
Songle Sync: A Large-Scale Web-based Platform for Controlling
Various Devices in Synchronization with Music

Jun Kato, Masa Ogata, Takahiro Inoue, Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

{jun.kato,masa.ogata,takahiro.inoue,m.goto}@aist.go.jp

Off-the-shelf mobile devices and computers

Lighting devices

Wearable devices Robots and other actuated devices

Figure 1

Figure 1: A variety of Internet-connected devices can be synchronized with music playback on the Songle Sync platform.

ABSTRACT
This paper presents Songle Sync, a web-based platform on which
hundreds of Internet-connected devices — including smartphones,
computers, and other physical computing devices — can be
controlled to synchronize with music playback. It uses music-
understanding technologies to dynamically synthesize music-
driven multimedia performances from a musical piece of choice.
To simultaneously control hundreds of devices, a conventional ar-
chitecture keeps always-on connections between them. However,
it does not scale and suffers from latency and jitter issues when
there are various devices with potentially unstable networks. We
address this with a novel autonomous control architecture in which
each device is notified of forthcoming musical events (e.g., beats
and chorus sections) to automatically drive various changes in mul-
timedia performances. Moreover, we provide a development kit
of an event-driven multimedia framework for JavaScript, example
programs, and an interactive tutorial. To evaluate the platform, we
compared latencies, jitters, and amounts of network traffic between
ours and the conventional architecture. To examine use cases in the
wild, we deployed the platform to drive over a hundred of a variety
of devices. We also developed a web browser-based application
for a multimedia performance with music playback. It provided
audiences of hundreds with a bring-your-own-device experience
of synchronized animations on smartphones. In addition, the devel-
opment kit was used in a two-day hackathon. We report lessons
learned from these studies and discuss the future of the Internet of
Musical Things.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
MM ’18, October 22–26, 2018, Seoul, Republic of Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5665-7/18/10. . . $15.00
https://doi.org/10.1145/3240508.3240619

CCS CONCEPTS
• Human-centered computing → Web-based interaction; •
Applied computing → Sound and music computing; • Soft-
ware and its engineering → Application specific development en-
vironments;

KEYWORDS
Internet of Musical Things, music synchronization, multimedia
control, application programming interface

ACM Reference Format:
Jun Kato, Masa Ogata, Takahiro Inoue, and Masataka Goto. 2018. Songle
Sync: A Large-Scale Web-based Platform for Controlling Various Devices
in Synchronization with Music. In 2018 ACM Multimedia Conference (MM
’18), October 22–26, 2018, Seoul, Republic of Korea. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3240508.3240619

1 INTRODUCTION
This paper presents a platform with which a developer can easily
make lots of various kinds of devices behave in synchronization
with playback of a musical piece of choice. Such a platform is useful
at any occasion with music to augment the scenery so that the
user can feel more sense of music and more united with neighbors.
For instance, an end-user can play a favorite musical piece on
smartphone whose playback status and timeline are shared in real
time with the smartphones of neighboring friends. The smartphone
screens show synchronized graphic animations, making a sense
of unity among people in place. Live event audiences of hundreds
can enjoy visual performances synchronized with musical pieces
playing at the venue, either on the huge onstage screen or on their
own smartphones, augmenting their acoustic experience with the
synchronized visual sensations. Furthermore, at any place with
background music, such as a shopping mall or restaurant, the music
can drive connected screens and lightings on the walls or floors,
dancing robots, visitors’ smartphones, etc.

Session: Experience-1 (Multimedia Entertainment and Experience) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1697

https://doi.org/10.1145/3240508.3240619
https://doi.org/10.1145/3240508.3240619

While there have been prior attempts to synchronize multiple de-
vices with music playback, the aforementioned applications could
have not been implemented due to three difficulties. First, regarding
the scalability, it is still not easy to control in synchronization with
music playback a lot of off-the-shelf devices like smartphones and
tiny computers, which are not always connected to a reliably fast
and stable network. Second, regarding the variety, existing applica-
tions are for a homogeneous hardware setup consisting of a single
device type and for a specific musical piece. There is no unified way
to synchronize a variety of devices with the music playback. Multi-
media performances need to be prepared on a musical piece-basis,
meaning that event types (e.g., musical beats) and their timings
need to be manually annotated beforehand. Accordingly, there is
no way to dynamically reflect the end-user’s preference on the
choice of musical pieces. Third, given these scalability and variety
difficulties, the programming experience — how to develop an open
platform that enables easy development of scalable music-driven
multimedia applications — has not been investigated.

