
Drum Synthesis and Rhythmic Transformation
with Adversarial Autoencoders

Maciej Tomczak
Digital Media Technology Lab
Birmingham City University
maciej.tomczak@bcu.ac.uk

Masataka Goto
National Institute of Advanced Industrial

Science and Technology (AIST)
m.goto@aist.go.jp

Jason Hockman
Digital Media Technology Lab
Birmingham City University
jason.hockman@bcu.ac.uk

ABSTRACT
Creative rhythmic transformations of musical audio refer to auto-
mated methods for manipulation of temporally-relevant sounds in
time. This paper presents a method for joint synthesis and rhythm
transformation of drum sounds through the use of adversarial au-
toencoders (AAE). Users may navigate both the timbre and rhythm
of drum patterns in audio recordings through expressive control
over a low-dimensional latent space. The model is based on an AAE
with Gaussian mixture latent distributions that introduce rhythmic
pattern conditioning to represent a wide variety of drum perfor-
mances. The AAE is trained on a dataset of bar-length segments of
percussion recordings, along with their clustered rhythmic pattern
labels. The decoder is conditioned during adversarial training for
mixing of data-driven rhythmic and timbral properties. The sys-
tem is trained with over 500000 bars from 5418 tracks in popular
datasets covering various musical genres. In an evaluation using
real percussion recordings, the reconstruction accuracy and latent
space interpolation between drum performances are investigated
for audio generation conditioned by target rhythmic patterns.

KEYWORDS
Neural Drum Synthesis; Rhythmic Transformation; Adversarial
Autoencoders
ACM Reference Format:
Maciej Tomczak, Masataka Goto, and Jason Hockman. 2020. Drum Syn-
thesis and Rhythmic Transformation with Adversarial Autoencoders. In
Proceedings of the 28th ACM International Conference on Multimedia (MM
’20), October 12–16, 2020, Seattle, WA, USA. ACM, Seattle, WA, USA, 9 pages.
https://doi.org/10.1145/3394171.3413519

1 INTRODUCTION
Creative rhythmic transformations of musical audio are computa-
tional approaches for manipulation of musical sounds of varying
length (e.g., long, short) and accentuation (e.g., loud, soft) that are
grouped into patterns. Taking inspiration from capabilities offered
in digital audio workstations (e.g., [30]1) and plugins (e.g., [4]2),
1https://support.apple.com/en-gb/HT207864
2https://www.xlnaudio.com/products/xo

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’20, October 12–16, 2020, Seattle, WA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3413519

along with emerging research in the music and multimedia com-
munities, these transformations have become entrenched within
modern music production workflows. Recent advances in powerful
machine learning algorithms have given rise to new modalities of
synthesis and effects processing procedures, which in turn have
afforded new musical supportive systems for pitch, timbre and
rhythm manipulation for music arrangement and sound design.
Although various neural audio synthesis systems have been pro-
posed, the majority of these have focused on generation, interaction
and visualisation of pitched instruments, and relatively few have
explored generation of percussion instruments and transformations
of the underlying rhythmic patterns.

In this study, an end-to-end model for neural audio synthesis is
created with the intention of performing rhythmic transformation
of drum sounds. System performance is measured in comparison to
three pre-existing algorithms on a new database of 5418 percussion
performances extracted from real music recordings. The aim of
this transformation is to assist musicians and music producers
during the composition and production processes and to develop
an understanding of meaningful low-level features for expression
in generation of target sound qualities.

1.1 Background
Early approaches for rhythmic transformation of audio signals
[23, 28, 45, 55] relied on signal processing techniques for sound
segmentation, pattern matching (i.e., segment alignment between
different metrical levels such as beats or note onsets), and time-
stretching (e.g., using a phase vocoder) to satisfy the target trans-
formation. Such methods rely heavily on the initial analysis of
the recording and are thus prone to artifacts (e.g., transient smear-
ing) caused by incorrect demarcation of temporally-relevant event
positions. In the recent years, deep generative models such as varia-
tional autoencoders (VAE) [33] and generative adversarial networks
(GAN) [22] have seen increasing success in various fields through
targeting the task of learning and manipulation of disentangled
feature representations. Disentangled representations denote tech-
niques that break down each input data feature into narrowly de-
fined variables to be encoded into separate dimensions. Multiple
machine learning models have been proposed in various domains,
such as computer vision (e.g., semantic analysis of images [10]),
natural language processing (e.g., sentiment modification in text
[20]), or speech synthesis (e.g., speaker identity modelling [29]).

In music, deep generative models have been applied to symbolic
music representations in [47, 51, 53, 54]; however, modelling of sym-
bolic music operates within a lower-dimensional space than raw
audio signals and constrains the output generations to sequences

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2427

https://doi.org/10.1145/3394171.3413519
https://support.apple.com/en-gb/HT207864
https://www.xlnaudio.com/products/xo
https://doi.org/10.1145/3394171.3413519

of instructions for a fixed set of sounds. Concurrently, substan-
tial work has been performed in neural audio synthesis, where
the task constitutes modelling of higher-dimensional information
captured in the music content. Approaches to neural audio synthe-
sis can be divided into two categories: (1) time-domain (i.e., raw
audio) based, in which audio samples are optimised directly; and
(2) time-frequency domain (i.e., spectrogram) based, in which log
magnitudes of a short-time Fourier transform (STFT) are used as
input to a network, with the requirement of phase reconstruction
process during the inference time of the model.

The authors in [13] adapted the WaveNet architecture for raw
audio generation of piano performances at longer timescales across
tens of seconds. More recently, [12] presented a model based on
vector-quantised variational autoencoder [46] for generating musi-
cal performances in the raw audio domain conditioned on styles
learned from different artists and genres. Engel et al. [19] condi-
tioned an autoregressive WaveNet [52] autoencoder on raw audio
to synthesise meaningful instrument note embeddings as portrayed
in the NSynth dataset.

Approaches operating in the time-frequency domain include
the work by [36] who trained a Gaussian mixture VAE to learn
disentangled representations of pitch and timbre for the synthesis
of concert instruments. Similarly, the authors in [5] synthesised
orchestral instruments through adversarial latent training with
Wasserstein autoencoders (WAE) [48]. A similar approach was used
by [1] for synthesis of short (i.e., one-shot) percussion samples.

