {XO)}j}\i 1- More



specifically,

N
Elp. oy~ N 0.
B (P, D) N;a ), D). (15)

In the current implementation, we use N = 25 points simply sam-
pled in a 5-by-5 lattice pattern as shown in Figure 5 (Right).

5.4 Interpreting Query Response as Preference Data

Given a plane P;, the user provides the maximizer on the plane,
x?hosen, as feedback to our method. Then, our method interprets
this information as the following preference data:

X(i:hosen > {ci,ci uj,c; +Vv;}. (16)
Note that more parameter sets from #; can be added to the right-
side sets. However, to avoid an unnecessarily large computational
cost, we use the above five parameter sets as the representatives of
the plane.

5.5 Implementation Details

We implemented BO based on a Gaussian process [Rasmussen and
Williams 2005] prior with the automatic relevance determination
(ARD) Matérn 5/2 kernel, following the suggestion by Snoek et al.
[Snoek et al. 2012]. We determine the kernel hyperparameters in
the same way as the previous paper [Koyama et al. 2017]: we use
maximum a posteriori (MAP) estimation every time new preference
data is added and assume a log-normal distribution LN (i, %) as the
prior distribution for each kernel hyperparameter. We set y = 0.2
for the amplitude and i = 0.5 for every length scale, and o = 0.01
for both; refer to Snoek et al. [2012] for the definitions of these
hyperparameters. We handle the equality constraint in Equation 13
by simply interpreting it as a soft constraint term:

—(u; - V), (17)

and adding it to the objective function. As a result, the problem can
be simply considered as an unconstrained, bounded optimization
problem, and the overall objective function can still be differen-
tiable with respect to the unknown, v. Thus, we solve it by using
the limited-memory BFGS (L-BFGS) method [Nocedal and Wright
2006]. Note that, to handle the equality constraint more exactly, the
augmented Lagrangian method [Nocedal and Wright 2006] can be
used here. However, we decided to use the simplified approach as
we found it sufficiently accurate and also efficient. As the problem
of Equations 12 and 13 can have multiple local maxima, we perform
the optimization 10 times with random initial solutions in parallel
and then use the best-found solution.

6 APPLICATIONS

An advantage of our Sequential Gallery is that it does not rely
on any domain-specific formulation and thus can be immediately
applied to many visual design domains involving a set of continuous
parameters. To demonstrate its generality, we created a photo color
enhancement system and a human body shape generation system.
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6.1 Photo Color Enhancement (12 Design Parameters)

Photo color enhancement involves editing colors in a photograph
to make the photograph more appealing. For this task, in addition
to basic parameters (brightness, contrast, and saturation), we imple-
mented an advanced color balance functionality that independently
manipulates colors in shadows, midtones, and highlights. Since this
advanced color balance is important, popular photo enhancement
tools [Adobe 2017a; Instagram, Inc. 2019] usually have it or similar
functionality. In total, this system has 12 design parameters to be
adjusted. Note that the expressiveness of our implementation is
much higher than that of the previous work [Koyama et al. 2017],
in which only basic 6 parameters were implemented.

Figure 6 (Left) shows a full sequence of a Sequential Gallery
session for photo color enhancement. In this example, the user
obtained a satisfactory result after 4 iterations. Figure 6 (Right)
shows additional results, and refer to the supplemental video figure
for corresponding sequences and a larger view.

6.2 Human Body Shape Design (10 Design Parameters)

It is useful for end-users to be able to easily design human body
shapes for various purposes such as those for creating virtual avatars
and for visually conveying body shapes in their mind to someone
else. To enable this, we used the skinned multi-person linear (SMPL)
model [Loper et al. 2015], which is a publicly available pre-trained
human shape model based on principal component analysis. We
used its first 10-dimensional latent parameters and set the bound of
the design space as three times the standard deviation from the mean
shape. Figure 7 shows variations of human body shapes achievable
by this system.

Compared with photo color enhancement, human body shaping
requires comparing more details of visual representations among
options, and we noticed that cells in a 5-by-5 grid with a 13-inch
display were too small for this application. Thus, we used a 3-by-3
grid for the interface of this application (see Figure 8 (Left)).

One challenge in this design domain is that the latent space of the
learned model does not have semantically meaningful dimensions, so
exploration by direct slider manipulation is difficult. For this, Body
Talk [Streuber et al. 2016] remapped these parameters to a semantic
space by crowdsourcing perceptual annotations. Our method takes
a different approach: we handle the design space as a black-box and
use the WYSIWYG interface.