To address these difficulties, this paper proposes Songle Sync, a
web-based platform capable of controlling hundreds of a variety
of Internet-connected devices to synchronize with the playback
of musical pieces. The following sections are organized as follows.
Section 2 examines existing music-driven applications as well as
frameworks for developing such applications to highlight the char-
acteristics of our platform. Section 3 introduces its two concrete
usage scenarios and clarifies the technical requirements. Section 4
explains the platform that addresses the difficulties regarding the
scalability and variety. We propose a novel autonomous control ar-
chitecture that utilizes intermittent compact communications over
the Internet, enabling scalable and stable real-time control of hun-
dreds of devices. In addition, our platform is built on top of standard
web technologies and can control a variety of devices in a unified
way. Our platform also utilizes Songle [6] that provides semantic in-
formation of musical pieces on the web (musical beats, chords, and
so on.) This eliminates the need to manually annotate each musical
piece and furthermore allows the end-user to enjoy applications
with a favorite musical piece. Section 5 describes the program-
ming experience — any developer can develop scalable music-driven
applications with help of its musical-event-driven API, example
programs, and tutorials. Finally, Section 6 reports performance
evaluations as well as deployments in the wild. Songle Sync was
publicly released on August 2, 20171 and have been used to drive
over a hundred of a variety of devices, to provide to audiences of at
least 275 people a bring-your-own-device (BYOD) experience of a
40-minute multimedia performance with music playback, and in
a two-day hackathon. We report lessons learned and discuss the
future of the Internet of Musical Things (IoMT).

2 RELATEDWORK
2.1 Music-Driven Applications
Multimedia performances synchronized with music playback are
appealing to audiences and have attracted much attention from
both industry and academia. For instance, technologies for making
three-dimensional computer graphics models move in accordance

1Songle Sync. http://api.songle.jp/sync

with the beat timings [5, 21] have been developed and deployed
industrially. Technologies for authoring a video in which a video
clip or photo transforms into another at appropriate timings of the
background music [1, 10, 22] and for showing computer graphics
animations based on the lyrics text [3, 4, 12] have been proposed.

There is much potential in the large-scale music-driven multime-
dia performances. Existing systems are capable of changing wrist-
band colors [26] by using a wireless signal, changing ear hat col-
ors [20] by using infrared signals, and flashing phone screens [18]
by using inaudible sound emitted from speakers. The Smartphone
Orchestra [25] allows participants to bring their smartphones, each
of which plays a unique part of the musical piece on its web browser
filled with a single color. When the smartphones are placed in one
place, they create a unified musical scenery.

These systems typically need dedicated devices or applications
to be installed prior to the multimedia performance. In contrast,
our platform aims to support a heterogeneous hardware setup
of smartphones, tablets, personal computers, and the Internet of
Things (IoT) devices, i.e., physical computing devices connected to
the Internet. In the case of browser-based Songle Sync applications,
the user can join the performance just by visiting the website.

2.2 Music-Driven Development Frameworks
In response to high demands for music-driven applications, ap-
plication programming interfaces (APIs) and frameworks for the
purpose have been proposed.

While most of the APIs focus on providing manually annotated
metadata such as that available at Gracenote [8], some of them are
based on automatic analysis. For instance, Spotify APIs provide
semantic information of the musical elements in the musical pieces
on the service [24] with help of the technologies of Echo Nest [23].
Songle Widget [7] is an event-driven multimedia framework for
the development of web browser-based applications based on se-
mantic information of musical pieces on the web. Amalia.js [9]
is a metadata-enriched HTML5 video player that enables plugin
development for visualizing time-series data with help of timing
events emitted from the player. Our platform borrows a certain
design rationale such as event-driven APIs and differs from them in
that ours controls hundreds of various Internet-connected devices.

Synchronicity between multimedia (audio, visual, haptic, etc.)
streams played on multiple devices has been extensively stud-
ied [16]. IMSync [17] took human factors into consideration and
proposed a strategy to keep devices coordinated. A sync server was
implemented to which multimedia devices are connected through
WebSockets. The use of standard web technologies for synchro-
nous application frameworks has become common such as those for
synchronizing video playback [11], multimedia conferencing [27],
and remote collaborations (TogetherJS [14]). Note that, in most
cases, there is an assumption that streams are data-intensive or
contain user interactions and the whole data cannot be transferred
beforehand. This results in the always-on architecture in which the
client devices always need to be stably connected to the server. In
contrast, our applications are driven by the semantic information of
musical pieces, which is lightweight and can be initially transferred
to the client devices. This is the key enabler for our autonomous
control architecture.

Session: Experience-1 (Multimedia Entertainment and Experience) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1698

http://api.songle.jp/sync

♬

♪

♪

♪♬
♬♫

♬
♬♫♪

♬ ♬
♬♫

Music
on the Web
Music
on the Web

Songle
Sync

(1) Choose a musical piece and style (2) Share the generated QR code (3) Enjoy the synchronized performance

Figure 2

 QR Code
anonymized

Figure 2: An example usage scenario of the Songle Sync platform: synchronizing smartphones with the music playback.

3 GOAL: MUSIC-DRIVEN MULTIMEDIA
PERFORMANCE AT SCALE

As explained above, our goal is to implement an open platform that
enables easy development of music-driven applications for aug-
menting music listening experience with a lot of various synchro-
nized devices. The resulting multimedia applications can provide
the end-user with more sense of music and unity with other people
than simply playing music does.