Alternatively, GANs have been used to jointly model log magni-
tude spectrograms and phases for a fast neural audio synthesis [18]
as well as for raw audio synthesis of one-shot drum sounds in [17].

1.2 Motivation
The motivation of this work is derived from the popular task of
redrumming [35, 49] that is present in a professional music produc-
tion setting. Here musicians, desiring a certain sound or aesthetic
influenced by the style of artists they admire, replace the rhyth-
mic pattern of drums in their recordings (i.e., source) with that
from an idealised recording (i.e., target). Previous methods used for
achieving this effect relied on signal processing procedures that
would ultimately cascade errors through various stages of the trans-
formation. Modern advances in neural audio synthesis allow for
generation of new audio sequences trained on large quantities of
data; however, not many focus on the rhythmic aspects of such
transformations.

The goal of this work is to extend the possibilities of the cur-
rent redrumming procedure to facilitate the creation of new drum
arrangements from arbitrary audio inputs. The proposed model
achieves redrumming by synthesising the individual drum instru-
ments to imitate the source recordings with the rhythmic pattern
of the target.

To achieve a redrumming effect, the proposed model seeks not
only to synthesise individual drum instruments, but also to extend
neural audio synthesis to include the manipulation of rhythmic
patterns within bar-length segments of arbitrary percussion record-
ings. A major contribution of this paper is the development of a
system that does not require tedious discretised note segmentation
or rhythmic event selection prior to transformation. A user is given

Figure 1: Proposed architecture for joint drum synthesis and rhythm
transformation. Input data x is mapped onto a latent variable 𝑧 ∼
𝑞(𝑧 |𝑥). Encoder E tries to trick discriminator D with artificially gen-
erated latent samples and generator G outputs spectrograms 𝑥 . A
Gaussian prior distribution 𝑧 ∼ 𝑝(𝑧) (star) allows the model to juxta-
pose similar rhythmic patterns in the latent space. Solid lines represent
deterministic operations of the network and dashed lines represent
stochastic operations.

the freedom to manipulate the structure within a bar without re-
liance on discrete identification of rhythmic boundaries towards
a continuous transformation. This is achieved with the proposed
framework based on Gaussian mixture adversarial autoencoders
(AAE-GM) conditioned on rhythmic patterns present in real music
recordings.

The remainder of this paper is structured as follows: Section 2
presents the proposed method for combined drum synthesis and
rhythmic transformation of audio using adversarial autoencoders.
Experimentation methodology and the dataset used for the study
are detailed in Section 3 and results and discussion are provided in
Section 4. Conclusions and future work are presented in Section 5.

2 METHOD
An overview of the proposed method for joint drum synthesis and
rhythmic transformation is presented in Figure 1. The system is
based on adversarial autoencoders introduced in [37] and is in-
spired by adversarial audio synthesis approaches in [5, 16, 18]. To
achieve both drum synthesis and rhythmic transformation in a uni-
fied architecture, the proposed model originally extends adversarial
audio synthesis to include a regularisation based on a Wasserstein
GAN adversarial framework for the transformation of rhythmic
and timbral qualities of drum recordings. It supports an AAE with
gradient penalty and Guassian mixture prior for conditional disen-
tanglement of rhythmic pattern styles.

2.1 Adversarial Autoencoders (AAE)
While similar in design to VAE [33], adversarial autoencoders (AAE)
appropriate the additional discriminator network 𝐷 from GANs,
which aims to distinguish between real and fake (i.e., synthesised)
samples. Real samples are sampled from an assumed prior distri-
bution 𝑝(𝑧) imposed on the latent variables 𝑧, while fake samples
are generated through the use of an encoder 𝐸 conditional distri-
bution 𝑞(𝑧 |𝑥). The decoder (i.e., generator network 𝐺) conditional

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2428

distribution is denoted by 𝑝(𝑥 |𝑧). In practice 𝑝(𝑥 |𝑧) and 𝑞(𝑧 |𝑥) are
parameterised with neural networks and sampling from 𝑞(𝑧 |𝑥) is
performed using a reparameterisation trick [33]. Let 𝑝𝑑 (𝑥) be the
data distribution of data sample 𝑥 , and 𝑝𝑔 (𝑥) be the distribution of
data generated by the model. The encoder defines an aggregated
posterior distribution 𝑞(𝑧) on the 𝑧 as follows:

𝑞(𝑧) =
∫
𝑞(𝑧 |𝑥)𝑝𝑑 (𝑥). (1)

Following the more general formulation for GANs [40], the adver-
sarial component of an AAE can be trained as:

min
𝐸

max
𝐷

𝑉 (𝐸, 𝐷) = E𝑧∼𝑝(𝑧)[𝑓 (𝐷(𝑧))]

+ E𝑥∼𝑝𝑑 (𝑥)[𝑓 (−𝐷(𝐸(𝑥)))],
(2)

where E[·] denotes expectation and objective 𝑉 is optimised by
alternating parameter updates of encoder 𝐸 and discriminator 𝐷 in
a min-max game characteristic of GAN models. When the concave
function 𝑓 : R −→ R is set to 𝑓 (𝑥) = −log(1 + exp(−𝑥)), the formu-
lation resembles that of the GAN by [22]. The Wasserstein GAN
(WGAN) criterion [2] can be obtained by setting 𝑓 (𝑥) = 𝑥 .