An advantage of involving users in the loop is that users can
produce designs even from vague pictures in their minds. Following
the previous work [Streuber et al. 2016], we created a human body
shape from a description in a novel, The Maltese Falcon:

He was of medium height, solidly built, wide in the shoul-
ders, thick in the neck, with a jovial heavy-jawed red
face . .. [Hammett 1930]

Figure 8 (Center) shows the result obtained after 7 iterations. We
also created a body shape of a famous fictional character, Spider-Man
[Wikipedia 2019], without looking at any references. Figure 8 (Right)
shows the result obtained after 10 iterations. Another interesting
usage is to reproduce body shapes in photographs [Streuber et al.
2016].
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Fig. 6. Photo color enhancement with Sequential Gallery, in which 12 design parameters were adjusted. (Left) An entire optimization sequence, in which
the user could obtain a satisfactory result after four iterations. (Right) Additional results; refer to the supplemental video figure for details.

Fig. 7. Random human body shapes generated from the SMPL model
[Loper et al. 2015]. We used the top-10 dimensions as the design space.

Fig. 8. (Left) Appearance of the zoomable grid interface in the human

body shape design scenario, where we set the grid resolution as 3 by 3.

(Center) Body shaping from a description of a character in a novel,
The Maltese Falcon [Hammett 1930]. (Right) Body shaping of a famous
fictional character, Spider-Man [Wikipedia 2019].

7 EVALUATION
7.1 Experiment Using Synthetic Functions

First, we conducted an experiment using synthetic functions to

artificially simulate users’ responses on the basis of their preferences.

This simulation-based approach is useful to generate a large number
of responses to properly understand the behavior of our sequential
plane search from a technical viewpoint.
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7.1.1  Goals. The specific goals of this experiment were (1) to eval-
uate the efficiency of the proposed sequential plane search and (2)
to validate whether the use of the BO-based plane construction is
effective.

7.1.2  Methods to be Compared. We compared three methods:

o SLS: The sequential-line-search method [Koyama et al. 2017]
that constructs a one-dimensional subspace using BO. Except
for the subspace construction, SLS used the same settings as
the implementation of our method, such as kernel function
choice and hyperparameter handling.

e SPS (Random): The sequential-plane-search method as pro-
posed in this paper, but using a random plane construction.
More specifically, a plane is constructed by first setting ¢ = x*
like in our proposed method, and then choosing u and v ran-
domly such that they have a constant length (|[u]| = ||v]| = 1)
and are orthogonal (u - v = 0).

o SPS (Ours): The sequential-plane-search method using the
proposed BO-based plane construction.

Note that we omitted the BO-based pairwise-comparison method
proposed by Brochu et al. [2007] because Koyama et al. [2017] al-
ready reported that it consistently requires much more iterations
than SLS.

7.1.3  Synthetic Functions. We used two different synthetic func-
tions. The first consists of a single isotropic (i.e., no covariance)
Gaussian kernel:

9700 = exp |- - 0T -9

where we set x* = [0.3 O.3]T. The second is a test function
called the Rosenbrock function [The SciPy community 2019]. We
take its negative to obtain maximizers rather than minimizers since
our formulation (Equation 1) uses maximization. Also, we scale it by
a factor of 0.25 so that its important region lies within X = [0, 1]".
As a result, it is defined as

n—1

") = = 3 [100(4x141 — 16x2)? + (1 - 4xp)?]
i=1



which has its global minimum at [0.25 0.25]T. The first
function is relatively easy to optimize whereas the second is much
more difficult because of its complex shape. We measured the per-
formance by using the optimality gap: the difference between the
optimal function value and the best-found function value [Wang
et al. 2016].

7.1.4  Results. Figure 9 shows the results of 50 trials for each method
and for each function. We can observe that the SPS methods are
consistently far superior to the SLS method in all the settings. This in-
dicates that using plane-search queries instead of line-search queries
significantly reduces the number of iterations necessary for reach-
ing good solutions. Also, we can observe that our SPS is consistently
superior to the random SPS except for the first few iterations. This
indicates the importance of taking the BO-based plane construc-
tion approach; it clearly improves the performance after several
iterations.