This section shows two concrete usage scenarios of the Songle
Sync platform to help introduce its goal as well as its technical
requirements. The first scenario is supported by the actual tutorial
website (Figure 2, Section 5.3) serving as a brief introduction to
the platform. The second is implemented and tested with over a
hundred devices (Figure 1, Section 6.2).

3.1 Instant BYOD Experience for Smartphones
The first scenario allows the user to choose a musical piece available
on the web, play it on a smartphone, and invite friends to bring
their smartphones whose web browsers are instantly synchronized
with the music playback. There is no existing platform that allows
such an instant bring-your-own-device (BYOD) experience without
installing dedicated applications.

3.1.1 Choosing a Musical Piece and Animation Style. The user uses
a web browser to choose a musical piece on the web (an MP3 file or
page on a music and video sharing service such as YouTube, Piapro,
and Niconico) and an animation style from a list (Figure 2).

Then a music player appears and starts streaming the musical
piece. Next to the player is computer graphics animation, which is
synchronized with the beat timings, and changes visual patterns
when the playback enters the chorus section. The user can enjoy
music acoustically and visually at the same time.

3.1.2 Sharing the URL and/or QR Code. When the application
shows the music player, it also generates a URL to share with other
people. It displays the URL in a text box and a clickable button
to share the URL via social networking services such as Twitter.
Additionally, it displays the QR Code that navigates to the URL.

The user can invite asmany remote or neighbor friends as desired
(see Section 5.1 for the limitation) to access the shared URL with
the web browser on their smartphones.

3.1.3 Synchronizing Smartphones with Music over the Internet.
When the friends access the URL by clicking a link or capturing the
QR Code, the same application launches in their web browser. They
can choose whether they need sound (when playing remotely) or
not (when sitting next to the user).

All the application instances are connected to the Songle Sync
server so that the playback status and timeline are synchronized.
When the user changes a musical piece to play, pauses the playback,
or seeks to a different position in the musical piece, the friends’
smartphones follow the changes. A friend can join and leave the
session at any time. While the synchronization of the remote audio
playback might need some time because audio streaming usually
requires a certain amount of data buffering, the changes in the
playback status are shared almost instantly.

3.2 Various Devices Synchronized with Music
There are an increasing number and variety of microcontrollers and
tiny computers that can connect to the Internet. They can be used
to build various kinds of Internet of Things (IoT) devices, including
but not limited to smart light bulbs, robots, and remote-controllable
curtains. The second usage scenario allows a heterogeneous hard-
ware setup, consisting of such devices, to synchronize with a single
musical piece. Such a setup has not been supported by the existing
systems.

All devices shown in Figure 1 are placed in a demonstration
room and run JavaScript programs to connect to the Songle Sync
server. Several laptop computers are used to control music playback,
one of which is connected to speakers and plays sound. When
a musical piece is playing on the computer, all devices and web
browsers react to musical events such as hitting each beat and
entering the chorus section. This heterogeneous setup as a whole
creates a unique scenery synchronized with music and provides an
immersive music listening experience to people in the room.

3.3 Technical Requirements
To achieve the scenarios, there are three technical requirements we
considered when designing the platform. First, the platform should
support a dynamic and heterogeneous hardware setup allowing
various kinds of devices to join and leave the performance at any
time. These days, smartphones and many microcontrollers and tiny
computers can connect to the Internet, and we therefore chose
not to develop our own network protocol stack but to build the
platform on the standard web technologies. The devices can either
run JavaScript programs (e.g., smartphones, Intel Edison, and Rasp-
berry Pi) or be controlled by a computer running JavaScript-based
processes (Node.js) with the help of middleware (e.g., Johnny-Five).
We therefore chose to provide a JavaScript library for application
development on the platform.

Second, the platform should enable scalable and stable control of
hundreds of devices that do not always have fast and stable network
connections. The platform should be usable under such challenging

Session: Experience-1 (Multimedia Entertainment and Experience) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1699

♬♪
♬
♪

PCSmartphones Tablets Robots IoT devices Laptops

Music drives various devices for
synchronized multimedia performance

♪

♪♬
♬♫

♬
♬♫♪

♬ ♬
♬♫

Music
on the Web
Music
on the Web

Large-scale web-based platform Songle SyncSemantic information extracted with
music-understanding technologies

Playback status and timeline shared
on the autonomous control architecture

♪
♪
♫

♫
♬
♬

♪
♪
♫

♫
♬
♬

♪
♪
♫

♫
♬
♬

♪
♪
♫

♫
♬
♬

Figure 3

Figure 3: An overview of the Songle Sync platform capable of synchronizing hundreds of devices to the music playback.

networking environments. The communication protocol between
the platform and devices needs to be compact. More importantly, the
latency and jitter of the devices should be small (<100milliseconds, a
few frames at 30 fps) or the performance will not look synchronized
with the music. Addressing this issue is not straightforward and
will be discussed in detail in Section 3.