The parameters of the autoencoder are optimised by the recon-
struction error, while the adversarial network guides the encoder
to match the imposed prior. Thus, the encoder plays the role of
the generator during the adversarial part of training, while the dis-
criminator represents the adversarial network of GANs. After train-
ing, decoder 𝐺 acts as a generative model that maps the imposed
prior to the data distribution. Training of an AAE is performed in
two phases: (1) the reconstruction phase and (2) the regularisation
phase. In the reconstruction phase the reconstruction error of 𝐸
and 𝐺 is minimised together and in the regularisation phase, the
parameters of the discriminator 𝐷 are first updated by minimis-
ing L𝐷 = −𝑉 (𝐸, 𝐷) (i.e., to distinguish true samples generated by
the prior from the generated codes processed by the autoencoder).
The adversarial network then updates the encoder to confuse the
discriminator. When combined, the two terms represent L𝑡𝑜𝑡𝑎𝑙 as
follows:

L𝑡𝑜𝑡𝑎𝑙 = 𝐵𝐶𝐸(𝑝𝑑 , 𝑝𝑔) + 𝛽L𝑊𝐺𝐴𝑁−𝐺𝑃 , (3)

where BCE denotes binary cross-entropy reconstruction cost be-
tween the original data samples |𝑆 | (i.e., magnitude spectrograms
in this study) and their reconstructions |𝑆 | as:

𝐵𝐶𝐸(𝑆, 𝑆) = −[𝑆 log𝑆 + (1 − 𝑆)log(1 − 𝑆)]; |𝑆 |< 1. (4)

The second term in Equation (3) is theWGANwith gradient penalty
(WGAN-GP) loss with weighting 𝛽 from [25], proposed as an im-
proved solution to gradient clipping in adversarial training of the
discriminator, computed as:

L𝑊𝐺𝐴𝑁−𝐺𝑃 = L𝐷 + 𝜆E𝑥∼𝑝�̂� [(| |∇𝑥𝐷(𝐸(𝑥))| |−1)2], (5)

where 𝑥 represents a randomly weighted average between real
and generated samples. Following [25], we set 𝜆 = 10. During the
regularisation phase, this term imposes regularisation on latent
variables 𝑧 and can be trained end-to-end with gradient descent.

2.2 Implementation
Details for the proposed adversarial autoencoder with Gaussian
mixture prior (AAE-GM) are presented in this section. All neural
network models are implemented using the TensorFlow Python
library.3

2.2.1 Input Features. Following the approach in [5], input audio
(16-bit 22.05 kHz mono WAV files) is transformed with short-time
Fourier transform (STFT) using a Hanning window with a window
length of 2048 samples and a hop size of 324 samples to facilitate the
desired temporal resolution of the network input. Mel-spectrograms
are created from audio inputs of length of 41344 samples correspond-
ing to a bar segment of 1.87s duration at 128 beats per minute (BPM),
resulting in the network input 𝑆 of size 512 bins by 128 STFT frames.
Every bar is normalized to this duration by a time-stretching algo-
rithm. Magnitudes of 𝑆 are floored to 1e–3 and log-scaled in [0,1]
according to the BCE range. Rhythmic pattern styles 𝜉 = 11 (i.e.,
classes as clustered attributes of 𝑆) are used in supervised training
and are defined in Sections 2.3 and 2.3.4.

2.2.2 Architecture. The selected models are based on architec-
tures used by [5, 16, 18], and are modified accordingly to facilitate
modelling of rhythmic patterns studied in this work. All convolu-
tion layers are 2-d with square kernels and zero-padding of half
the kernel size (i.e., same padding) and 2-d feature normalization.
All fully-connected layers are followed by 1-d feature normaliza-
tion. All normalizations use the batch normalization algorithm
by [31]. The non-linear activations are leaky rectified linear units
(LeakyReLU with slope of 0.2). The deterministic encoder has 5 con-
volution layers with [16, 32, 64, 128, 256] output channels, a kernel
size of 7 and stride 2. This downsampled representation with 256
feature maps of the input spectrograms is reshaped to 16384 values
and followed by a bottleneck of 3 fully-connected dense layers with
output sizes [2048, 1024, 512]. Two fully-connected layers 𝜇 and 𝜎
are used for sampling 𝑧 with the reparametrisation trick [33], thus
mapping the input to the latent space 𝑧 ∈ R𝑁𝑧 , where 𝑁𝑧 = 64. The
decoder mirrors the structure of the encoder with 3 linear layers of
output sizes [512, 1024, 2048] and a layer reshaping the vector into
256 feature maps. The following convolution layers use nearest-
neighbour upsampling, a fast solution that was demonstrated to
mitigate the creation of known checkerboard artifacts of transposed
convolutions [42]. These maps are processed through 5 layers with
an upsampling factor set to 4 and convolution layers with [128, 64,
32, 16, 1] output channels, kernel sizes [7, 7, 7, 9, 9] and stride 2. The
last layer reconstructs the input shape of 𝑆 (128×512) followed by a
sigmoid activation function bounding the output to the BCE range.
The adversarial discriminator consists of 3 fully-connected layers
with output channels [2048, 2048, 1], where the last linear layer
outputs the final score used to compute a scalar measure of how
well the latent variable resembles the imposed prior distribution.

2.2.3 Representation of Prior Distribution. The authors in
[37] observed that VAEs are largely limited by the Gaussian prior,
and thus relaxed this constraint by allowing 𝑝(𝑧) to be any dis-
tribution by replacing the KL divergence with an adversarial loss

3https://www.tensorflow.org/

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2429

https://www.tensorflow.org/

Figure 2: Rhythmic transformation of source (left) with intermediate pattern (middle) and resulting output transformation
(right). Rhythmic envelopes (bottom) show changes to the rhythmic pattern as the latent code is manipulated via parameter 𝛼 .

imposed on the encoder output. Thus the latent variable 𝑧 is re-
quired to have the same aggregated posterior distribution as the
prior 𝑝(𝑧). The AAE framework makes it possible to leverage any
prior knowledge that may be specific to the studied application.
In this work, an isotropic Gaussian with 0 mean and 𝐼 variance
is used as a baseline, and compared against a prior distribution
that is a mixture of 𝜉 𝑁𝑧-dimensional Gaussians, where 𝜉 denotes
the number of rhythmic pattern styles as defined in Section 2.3.
This distribution can be depicted with a 2-d flower-like shape and
allows modelling of a variety of similar rhythmic styles by pushing
their latent codes to the center of the 𝑁𝑧-dimensional distribution.
Following the notation by authors in [51], the means of 𝜉 Gaussians
are placed on a 2-d circle as:

𝜇𝑖 =
[
𝑐𝑜𝑠

(
2𝜋𝑖
𝜉

)
, 𝑠𝑖𝑛

(
2𝜋𝑖
𝜉

)
, 0, ..., 0

]
, (6)

where 𝜇𝑖 has a total of 𝑁𝑧 dimensions. The covariance matrix Σ𝑖 is
calculated as:

𝜐𝑖 =

[
𝑐𝑜𝑠(2𝜋𝑖

𝜉
) 𝑠𝑖𝑛(2𝜋𝑖

𝜉
),

−𝑠𝑖𝑛(2𝜋𝑖
𝜉

) 𝑐𝑜𝑠(2𝜋𝑖
𝜉

)

]
, (7)

𝑈𝑖 =
[
𝜐𝑇
𝑖

0
0 𝐼

]
, (8)

Λ =
[
𝑎1 0
0 diag(𝑎2)

]
, (9)

Σ𝑖 = 𝑈𝑖Λ𝑈 −1
𝑖 , (10)

where𝑈𝑖 and Λ are 𝑁𝑧 ×𝑁𝑧 matrices. The variance 𝑎1 = 0.1 for the
radial (i.e., center-to-outer) dimension, and variance 𝑎2 = 0.001 for
the remaining dimensions. The matrix𝑈𝑖 is used to rotate Λ with
respect to the position of the specific Gaussian. Thus, each of the
𝜉 rhythmic pattern styles is associated with a separate Gaussian
where patterns that are more similar are still able to be organised
closer to each other.

2.2.4 Training. The model is trained using Adam optimiser [32]
with an initial learning rate of 1e–4. All model weights use Xavier
uniform initialisation [21]. The model is trained for around 100000
iterations for approximately 2 days using 4 Tesla V100 GPUs with

a total batch size of 128. When training AAE-GM, the 𝛽 parameter is
gradually increased by 0.1 every 5000 iterations.

2.2.5 Signal Reconstruction. Mel-spectrograms generated by
the trained model can be approximated back to the linear frequency
scale and iteratively inverted with the Griffin-Lim algorithm [24]
for 100 to 300 iterations.

2.3 Rhythmic Transformation
An overview of the rhythmic transformation is shown in Figure 2.
A source recording is reduced to rhythmic-timbral representation
output from a deterministic encoder and is passed to the generator
together with a target pattern label. This latent code can be used
to manipulate metrically relevant positions of drum instruments
within a bar with mixing parameter 𝛼 .

2.3.1 Representation of Rhythmic Patterns. Information related to
rhythmic patterns is introduced during model training in order to
guide the output generations towards particular target patterns.
Audio tracks are first separated into a drums component and music
parts (e.g., vocals, bass, other) with the Spleeter source separation
library [26].4 Next, audio tracks are segmented into bars 𝑏 using
the state-of-the-art beat and downbeat tracking algorithm [9] in-
cluded in the madmom Python library [7].5 Rhythmic patterns
are represented with rhythmic envelope features processed with
LogFiltSpecFlux from madmom, which performed well in onset
detection function comparisons conducted in [8], for 𝑁 (𝑁 = 3)
frequency bands representing low (lowpass: 120 Hz), mid (band-
pass: 120–2500 Hz) and high (highpass: 2500 Hz) contents of drum
performances in each bar 𝑏. Following the authors in [14, 28], 𝑏
features are resampled to a length of 144 time steps 𝑡 and nor-
malised to ranges between 0 and 1. The resulting 𝑀 number of
patterns is represented by a template matrix 𝜏 ∈ R𝑀×𝑁×𝑡 . Figure 3
shows an example bar-length drum recording with the proposed
representation of three rhythmic envelopes plotted together.

4https://github.com/deezer/spleeter
5https://github.com/CPJKU/madmom

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2430

https://github.com/deezer/spleeter
https://github.com/CPJKU/madmom

Figure 3: Bar-length drum pattern definition using three fre-
quency bands (low, mid and high).

2.3.2 Clustering of Pattern Styles. Building on past research for
rhythmic pattern modelling [15, 34, 43], an unsupervised cluster-
ing strategy via 𝑋 -means [44] algorithm is proposed in this work.
𝑋 -means is an unsupervised extension of the popular 𝐾-means
algorithm, which does not require the predetermined 𝐾 number
of clusters prior to classification. The framework requires spec-
ification of the range within which 𝐾 reasonably lies, and then
jointly outputs the number of centroids together with a value for
𝐾 that scores best by a model selection criterion such as Bayesian
information criterion (BIC).

Centroid initialisation is known to influence clustering results
in both 𝐾- and 𝑋 -means algorithms, and as such results can be
improved through informed initialisation. All experiments in this
study incorporate 𝐾-means++ initialisation [3] with prior knowl-
edge of rhythmic patterns extracted from transcriptions of the 50
most frequent kick, snare and hi-hats patterns from over 4.8 million
bar-length drum patterns [38].6 Patterns are resampled to satisfy
the structure of rhythmic template matrix 𝜏 ∈ R50×3×144.

2.3.3 Pattern Conditioning and Interpolation. In order to introduce
conditioning based on rhythmic pattern styles, each input feature
𝑆 used during training is assigned a categorical variable taking one
of the 𝜉 number of style states found through 𝑋 -means clustering.
During the reconstruction phase, one-hot encoded conditioning
vectors for 𝜉 rhythmic styles are concatenated with inputs to the
generator G. The basis for a suitable 𝜉 number of rhythmic pattern
styles is presented in Section 2.3.4.

Interpolations in the latent space allows for the mixing of two
different drum patterns. As the transformation is continuous, a
gradual change is achievable from the source rhythmic pattern
to the target pattern. The intermediate latent codes are produced
using a linear interpolation between source and target latent codes
such that:

𝑧 = 𝛼𝑧𝑡𝑎𝑟𝑔𝑒𝑡 + (1 − 𝛼)𝑧𝑠𝑜𝑢𝑟𝑐𝑒 (11)
where 𝛼 is an interval between [0,1]. The interpolated codes 𝑧 are
fed into the generator, which outputs the mixed bar-length drum
performances.