To determine whether these differences in performance are sta-
tistically significant, we performed two-sided Mann-Whitney U
tests (@ = 0.05) to compare the three methods. As this test in-
volves multiple comparisons, we adjusted the significance level
a in each comparison by the Bonferroni correction. The perfor-
mance of the SLS method was significantly different from those
of the SPS methods in all the functions at all the iteration counts.
The performances of the two SPS methods were not significantly
different for the first 1, 6, 4, and 10 iterations (for Isotropic Gauss-
ian 5D, Isotropic Gaussian 15D, Rosenbrock 10D, and Rosenbrock
20D, respectively) but became significantly different at the next
iteration counts (p < 0.001 (f = 0.803), p < 0.001 (f = 0.763),
p =0.001(f = 0.688),and p = 0.001(f = 0.694), respectively, where
f represents the common language effect size); the reason for the
lack of significant differences in the first few iterations could be that
the observed data points were so sparse given the high dimensional-
ities that the BO-based SPS performed almost pure exploration like
the random method. After those iteration counts, the differences
continued to be statistically significant, but there was one exception
that the differences were not significant in the Isotropic Gaussian
5D function after 15 iterations; the reason of this exception could be
that both methods had sufficiently approached the optimal solution
and thus already converged.

7.2 Preliminary User Study

The first evaluation validated the effectiveness of our sequential
plane search in goal-driven settings by using synthetic functions.
However, the effectiveness of the overall interactive framework re-
mains unevaluated. Thus, we conducted an additional small user
study, where we used the photo color enhancement scenario de-
scribed in Section 6.1.

7.2.1  Goals. The specific goals of this user study were (1) to evalu-
ate whether even novice users who are not necessarily familiar with
the target parameters and not likely to have clear mental images at
the beginning of the task can perform the plane-search subtasks by
the zoomable grid interface and find a satisfactory parameter set,
(2) to evaluate whether the interface can facilitate exploration and
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provide inspiration, and (3) to gather qualitative feedback on our
interactive framework.

7.2.2  Method. Five students and one researcher (P, ..., Ps) par-
ticipated in this user study. This study consisted of four parts: an
instruction session, the first photo enhancement task, the second
photo enhancement task, and a questionnaire. We prepared three
photographs and used one of them for instruction for every partici-
pant and the other two for the main tasks. For photo enhancement,
we instructed the participants to imagine that they were going to
upload the photographs to their Facebook or Instagram accounts
and wanted to make the photographs appealing to their friends. We
asked them to continue each task for 15 iterations (i.e., a sequence of
15 plane-search subtasks) regardless of whether they were already
satisfied with intermediate results or not. For recording purposes,
we also asked the participants to push a “satisfied” button on the
screen during the iterations of each task when they felt satisfied
with the current design (i.e., the option clicked last). We used a
13-inch MacBook Pro with a mouse and maximized the application
window size. After the tasks, we asked the participants to fill in
a questionnaire consisting of a question about expertise in photo
color enhancement, questions arranged on a 7-pt Likert scale with
7 corresponding to “strongly agree,” and an optional free comment
space.

7.2.3  Results. Five participants (other than P3) pushed the button
to indicate that they were satisfied within 15 iterations in the main
tasks. The participant (P3) who did not push the button in one
of the main tasks informally told us that the initial photograph
was already satisfactory and it was not clear whether the button
should be pushed at the beginning. Overall, these results sugget
that the framework could provide satisfactory results. The mean
iteration count necessary for finding satisfactory results was 5.36
with SD = 2.69 (the task in which the button was not pushed was
excluded). One plane-search subtask took 14.8 seconds on average.

In the questionnaire, P4 described him/herself as an expert and
the other five described themselves as novices. For the statement, “T
could find satisfactory photo enhancement results,” the mean score
was 5.83 with SD = 0.753. For another statement, ‘T could get inspi-
ration for possible enhancement from the grid view,” the mean score
was 6.50 with SD = 0.548. Overall, these results support our claims.