Third, the platform should allow easy application development.
The developers should not need to annotate the music manually,
which takes a considerable amount of time. Otherwise, the end-user
is forced to choose a musical piece from the manually annotated
ones. Our platform therefore depends on a public web service called
Songle [6] that has analyzed more than a million musical pieces on
the web. In addition, we borrowed the design of the event-driven ap-
plication programming interface from Songle’s development frame-
work called Songle Widget [7]. It allows one to write code that
triggers performances on a device upon musical events such as
musical beats and changes in chords. Since Songle Widget was
designed for programming a single device and does not support
synchronizing hundreds of devices, we built our own multimedia
framework to eliminate the need to write low-level code to manage
synchronization between the devices as explained in Section 5.

4 SONGLE SYNC
This section explains how we met the technical requirements and
implemented a scalable and stable platform for controlling hundreds
of a variety of devices in synchronization with music (Figure 3).
First, the issues with the existing approach is presented. Second,
a novel autonomous control architecture is explained. Third, its
scalability features are described in detail.

4.1 Issues with Always-on Connections
To control hundreds of devices in synchronization with music, it is
common to implement an architecture that keeps always-on net-
work connections between the "master" and "slave" nodes. Each
master node has control over the music playback and emits a com-
mand every time it wants to change the state of the slave nodes. All
slave nodes keep listening for commands from the master nodes
so that they timely react to the musical events (e.g., draw graphics,
actuate motions, and flash lights).

Proprietary systems used to synchronously change the color of
wristbands in a concert hall [26] and other examples mentioned
in the Related Work section are based on this architecture. The
commands are transmitted from a master node to all slave nodes
through wireless signals from an antenna, inaudible sound from a
loud speaker, and WebSocket connections between the server and a
smartphone application. To control lighting in a nightclub, concert

hall, or arena, a digital communication protocol called DMX512 [19]
is often used, and it is also based on this architecture.

While widely adopted for synchronizing a number of devices, the
conventional always-on architecture requires low-latency and low-
jitter connections between the master and slave nodes. Otherwise,
either the latency or the jitter, or both, will result in the slave nodes
being out of synchronization with the music playback. This would
not be an issue when the system is a homogeneous hardware and
network setup— i.e., consisting of the same kind of slave devices and
the same kind of master devices connected through similar network
configurations with low latencies and jitters. In contrast, the Songle
Sync platform aims at supporting a heterogeneous hardware setup
under a variety of networking environments and therefore cannot
adopt the always-on architecture. Within the same Songle Sync
application, devices would have a variety of computing capabilities
and be connected through various network configurations.

4.2 Autonomous Control Architecture
To address the shortcomings of the always-on architecture, we
propose an autonomous control architecture in which every node
behaves autonomously without always-on connections. Instead of
establishing direct connections between the master and slave nodes,
the proposed architecture adds the platform server in the middle of
the communication. Implementation-wise, master and slave nodes
are treated identically by the server except for the master nodes
capable of the playback control.

As explained in the next subsection, both master and slave nodes
synchronize their clocks upon connection to the server and try to
keep their clocks synchronized. And as explained in Section 4.2.2,
when a master node specifies a musical piece to play, all nodes re-
ceive the global event timeline containing musical events and their
timing information. The playback status is managed by the server,
can be controlled by master nodes, and is shared with all nodes.
With the synchronized clocks, the global event timeline, and the
shared playback status, each node knows when to do what. These
communications between the server and nodes happen intermit-
tently. Even in extreme cases, the slave nodes that have completed
the initial synchronization behave appropriately until the end of
the musical piece even if they get disconnected from the server.

4.2.1 Clock Sync: Sharing Time. When amaster or slave node estab-
lishes the connection to the platform server, it stores the timestamp
on the local clock in memory (departure time td). Then the server
responds with the timestamp on the server clock (server time ts).
When the node receives the server response, it stores the timestamp
on the local clock (arrival time ta) and calculates the average of the
departure and arrival time (average time).

Session: Experience-1 (Multimedia Entertainment and Experience) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1700

Conventional always-on architecture Autonomous control architecture (All nodes synchronize their clocks and share the event timeline.)

All slave nodes are always directly connected to
the master node, waiting for event notifications.

ts in the server clock denotes the same timing as
the average of td and ta in the node clock .

Event timings are synchronized regardless of connection
statuses because each node knows when to do what.

tMaster node

tSlave node

tSlave node

tSlave node

t Songle Sync server

tMaster/slave node td ta

ts

td ta

ts t

t

t

Songle Sync server

Master node

Slave node

play join(1) Clock Sync (2) Event Sync

Figure 4

Figure 4: Comparison between the conventional always-on architecture and the proposed autonomous control architecture.

Under an ideal circumstance in which (a) there is no time dif-
ference between the server and node and (b) the outbound and
inbound trip times are the same, the average time should be the
same as the server time. In reality, the difference between the out-
bound and inbound trip times is small enough to be ignored, and
the time difference between the server and node is calculated as
ts −

td+ta
2). To eliminate the effect of network jitters, we conduct

robust estimation by repeating this process for several times (five
times in the current implementation) and taking the median value
as the time difference. This procedure is very similar to the Network
Time Protocol (NTP) [2], and the major difference is that ours uses
the median value as the time difference while the NTP uses the
mean value. We use the median value since we assume relatively
larger jitters in the communication compared to the ordinary use
cases of the NTP.