2.3.4 Pattern Style Definition via 𝑋 -means. Determination of a
suitable number of rhythmic patterns 𝜉 is achieved through the
𝑋 -means algorithm using BIC scores calculated across 𝐾 = [5, 50]
with a maximum number of clusters set to 100. As in [14], a pattern
resolution of 𝑡 = 144 is used. Rhythmic envelopes are smoothed for
different standard deviations 𝜍 = [0.2, 0.6, 0.8] covering a range of 4

6http://isophonics.net/ndrum

timesteps at a time. Convergence was most frequently observed at
𝐾 = 11 with 𝜍 = 0.2.

3 EXPERIMENTS
The model proposed in Section 2 is assessed through an experiment
to determine (1) the rhythmic pattern organisation in the latent
space structure, (2) an evaluation of the audio reconstruction per-
formance compared with similar AE models, and (3) an evaluation
of the transformation quality between source and target patterns
through latent space interpolation. In this section the dataset, exper-
imental methodology and baseline systems under evaluation are
presented.

3.1 Data
This project makes use of three publicly available datasets: (1) DALI
(4116 tracks) [39], (2) Harmonix (HMX 807 tracks) [41], and (3) HJDB
(227 tracks) [27], as well as a private collection of 268 jazz, funk
and R&B (JFRB) recordings. The resulting dataset contains 5418
musical pieces of polyphonic sound mixtures having various kinds
of instruments and represents a wide variety of genres and rhythmic
patterns. All audio recordings are in 16-bit mono WAV format and
resampled to 22.05 kHz. To facilitate modelling of rhythmic patterns,
those tracks are segmented into bars using the state-of-the-art
downbeat tracking algorithm by [9].

In order tomodel rhythmic patterns from percussion instruments
present in the dataset, source separation is performed with the
pre-trained 4stems model provided in the Spleeter library [26] to
extract drum sounds from music sound mixtures. The resultant
drum parts are used in two ways: (1) as training inputs described
in Section 2.2.1, and (2) for rhythmic pattern modelling described
in Section 2.3. In both scenarios, tracks with time signatures other
than 4/4 or with an amplitude < 0.2—due either to empty bars or
poor source separation—are excluded. After filtering, the data is
represented by 5418 tracks with a total of 510859 bars. Assessment
of the dataset tempi results in a median tempo of 128 BPM. To
facilitate appropriate representation of a wide range of rhythmic
patterns, all bar-length segments are time-stretched to a fixed tempo
of 128 BPM with the Rubberband library.7 The dataset samples are
distributed among training (80%), validation (10%) and test sets
(10%) with an equal distribution of bars per 𝜉 rhythmic pattern
styles throughout all sets during training.

3.2 Experimental Methodology
In order to view the organisation of the learned latent space, its
structure is visualised with 2-d and 3-d plots for each of the rhyth-
mic classes 𝜉 with principal component analysis (PCA) portraying
differences between two different prior distributions.

The ability of the proposed model to generate spectrograms is
evaluated using both timbral and temporal reconstruction metrics:
root-mean squared error (RMSE), log-spectral distance (LSD) and
cosine similarity (CS). The LSD is calculated as follows:

𝐿𝑆𝐷 =
√∑

[10 log10(|𝑆 |/|𝑆 |)]2 . (12)

7https://breakfastquay.com/rubberband/

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2431

http://isophonics.net/ndrum
https://breakfastquay.com/rubberband/

Figure 4: PCA visualisations of the baseline AAE-ISO (top)
and the proposed AAE-GM (bottom) with 2 PCs (left) and 3 PCs
(right) for 11 rhythmic styles.

Following [11, 50], temporal reconstruction of the generations is
evaluated with cosine similarity (CS) between rhythmic envelopes𝑅
(see Section 2.3) extracted from source 𝜒 and generated 𝜈 recording
as follows:

𝐶𝑆 𝜒,𝜈 = 1 −
𝑅𝜒 · 𝑅𝜈

∥𝑅𝜒 ∥∥𝑅𝜈 ∥
. (13)

CS will be close to unity for very similar patterns and nearer to
zero for dissimilar patterns. All reported experiments in the follow-
ing sections use 1000 patterns from each 𝜉 rhythmic pattern style,
resulting in a total of 11000 evaluation audio examples.

To evaluate the continuity of the transformations, latent space
interpolations between rhythmic patterns are performed using
Equation (11). Scores for each metric are calculated between the
source recording and the resulting rhythmic transformation. Re-
construction scores for all examples are scaled to range [0,1] and
averaged for different 𝛼 .

3.3 Baseline Systems
In addition to the proposed Gaussian mixture AAE (AAE-GM) archi-
tecture, three additional models are implemented for comparisons:
(1) AAE using isotropic Gaussian prior distribution (AAE-ISO), (2)
variational autoencoder (VAE), (3) a Wasserstein autoencoder with
maximum mean discrepancy (WAE-MMD) regularisation. All models
share the same architecture implementations and are trained in a su-
pervised manner. The proposed AAE-GM uses a regularisation based
on a WGAN adversarial framework—including a gradient penalty
with Guassian mixture prior for conditional disentanglement of
rhythmic pattern styles—for the transformation of rhythmic and
timbral qualities of drum recordings. As a comparison for the rhyth-
mic transformation capabilities of the presented AAE-GM model,
the audio synthesis framework using WAE-MMD [5] is here modi-
fied to act on longer timescales as present in bar-length patterns.

VAE WAE-MMD AAE-ISO AAE-GM
LSD 34.26 34.23 34.28 34.37
RMSE 0.39 0.38 0.38 0.38
CS 0.67 0.84 0.84 0.82

Table 1: Reconstruction scores shown for three baseline mod-
els and the proposed AAE-GM.