We obtained feedback that validates our interface design. P, wrote
that he/she selected designs “based on criteria that I didn’t have at
the beginning” thanks to the encouragement of our framework to
explore designs. Also, P3 wrote the interface “is really inspiring in
that it makes me want to try out different styles,” which validates
that our interface can facilitate exploration. P4 appreciated that
“the system proposed some nice photos” and so that he/she “could
get inspiration.” We also obtained feedback for improvement. Py,
who self-described as an expert, wrote that he/she was familiar
with photo enhancement parameters and so they wanted a direct
parameter manipulation functionality along with the gallery-based
search functionality. P; wanted to “have the original photo alongside
to compare with during the enhancement.”
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Fig. 9. Results of the experiment with synthetic functions. We compare the sequential line search (SLS) [Koyama et al. 2017], the sequential plane search
(SPS) using random plane construction, and our SPS using Bayesian optimization-based plane construction. We run 50 trials for each condition. Each plot
shows the mean value with the colored regiong showing the standard deviation. Vertical axes represent optimality gaps (lower is better).

8 DISCUSSIONS AND FUTURE WORK

Initial Plane Selection. Our current implementation randomly
chooses the initial plane since no preference data is available at
the beginning. Another possible initialization method is to insert a
step similar to Design Gallery [Marks et al. 1997] before running
the sequential-plane-search procedure as follows. First, the design
system provides a diverse set of options from the entire design space
by embedding them into a two-dimensional widget and then let
users choose the best one. Then, the system handles this preference
data (i.e., the chosen option is preferred over the other options), Dy,
by the Bradley-Terry—Luce model [Tsukida and Gupta 2011] and
then calculates the acquisition function (Equation 4) to construct
the initial plane. Finally, the system begins sequential plane search
with the initial plane and also with the additional preference data
Dy. Note that the Design Gallery approach is not for exploring a
multi-dimensional space to sequentially refine a solution, though
it is good at providing an overview of the entire design space and
letting users quickly pick out an initial solution. Our Sequential
Gallery can thus complement the Design Gallery approach.

Further Understanding of Interfaces. We adopted the grid inter-
face to help users not only find the best parameter set within the
subspace but also easily grasp the landscape of the current subspace
and obtain inspiration from the interface. Thus, the goal was not to
make each task execution quicker. Nonetheless, it would be interest-
ing to perform comparative studies to investigate both qualitative
and quantitative differences between interfaces (a single slider, two
sliders, and ours). Also, as our user study was only preliminary,
formal studies will need to be conducted with more participants
and more practical settings.

Grid Resolution and Zooming Levels. We used fixed values for the
grid resolution (e.g., 5-by-5 for the photo enhancement) and the
number of zooming levels for each query (e.g., four). We empirically
set these values for each application since every design domain
has different appropriate values for these variables. Nonetheless,
automatically determining appropriate values is important future
work. For example, it is worth investigating how to dynamically
adjust the number of zooming levels by analyzing the just-noticeable
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difference (JND) of the visual representations in the grid. Another
direction is to enable users to interactively adjust these values during
tasks to avoid unnecessarily fine zooming levels or grid resolutions.

Plane Construction Strategy. Our strategy always chooses the
maximizer of the acquisition function, xEL as one of the vertices
of the rhombus. While we believe this strategy is reasonable in the
sense that we discussed in Section 5.1, it is worth investigating other
strategies that provide better exploration-exploitation balancing or
theoretical regret bounds [Srinivas et al. 2012]. Also, our strategy
enforces the current-best parameter set, x*, to be the center of the
next search plane, which is for ensuring consistent interaction when
moving from one search plane to another. Another possibility for
improving usability would be to introduce a constraint for enhanc-
ing continuity between search planes so that users can more easily
understand variations in new search planes.

Non-Visual Design. One notable limitation of Sequential Gallery is
that it may be ineffective with non-visual designs such as electronic
timbre design for a sound synthesizer. This limitation is because the
grid interface assumes that designs are visually recognizable at a
glance. Another limitation is that our sequential plane search does
not handle discrete parameters such as layouts, fonts, or filter types.

Even Higher Dimensionality. BO is known to perform poorly with
very high dimensionality (e.g., over 20 dimensions) [Wang et al.
2016]. However, many design tasks involve such high-dimensional
design spaces. For example, facial expression modeling for a virtual
character usually involves around 50 parameters and sometimes
around 1,000 [Lewis et al. 2014]; to conduct these tasks with our
sequential plane search, users need to choose a moderate number
of relevant parameters beforehand.

Prior Knowledge. Our method assumes that everywhere in the
search space is equally good (or bad) at the beginning of the process.
To accelerate the search, incorporating prior knowledge about the
target design domain would be beneficial. For example, we could
build a rough approximation of the goodness function by gathering



preference data by crowdsourcing [Koyama et al. 2014] or imple-
menting common practices in the domain and then use it as a prior
of the Bayesian inference.