Additionally, after the initial synchronization process, the node
runs the same process periodically with an interval that can be
specified by the application developer. Previous timestamps are not
cleared but accumulated to calculate the median value, providing a
more stable result. In this way, even when the network connection
is unstable or when there is a local clock drift in the node (which
is often the case for microcontrollers and web browsers on low-
powered smartphones), the local clock can continually catch up
with the global server clock.

4.2.2 Event Sync: Sharing Timeline and Playback Status. When a
master node issues a command to set a musical piece to play, all
connected nodes are notified and retrieve from the server all the
musical elements and their timing information in the musical piece,
including music structure, beat structure (beats and downbeats),
and chords. When a new node connects to the server while the
musical piece is already set and playing ("join" in Figure 4), it
retrieves the same information and starts synchronizing with the
other nodes. With the complete musical event information ready
on each node, the node can prepare the performance of the musical
piece on its own, instead of keeping asking master nodes.

Whenever after the musical piece to play is set on the server
("play" in Figure 4), a master node can issue a command to start
playing it, pause it, or change the playing position. All nodes in-
termittently acquire the playback status by polling requests to the
server, and therefore, the changes in the playback status are gradu-
ally shared among all nodes. In practice, the polling interval can
be specified by the developer but is typically set to several seconds,
and all nodes catch up with the server in a similar time order. The

transferred playback status is very compact, consisting of whether
or not the music is being played and the timestamp when the music
playback is started on the global server clock.

4.3 Scalability Features
As explained above, the proposed architecture requires only in-
termittent communications between the server and nodes. Each
master or slave node can join and leave the session at any time and,
consequently, all the communications do not need to happen at the
same time, while those in the always-on architecture do.

These characteristics already contribute to the scalable and stable
control of the devices with the platform. Furthermore, there are
several other features making it even more scalable.

4.3.1 Configurable Parameters for Synchronizations. Regarding the
intermittent communications, the application developers can con-
figure two parameters for each Songle Sync-based application to
control the communication frequency. The first parameter defines
the interval between the Clock Sync, and the second one defines
the interval between the Event Sync. Depending on the needs of the
application, the developer can experiment and find an appropriate
set of parameters to reduce the network traffic and help increase
the scalability.

When the interval between the Clock Sync is wider, the risk
of out-of-sync caused by local clock drift and network congestion
increases. This would not be an issue when the application can
accept occasional time drifts and the nodes are expected to count
time precisely (which is the case for most devices, except for some
microcontrollers).

When the interval between the Event Sync is wider, the risk
of delayed slave responses to the master’s command increases.
This would not be an issue when the master issues no additional
command after starting the music playback.

4.3.2 Intermittent and Compact Data Transfer. Implementation-
wise, the communications between the server and nodes are always
handled by standard HTTP requests from the nodes to the server.
Once the server responds to a request, it always disconnects the con-
nection to release the socket. If it did not use such short-lived HTTP
connections but keep-alive ones or other always-on protocols such
as WebSocket, each connection would keep a file descriptor opened
in the server operating system, resulting in resource outage when
there are tens of thousands of the nodes connected to the server.
The current implementation also supports a round-robin DNS for

Session: Experience-1 (Multimedia Entertainment and Experience) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1701

Event-driven multimedia framework for easily controlling devices with JavaScript

Example programs and interactive tutorial for improving the learnability of the framework

player.on(”beatEnter”, listener);
player.on(”chorusSectionEnter”, listener);
...

player.on(”play”, listener);

Songle Sync server

Songle Sync
application

Songle Sync stage
Songle Sync
application

Songle Sync stage

Songle Sync
application

Songle Sync stage

Songle Sync
application

Songle Sync stage

Access and secret keys Developer

PC

Songle Sync
development kit

Figure 5

Figure 5: The development kit for Songle Sync applications, each of which is identified with the keys and runs independently.

load-balancing the HTTP requests to the multiple synchronized
Songle Sync server capable of hosting more nodes.

The above-mentioned efforts for intermittent communication
also contribute to reducing the network traffic. Note that the play-
back status response from the server does not contain any time-
varying values such as the current server time. Consequently, when
there is no change in the playback status, the response data always
remains the same, increasing the chance of hitting the cache and
reducing the response traffic. Additionally, provided that the com-
munications are HTTP-based, it is also possible to compress the
response body in the gzip format to further reduce the traffic.

5 SOFTWARE DEVELOPMENT KIT
As a web-based platform, Songle Sync allows developers to create
their own JavaScript-based applications (Figure 5). This section
briefly introduces the programming experience on the platform.

5.1 Stages with Access and Secret Keys
There are potentially many developers who create hundreds of
Songle Sync applications running simultaneously on the platform.
Each application can be launched by many users on hundreds of a
variety of synchronized devices and needs to be independent from
other applications. The platform therefore introduces the notion
of a stage to which each master and slave node is connected. Each
stage on the server has its own status information consisting of the
musical piece URL and playback status (including the timestamp
on the server when the musical piece started).