We follow the WAE-MMD implementation without the conditioning
module proposed by the authors in [5]. In the case of VAE, the model
minimises the evidence lower bound objective [33] with isotropic
Gaussian latent distribution. The WAE-MMD uses BCE reconstruc-
tion loss where the regularisation from Equation (3) is replaced
with maximum mean discrepancy (MMD). MMD represents a dis-
tance measure between the samples of the distributions 𝑥 ∼ 𝑝(𝑥)
and 𝑦 ∼ 𝑞(𝑦) and was proposed as a more flexible regularisation
to Kullback–Leibler divergence used in a vanilla VAE [5]. MMD
defines a differentiable divergence and was developed as a distance
between probabilistic moments 𝜙𝑝,𝑞 that map to a general repro-
ducing kernel Hilbert space as follows:

| |𝜙𝑝 − 𝜙𝑞 | |2𝐻= ⟨𝜙𝑝 − 𝜙𝑞, 𝜙𝑝 − 𝜙𝑞⟩
= E𝑝,𝑝𝜅(𝑥, 𝑥 ′) + E𝑞,𝑞𝜅(𝑦,𝑦′)
−2E𝑝,𝑞𝜅(𝑥,𝑦),

(14)

where E𝑝,𝑞 is the expectation that is evaluated with a radial basis
kernel function 𝜅:

𝜅(𝑥,𝑦) = exp
(
| |𝑥2 + 𝑦2 | |
−2Σ2

)
. (15)

4 RESULTS AND DISCUSSION
4.1 Latent Space Structure
The 64-d latent spaces for AAE-GM and VAE are visualised in 2-
and 3-d in Figure 4 using PCA. PCA ensures that the visualisation
is a linear transform of the original space, and thus preserves the
real distances inside the latent space. As can be seen, it is not pos-
sible to distinguish between the different rhythmic pattern styles
in AAE-ISO without the Gaussian mixture prior. The effect of the
proposed AAE-GM with Gaussian mixture prior can be clearly seen
with more visibly organised clusters in both 2-d and 3-d PCA repre-
sentations. When analysing mean rhythmic pattern representations
as clustered by the𝑋 -means algorithm, pattern types 0 (purple) and
6 (green) represent disparate rhythmic styles—style 0 is typified by
a clear 16th-note pattern and style 6 is an 8th-note pattern with an
accent on the second beat of the musical measure.

4.2 Reconstruction Performance
The reconstruction performance scores of the proposed and baseline
models are shown in Table 1. The mean LSD and RMSE scores
describe the spectral reconstruction quality of generated audio
spectrograms with regard to the original. The results for mean LSD
and RMSE indicate that the proposed AAE-GM model achieves a
similar level of reconstruction quality as the other approaches. The
CS score quantifies how similar are the rhythmic envelopes of the
newly synthesised audio in comparison to the original. Although
the reconstructions from the AAE-GM, WAE-MMD and AAE-ISO all

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2432

Figure 5: Example of interpolations between two rhythmic
patterns.

contain a degree of noise, the results of these three systems achieve
comparable CS (>0.8). The CS for the VAE is considerably lower,
likely due to the reconstructions being generated with a more
substantial amount of noise.

The reconstruction CS score shows high similarities of the gen-
erations in the temporal domain, whereas LSD and RMSE scores
outline the challenging aspects of synthesising realistic audio with
neural networks. It is anticipated that reconstruction quality would
also be improved with audio that has not been manipulated through
time-stretching, improved filtering of noisy patterns, and larger
architectures with dilated convolutions with skip connections to
help consolidate more information into the network. To mitigate
the artifacts of the time-stretching effect, it would be useful to in-
vestigate the potential of variable-length features for training of
neural networks. The transformation would also benefit from addi-
tional drum placement information provided by automatic drum
transcription.

4.3 Latent Space Interpolation
One of the chief characteristics of a well-trained latent represen-
tation is its ability to generate meaningful samples based on em-
beddings created by performing linear interpolation (Section 2.3.3).
Smooth transitions in the latent space are desired in a user-controlled
sound transformation [5, 6]. Figure 5 demonstrates a transforma-
tion between two different types of rhythmic patterns and different
instruments (e.g., purple kick drum transforms into a red snare
drum at around 0.5s). Notably, the temporal positions of the last
two events in the source audio (i.e., purple kicks after 1.0s) are
gradually shifted in time as they are morphed into a single softer
and higher pitched sound event at 𝛼 = 0.5 before it disappears
completely at 𝛼 = 0.75.

Figure 6: Reconstruction scores for interpolations between
source and target rhythmic patterns. The results are calcu-
lated asmean of 11000 transformations per each interpolated
value for 𝛼 .

To analyse the effect of the rhythmic transformation for the
intermediate 𝛼 values, all audio examples in the test set are inter-
polated to randomly chosen target patterns. Figure 6 depicts the
reconstruction scores for all 11000 transformations. As expected,
the CS decreases as the transformation moves output audio further
away from the source. As the transformation operates on audio con-
taining percussion only, the intention is not to adjust the spectral
content by a large margin. The scores for RMSE reflect that charac-
teristic by not varying considerably throughout the interpolation,
indicating that the spectrogram reconstruction quality remains sim-
ilar. On the other hand, LSD mirrors the behaviour of CS indicating
change in the spectral contents moving towards a novel target spec-
trogram after transformation. This can be equivalent to moving and
removing an event in one position or transforming it into another
instrument.

Audio examples and additional experiments are available on a
supplementary website.8

5 CONCLUSIONS AND FUTUREWORK
We propose a novel method for combined drum synthesis and
rhythmic transformation akin to the popular task of redrumming.
We provide user control to continuously navigate among complex
rhythmic possibilities by interpolating through a low-dimensional
latent space. This is achieved by integrating Gaussianmixture latent
distributions for rhythmic pattern conditioning with state-of-the-
art adversarial autoencoders. To train and evaluate the system, we
collected and annotated a dataset of over 500000 bars from 5418
audio tracks from a variety of musical genres. Our experiments
confirmed the importance of the structure of the disentangled latent
distributions that relate to rhythm and timbre. In future work, we
will investigate evaluation metrics for latent space organisation
and rhythmic transformation, as well as the effects of additional
musical conditioning techniques for different prior distributions.

8https://maciek-tomczak.github.io/maciek.github.io/Drum-Synthesis-and-
Rhythmic-Transformation/

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2433

https://maciek-tomczak.github.io/maciek.github.io/Drum-Synthesis-and-Rhythmic-Transformation/
https://maciek-tomczak.github.io/maciek.github.io/Drum-Synthesis-and-Rhythmic-Transformation/

ACKNOWLEDGMENTS
This work was supported in part by JST ACCEL Grant Number
JPMJAC1602.