Time-Varying Preference. Our method handles all preference data
equally to infer latent preferences and determine search planes. This
assumes that users’ preferences do not change over time. In practice,
however, this assumption is not always valid (c.f, exploratory de-
sign). We could accept such concept drift by simply allowing users to
discard accumulated preference data (either entirely or partially) at
any time during the search. Incorporating the time-varying property
into the BO formulation is also interesting future work.

Acquisition Function Choice. Following previous work, we chose
the EI as the criterion to evaluate the effectiveness of a search point
and then proposed its extension for evaluating the effectiveness
of a search plane (Equation 14). Other acquisition functions (e.g.,
Gaussian process upper confidence bound [Srinivas et al. 2012]) are
applicable for plane search in the same way. Note that there exist
acquisition functions specifically tailored for the discrete pairwise-
comparison setting [Gonzalez et al. 2017]. However, they are not
directly applicable to our problem as our goal is to evaluate the
effectiveness of a continuous subspace. This is why we proposed an
integral-based acquisition function.

Sequential Subspace Search. Line search (Equation 5) and plane
search (Equation 7) are one- and two-dimensional, respectively.
This suggests a generalization: letting users perform m-dimensional
search subtasks sequentially to solve the original n-dimensional
problem (m < n), which we call sequential subspace search. One
of our findings is that the convergence with m = 2 is drastically
faster than that with m = 1 (Figure 9) while plane-search tasks
remain easy thanks to the zoomable grid interface. We expect that
the convergence will become even faster with m > 3. However,
the subtasks would become unreasonably tedious since active trials
and errors are inevitable for users to understand m-dimensional
subspaces. This is why we chose m = 2 and investigated an interface
suitable for this choice.

Latent Spaces of Deep Generative Models. Recent advances in deep
generative models have demonstrated a new paradigm of design,
in which users obtain various designs by specifying parameter sets
in latent spaces. However, these latent spaces are difficult for users
to explore because they are black-boxes for users and usually in-
tractably high dimensional (e.g., 128 dimensions for geometry gen-
eration [Chen and Zhang 2019]), which poses a new problem that
needs to be solved by computational techniques and interaction
designs in combination. We believe that this work could be an im-
portant step in this direction.

9 CONCLUSION

We presented sequential plane search, a novel optimization method
for parametric visual design tasks. This method involves the user
in the loop of its procedure; it decomposes the target high-dimen-
sional problem into a sequence of much easier two-dimensional
subtasks, which can be solved by the user via a simple zoomable
grid interface. Our experiment using synthetic functions revealed
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that using plane-search subtasks was much more effective than
using line-search subtasks [Koyama et al. 2017] and that our BO-
based plane construction was significantly more effective than a
random plane construction. In addition, our user study confirmed
that novices could perform our sequential plane search via the
zoomable grid interface and find satisfactory results in the photo
color enhancement scenario. The study also confirmed that the
interface could facilitate exploratory design.

The overall framework, called Sequential Gallery, is quite general
and does not rely on any domain-specific formulations, which makes
it directly applicable to various problems. Furthermore, it provides
a promising future opportunity to adapt our framework to specific
problems by incorporating domain-specific considerations into the
BO routine (e.g., [Chong et al. 2019]) or the interface design. We plan
to make our source codes accessible to encourage this direction.
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A DEFINITIONS OF x* AND x*

Let g : X — Rand 6? : X — Ry be functions that return the
mean and variance, respectively, of the posterior distribution of the
goodness value inferred by Gaussian process regression using the
currently available data. We denote by x* € X the “current-best” pa-
rameter set among the observed parameter sets. A possible criterion
for the “best” here is the p value [Brochu et al. 2007; Koyama et al.
2017] and we followed this approach in the evaluation. Another
possibility is to simply use the user’s last selection as x*, which is ac-
tually more stable sometimes. We denote by x1 € X the parameter
set that maximizes the EI value, which is calculated by

a"(x) = c()(y(P(y () + (y(x)) if 5(x) > 0 else 0,  (18)

where y(x) = (u(x")— u(x))/o(x), ¢ is the standard normal function,
and @ is the cumulative distribution function of ¢ [Snoek et al. 2012].
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