To connect to a stage as a master or slave node, a JavaScript
program needs a short text token named the access key. The mas-
ter node additionally needs a secret key, with which the node
issues a command to control the playback status. These keys are
generated by encoding a universally unique identifier (UUID) when
the developer creates a stage on the Songle Sync website and are
initially visible only to the developer.

The access key is always required to join the session and is not
considered secret information. The developer can easily create a
URL that contains the access key as a query string or a QR code
representing the URL, both of which are useful for advertising
the web application. In contrast, the secret key is used to control
the playback status and should usually be shared only among the
developers, performers, or organizers of multimedia performances.
If somebody else gains the secret key, the status of the application

can be controlled in an unintended way, which could be dangerous
when using physical computing devices.

5.2 Event-driven Multimedia Framework
To enable easy development of music-driven applications, the
platform provides an event-driven multimedia framework for
JavaScript. It is designed from the following perspectives.

First, the framework should prevent developers from writing
boilerplate code to manage timings to react to interesting musical
events. For instance, the developer might want to make objects
bounce to the beat or to produce a more prominent visual effect
when the chorus section starts playing. Developing music-driven
applications requires coding a lot of such musical event-driven
behaviours, and the event-driven application programming inter-
face (API) facilitates this coding. While the idea was previously
explored in Songle Widget [7], then the focus was on controlling
a single browser-based application. In contrast, ours focuses on
controlling hundreds of devices and is designed with portability
and scalability in mind. While it can be loaded via a <script> tag
in a browser-based application as in Songle Widget, it can also
be loaded by a require function in a Node.js-based application
that runs on microcontrollers and tiny computers. Furthermore, to
reduce the network traffic, our API takes a modular approach that
allows loading only some of the musical elements, not all of them
as in the previous work.

Second, the framework should eliminate the need to write low-
level code to handle connections between the server and master
and slave nodes. As the event-driven API was previously proved
to be effective, we aimed at keeping its simplicity while allowing
device control at scale. Note that the Songle Sync API can be used
to control a single device without synchronizing it with others.
Meanwhile, the same application starts running on hundreds of the
devices when a single line that passes an access key and optionally
a secret key to the API is inserted.

5.3 Example Programs and Interactive Tutorial
To demonstrate the use cases of the multimedia framework and
explain how the applications can be built, example programs for a
variety of environments are developed and open-sourced in GitHub,
including those for web browsers on a computer and smartphone
and those for microcontrollers and tiny computers. Additionally, a
web-based five-step tutorial is provided. This tutorial is built on top
of insights gained from prior study on online coding tutorials [13].

Session: Experience-1 (Multimedia Entertainment and Experience) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1702

With its clear structure consisting of five steps, it accepts learners
with a wide range of knowledge on programming and involves
their active engagement.

The first two steps are for both developers and end-users. The
first step, "Experience Songle Sync," allows the user to choose an
animation style from the list and to enjoy computer graphics anima-
tion synchronized with the music. When the same page is opened
with another browser window or a smartphone, all the animations
are synchronized. A master node repeating playback of a single
musical piece runs on the tutorial server, allowing the user to ex-
perience Songle Sync at any time. The second step, "Enjoy Songle
Sync with a Musical Piece of Choice," was described in Section 3.1.

The rest of the steps of the tutorial are intended for developers
and each page contains in-page code editors with runnable example
programs. By following the instructions and optionally editing
programs, such as by changing musical piece URLs and access keys,
the developers can learn and experiment with the API without
leaving the tutorial. The tutorial is also integrated with GitHub and
capable of publishing the edited source code as GitHub Gist.

6 EVALUATION
We referred to the literature [15] to design the following three eval-
uation studies: (1) performance evaluation to compare our frame-
work against the baseline method of the always-on architecture,
(2) deployment in the wild to test the practical and real usage and
examine the "ceiling" of the framework, and (3) use in a hackathon
event to test the "threshold" of the framework.

6.1 Performance Evaluations
6.1.1 Realistic Performance Measurement. To evaluate the perfor-
mance limitation of our implementation, we measured network
traffic, latencies, and jitters using existing musical pieces and off-
the-shelf smartphones.

First, wemeasured network traffic of aweb browser-based Songle
Sync application that renders computer graphics animation and is
used in the tutorial website. It initially loaded static files required
to run the application (∼500 kB), ran Clock Sync, and received the
musical elements and their timing information (∼30 kB). Later, it
periodically ran Clock Sync and Event Sync (∼5 kB/minute). If the
same content were pre-rendered and provided as video streaming,
there would be no initial load but the application would stably
consume at least 1 Mbps (7.5 MB/minute). The total traffic is far
more than ours.