REFERENCES
[1] Cyran Aouameur, Philippe Esling, and Gaëtan Hadjeres. 2019. Neural Drum

Machine: An Interactive System for Real-time Synthesis of Drum Sounds. In
Proceedings of the International Conference on Computational Creativity (ICCC).

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN. In
Proceedings of the International Conference on Machine Learning (ICML). 214–223.

[3] David Arthur and Sergei Vassilvitskii. 2006. k-means++: The Advantages of Careful
Seeding. Technical Report. Stanford.

[4] XLN Audio. 2019. XO. Available at: https://www.xlnaudio.com/products/xo.
[5] Adrien Bitton, Philippe Esling, Antoine Caillon, and Martin Fouilleul. 2019. As-

sisted Sound Sample Generation with Musical Conditioning in Adversarial Auto-
encoders. In Proceedings of the International Conference on Digital Audio Effects
(DAFx).

[6] Adrien Bitton, Philippe Esling, and Axel Chemla-Romeu-Santos. 2018. Modu-
lated Variational Auto-encoders for Many-to-many Musical Timbre Transfer.
arXiv:1810.00222 (2018).

[7] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs, and Gerhard
Widmer. 2016. madmom: A New Python Audio and Music Signal Processing
Library. In Proceedings of the ACM International Conference on Multimedia. 1174–
1178.

[8] Sebastian Böck, Florian Krebs, and Markus Schedl. 2012. Evaluating the Online
Capabilities of Onset Detection Methods. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 49–54.

[9] Sebastian Böck, Florian Krebs, and Gerhard Widmer. 2016. Joint Beat and Down-
beat Tracking with Recurrent Neural Networks. In Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 255–261.

[10] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. 2016. InfoGAN: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets. In Proceedings of the Advances in Neural
Information Processing Systems (NIPS). 2172–2180.

[11] Matthew E. P. Davies, Philippe Hamel, Kazuyoshi Yoshii, and Masataka Goto.
2014. AutoMashUpper: Automatic Creation of Multi-song Music Mashups. In
IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP) 22,
12, 1726–1737.

[12] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford,
and Ilya Sutskever. 2020. Jukebox: AGenerativeModel forMusic. arXiv:2005.00341
(2020).

[13] Sander Dieleman, Aäron van den Oord, and Karen Simonyan. 2018. The Challenge
of Realistic Music Generation: Modelling Raw Audio at Scale. In Proceedings of
the Neural Information Processing Systems (NIPS). 8000–8010.

[14] Simon Dixon, Fabien Gouyon, and Gerhard Widmer. 2004. Towards Charac-
terisation of Music via Rhythmic Patterns. In Proceedings of the International
Conference on Music Information Retrieval (ISMIR).

[15] Simon Dixon, Elias Pampalk, and Gerhard Widmer. 2003. Classification of Dance
Music by Periodicity Patterns. In Proceedings of the International Conference on
Music Information Retrieval (ISMIR). 159–165.

[16] Chris Donahue, Julian McAuley, and Miller Puckette. 2018. Adversarial Audio
Synthesis. In Proceedings of the International Conference on Learning Representa-
tions (ICLR).

[17] Jake Drysdale, Maciek Tomczak, and Jason Hockman. 2020. Adversarial Synthesis
of Drum Sounds. In Proceedings of the International Conference on Digital Audio
Effects (DAFx).

[18] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Don-
ahue, and Adam Roberts. 2019. GANSynth: Adversarial Neural Audio Synthesis.
In Proceedings of the International Conference on Learning Representations (ICLR).

[19] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad
Norouzi, Douglas Eck, and Karen Simonyan. 2017. Neural Audio Synthesis
of Musical Notes with WaveNet Autoencoders. In Proceedings of the International
Conference on Machine Learning (ICML). 1068–1077.

[20] Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. 2018. Style
Transfer in Text: Exploration and Evaluation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI).

[21] Xavier Glorot and Yoshua Bengio. 2010. Understanding the Difficulty of Training
Deep Feedforward Neural Networks. In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS). 249–256.

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Proceedings of the Advances in Neural Information Processing Systems
(NIPS). 2672–2680.

[23] Fabien Gouyon, Lars Fabig, and Jordi Bonada. 2003. Rhythmic Expressiveness
Transformations of Audio Recordings: Swing Modifications. In Digital Audio

Effects (DAFx) Workshop. 8–11.
[24] Daniel Griffin and Jae Lim. 1984. Signal Estimation from Modified Short-time

Fourier Transform. In IEEE Transactions on Acoustics, Speech, and Signal Processing
(TASSP) 32, 2 (1984), 236–243.

[25] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C. Courville. 2017. Improved Training of Wasserstein GANs. In Proceedings
of the Advances in Neural Information Processing Systems (NIPS). 5767–5777.

[26] Romain Hennequin, Anis Khlif, Felix Voituret, and Manuel Moussallam. 2019.
Spleeter: A Fast And State-of-the Art Music Source Separation Tool With Pre-
trained Models. Late-Breaking Demo Session Abstract in the International Society
for Music Information Retrieval Conference (2019).

[27] Jason Hockman, Matthew E. P. Davies, and Ichiro Fujinaga. 2012. One in the Jun-
gle: Downbeat Detection in Hardcore, Jungle, and Drum and Bass. In Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
169–174.

[28] Jason A. Hockman, Juan P. Bello, Matthew E. P. Davies, and Mark D. Plumbley.
2008. Automated Rhythmic Transformation of Musical Audio. In Proceedings of
the International Conference on Digital Audio Effects (DAFx). 177–180.

[29] Wei-Ning Hsu, Yu Zhang, Ron J. Weiss, Heiga Zen, Yonghui Wu, Yuxuan Wang,
Yuan Cao, Ye Jia, Zhifeng Chen, Jonathan Shen, Patrick Nguyen, and Ruoming
Pang. 2018. Hierarchical Generative Modeling for Controllable Speech Synthesis.
In Proceedings of the International Conference on Learning Representations (ICLR).

[30] Apple Inc. 2017. Drummer Loops in Logic Pro X. Available at: https://support.
apple.com/en-gb/HT207864.

[31] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the International Conference on Machine Learning (ICML). 448–456.