Second, we used a high-speed camera to measure jitters — time
differences between the slave nodes in a Wi-Fi-connected iPad
mini 4 and six 4G-LTE-connected smartphones (three iPhone 7
Plus, iPhone 7, Sony Xperia XZ running Android, and NuAns NEO
running Windows 10 Mobile). The observed jitters were less than
100 ms and none of the smartphones experienced significant latency
or jitter that could affect the multimedia performance, regardless
of connection types (Wi-Fi or LTE). This encouraging result will be
verified in the wild setting (Section 6.2.)

6.1.2 Comparison with Always-on Architecture. We emulated an
unstable network configuration with the Linux tc command con-
trolling the netem kernel module and tested the performance of
our architecture and the always-on architecture.

-15 [ms] (latency)
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2

-20 [ms] (latency)

0

20

40

60

80

100

120

140

160

180

Playback �me

Playback �me

Conven�onal always-on architecture
(sca�ered between 40 ~ 180 [ms] latency)

Autonomous control architecture
(contained within -20 ~ 0 [ms] latency) Zoom-in view of observed latencies in

autonomous control architecture
(30 nodes in a 60 [s] window)

Figure 6: Results of the performance evaluations.

For our architecture, we created Docker containers of the Songle
Sync server, a master node, and a slave node. For the always-on
architecture, we created two containers of a simple WebSocket
server (i.e., a master node) and client (i.e., a slave node). In both
cases, connections between the container instances go through
the emulated network. We spawned 30 slave nodes and played a
musical piece for a minute to measure latencies and jitters.

As a result, we confirmed that our architecture outperforms the
always-on architecture (Figure 6). With 100 ± 30 ms of emulated
network latency, our architecture experienced -6.4 ms of average
latency and each node did not experience noticeable time drifts.
Note that ours allows negative latencies — nodes could trigger
events slightly earlier than planned. In contrast, the always-on
architecture experienced 116 ms of average latency and each node
had a varied latency along time affected by the network jitter.

6.2 Deployments in the Wild
To confirm that the Songle Sync platform functions properly with
hundreds of a variety of connected devices and in a challenging
networking environment, we developed and ran the Songle Sync
applications for the following two stages.

First, we conducted a demonstration experiment with the de-
vices (Figure 1, Section 3). All the devices were connected to a
single stage and behaved in synchronization with the musical piece
playing on the speakers in the demonstration room. As a result,
the server never became overloaded. Analysis of the collected log
showed that over 110 devices were stably connected to the platform
and kept synchronized with musical pieces.

Second, we developed a web-based Songle Sync application that
dynamically renders the computer graphics animation in synchro-
nization with a 40-minute music playback. This was used in a
musical performance (Figure 7), where the audiences launch the
application with the web browsers on their smartphones and enjoy
the animation, which was shown on both the smartphone screens
and the large screen in the front. Prior to the performance, we
distributed 900 postcards with the printed QR code that navigates
to the Songle Sync application website. As a result, more than 600
users used the application, at least 275 using it at the same time
without any troubles, and such users included not only the origi-
nal audience of the performance but also the visitors around the
performance area. Many users launched the application before the
performance started, which showed a standby screen and loaded
the Songle Sync library in the background. This allowed to run the
Clock Sync for multiple times before the actual performance.

Session: Experience-1 (Multimedia Entertainment and Experience) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1703

Figure 7

Figure 7: Songle Sync in the live multimedia performance.

6.3 Development Kit Usability
To confirm that our platform is usable by third-party developers, we
conducted a two-day hackathon event with twenty-four university
students. They formed six groups, each of which consisted of four
students with diverse grades and diverse expertise in programming.
On the first day, we spent an hour explaining the overview of the
Songle Sync platform. Then for 3 hours we ran an idea-thon in
which student groups discussed and proposed their ideas of the
Songle Sync applications. For the rest 8 hours, the students proto-
typed their applications and prepared their presentations. During
the implementation, we were open to any technical questions in-
cluding JavaScript basics and kit usage.

As a result, all groups used example programs and/or tutorials
to learn the platform usage, which was confirmed by monitoring
the GitHub repository forks and Gist publications. Every student
group succeeded in prototyping a working Songle Sync application.
For instance, one group created a music game application for three
or more players wearing headphones. All of them but one listen
to the same musical piece and the goal of the outlier is not to be
discovered by the others while the others try discovering the outlier.
Implementation-wise, all smartphones are synchronized through
Songle Sync and the outlier’s musical piece is muted and replaced
by the playback of a different piece.

7 DISCUSSION
7.1 Internet of Musical Things (IoMT)
Our goal of providing Songle Sync as an open platform is to allow
many developers to create its applications and to investigate the
potential of augmenting various sceneries with music and music-
driven multimedia performances. Throughout deployments in the
wild and a hackathon, we have gained initial feedback about our
progress toward that goal. We have several use cases of Songle Sync
in mind, the first of which was already experimented with.