[32] Diederik P. Kingma and JimmyBa. 2015. Adam: AMethod for Stochastic Optimiza-
tion. In Proceedings of the International Conference on Learning Representations
(ICLR).

[33] Diederik P. Kingma and Max Welling. 2013. Auto-encoding Variational Bayes.
arXiv:1312.6114 (2013).

[34] Florian Krebs, Sebastian Böck, and Gerhard Widmer. 2013. Rhythmic Pattern
Modeling for Beat and Downbeat Tracking in Musical Audio. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 227–232.

[35] Patricio López-Serrano, Matthew E. P. Davies, and Jason Hockman. 2018. Break-
informed Audio Decomposition for Interactive Redrumming. Late-breaking
Demo Session Abstract in the International Society for Music Information Retrieval
Conference (ISMIR) (2018).

[36] Yin-Jyun Luo, Kat Agres, and Dorien Herremans. 2019. Learning Disentangled
Representations of Timbre and Pitch for Musical Instrument Sounds Using Gauss-
ian Mixture Variational Autoencoders. In Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR).

[37] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan
Frey. 2015. Adversarial Autoencoders. arXiv:1511.05644 (2015).

[38] Matthias Mauch and Simon Dixon. 2012. A Corpus-based Study of Rhythm
Patterns. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). 163–168.

[39] Gabriel Meseguer-Brocal, Alice Cohen-Hadria, and Geoffroy Peeters. 2018. DALI:
A Large Dataset Of Synchronized Audio, Lyrics And Notes, Automatically Cre-
ated Using Teacher-student Machine Learning Paradigm. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR).

[40] Vaishnavh Nagarajan and J. Zico Kolter. 2017. Gradient Descent GAN Opti-
mization is Locally Stable. In Proceedings of the Advances in Neural Information
Processing Systems (NIPS). 5585–5595.

[41] Oriol Nieto, Matthew McCallum, Matthew E. P. Davies, Andrew Robertson,
Adam Stark, and Eran Egozy. 2019. The Harmonix Set: Beats, Downbeats, and
Functional Segment Annotations of Western Popular Music. In Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR).

[42] Augustus Odena, Vincent Dumoulin, and Chris Olah. 2016. Deconvolu-
tion and Checkerboard Artifacts. Available at: https://distill.pub/2016/deconv-
checkerboard/ , Distill (2016).

[43] Geoffroy Peeters. 2005. Rhythm Classification Using Spectral Rhythm Patterns. In
Proceedings of the International Conference on Music Information Retrieval (ISMIR).
644–647.

[44] Dan Pelleg and Andrew W. Moore. 2000. X-means: Extending K-means with
Efficient Estimation of the Number of Clusters. In Proceedings of the International
Conference on Machine Learning (ICML). Morgan Kaufmann, 727–734.

[45] Emmanuel Ravelli, Juan P. Bello, and Mark Sandler. 2007. Automatic Rhythm
Modification of Drum Loops. Signal Processing Letters, IEEE 14, 4 (2007), 228–231.

[46] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. 2019. Generating Diverse
High-fidelity Images with VQ-VAE-2. In Proceedings of the Advances in Neural
Information Processing Systems (NIPS). 14837–14847.

[47] Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck.
2018. A Hierarchical Latent Vector Model for Learning Long-term Structure in
Music. arXiv:1803.05428 (2018).

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2434

https://www.xlnaudio.com/products/xo
https://www.xlnaudio.com/products/xo
https://support.apple.com/en-gb/HT207864
https://support.apple.com/en-gb/HT207864
https://support.apple.com/en-gb/HT207864
https://support.apple.com/en-gb/HT207864
https://distill.pub/2016/deconv-checkerboard/
https://distill.pub/2016/deconv-checkerboard/
https://distill.pub/2016/deconv-checkerboard/
https://distill.pub/2016/deconv-checkerboard/

[48] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. 2017.
Wasserstein Auto-encoders. Proceedings of the International Conference on Learn-
ing Representations (ICLR).

[49] Maciek Tomczak, Jake Drysdale, and Jason Hockman. 2019. Drum Translation
for Timbral and Rhythmic Transformation. In Proceedings of the International
Conference on Digital Audio Effects (DAFx).

[50] Maciek Tomczak, Carl Southall, and Jason Hockman. 2018. Audio Style Transfer
with Rhythmic Constraints. In Proceedings of the International Conference on
Digital Audio Effects (DAFx). 45–50.

[51] Andrea Valenti, Antonio Carta, and Davide Bacciu. 2020. Learning a Latent Space
of Style-Aware Symbolic Music Representations by Adversarial Autoencoders.
arXiv:2001.05494 (2020).

[52] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. WaveNet: A Generative Model for Raw Audio. arXiv:1609.03499 (2016).

[53] Jian Wu, Changran Hu, Yulong Wang, Xiaolin Hu, and Jun Zhu. 2019. A Hier-
archical Recurrent Neural Network for Symbolic Melody Generation. In IEEE
Transactions on Cybernetics 50, 6 (2019), 2749–2757.

[54] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. 2017. MidiNet: A Convolu-
tional Generative Adversarial Network for Symbolic-domain Music Generation.
arXiv:1703.10847 (2017).

[55] Kazuyoshi Yoshii, Masataka Goto, Kazunori Komatani, Tetsuya Ogata, and Hi-
roshi G. Okuno. 2007. Drumix: An Audio Player with Real-time Drum-part
Rearrangement Functions for Active Music Listening. IPSJ (Information Process-
ing Society of Japan) Journal 48, 3 (2007), 1229–1239.

Poster Session A2: Deep Learning for Multimedia MM '20, October 12–16, 2020, Seattle, WA, USA

2435

	Abstract
	1 Introduction
	1.1 Background
	1.2 Motivation

	2 Method
	2.1 Adversarial Autoencoders (AAE)
	2.2 Implementation
	2.3 Rhythmic Transformation

	3 Experiments
	3.1 Data
	3.2 Experimental Methodology
	3.3 Baseline Systems

	4 Results and Discussion
	4.1 Latent Space Structure
	4.2 Reconstruction Performance
	4.3 Latent Space Interpolation

	5 Conclusions and Future Work
	References