First, as shown in Section 6.2, live performances with music can
be augmented with music-driven devices. While we initially tested
the use of Songle Sync during the performance, we also deployed
a Songle Sync application before another performance, while the
audiences of hundreds were waiting for the main performance in
the concert hall. They were not bored but could use their smart-
phones to feel unity with others in the audience even before the
performance. Second, at shopping malls, restaurants, and wherever
else background music is used, developers can deploy Songle Sync-
based applications to provide a more unified experience to visitors.
Large screens, lightings, customer service robots, and any other

computing devices can be driven by the background music. Third, a
whole city can be connected to Songle Sync where streetlights are
synchronized with music, buildings are lightened up with synchro-
nized projection mappings, and visitors can join the synchronized
session through QR codes shown at various places.

We foresee a future in which, with the help of application de-
velopers, objects of various scale — from a tiny LED to a whole
city — can be connected to the Internet and synchronized with
music. We call such networked objects the "Internet of Musical
Things (IoMT)" and believe that Songle Sync can leverage fruitful
relationships between Internet of Things and musical pieces.

7.2 Lessons Learned
As explained in Section 6.1, we confirmed that the proposed
autonomous control architecture outperforms the conventional
always-on architecture. It is feasible to use the proposed Songle
Sync platform for building music-driven applications at the scale
needed to realize the Internet of Musical Things (IoMT).

In the hackathon, the end-to-end support of Songle Sync for
application development was appreciated. The tutorial allows pro-
totyping without leaving web browsers, and example programs
show the platform’s actual use. The application can initially run
on a laptop with a single musical piece and then be easily scaled
up to run on hundreds of smartphones and other devices with a
musical piece of choice. There is no need to prepare low-level code
to synchronize devices, a server program to connect the devices,
and annotations of musical pieces. Such completeness as a platform
is sometimes underestimated in research but is critical in the wild.

In the live performances, we noticed that the users far from the
main screen and out of the performance area tended to use the ap-
plication to complement the synchronized visual experience. Some
of the users sometimes seemed to be bored because there was no
interactivity. This smartphone application would be more appealing
if tapping the screens affected the animations. Such bi-directional
communication has seldom been implemented in conventional ap-
plications of the always-on architecture, since communications are
usually uni-directional (from master nodes to slave nodes). Songle
Sync, however, is technically capable of bi-directional communica-
tion. Its future version should allow aggregating feedback from the
slave nodes and processing it on the master nodes for interactive
multimedia performances.

8 CONCLUSION
This paper proposed a web-based platform for controlling a lot of
various devices in synchronization with music and evaluated its
performance. We envision the "Internet of Musical Things (IoMT)"
era in which the developer can easily make a lot of surrounding
devices provide synchronized multimedia performances and the
user can feel more sense of music and unity with the others. The
platform is already available on the web with the development kit.

ACKNOWLEDGMENTS
We thank Keisuke Ishida, Rie Tanaka, Shuhei Tsuchida, and Hi-
romi Nakamura for their support in the demonstration experiment.
This work was supported in part by JST ACCEL Grant Number
JPMJAC1602, Japan.

Session: Experience-1 (Multimedia Entertainment and Experience) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1704

REFERENCES
[1] Jonathan Foote, Matthew Cooper, and Andreas Girgensohn. 2002. Creating

Music Videos Using Automatic Media Analysis. In Proceedings of the Tenth ACM
International Conference on Multimedia (Multimedia ’02). ACM, New York, NY,
USA, 553–560. https://doi.org/10.1145/641007.641119

[2] Network Time Foundation. 2014. ntp.org: Home of the Network Time Protocol.
http://www.ntp.org.

[3] Shintaro Funasawa, Hiromi Ishizaki, Keiichiro Hoashi, Yasuhiro Takishima, and
Jiro Katto. 2010. AutomatedMusic SlideshowGeneration UsingWeb Images Based
on Lyrics. In Proceedings of the 11th International Society of Music Information
Retrieval Conference (ISMIR ’10). 63–68.

[4] Gijs Geleijnse, Dragan Sekulovski, Jan Korst, Steffen Pauws, BramKater, and Fabio
Vignoli. 2008. Enriching Music with Synchronized Lyrics, Images and Colored
Lights. In Proceedings of the 1st International Conference on Ambient Media and
Systems (Ambi-Sys ’08). ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, Article
1, 8 pages. http://dl.acm.org/citation.cfm?id=1363163.1363164

[5] Masataka Goto and Yoichi Muraoka. 1994. A Beat Tracking System for Acoustic
Signals of Music. In Proceedings of the Second ACM International Conference
on Multimedia (Multimedia ’94). ACM, New York, NY, USA, 365–372. https:
//doi.org/10.1145/192593.192700

[6] Masataka Goto, Kazuyoshi Yoshii, Hiromasa Fujihara, Matthias Mauch, and
Tomoyasu Nakano. 2011. Songle: A Web Service for Active Music Listening
Improved by User Contributions.. In Proceedings of the 12th International Society
of Music Information Retrieval Conference (ISMIR ’11). 311–316.

[7] Masataka Goto, Kazuyoshi Yoshii, and Tomoyasu Nakano. 2015. Songle Widget:
Making Animation and Physical Devices Synchronized with Music Videos on
the Web. In Proceedings of the 2015 IEEE International Symposium on Multimedia
(ISM ’15). IEEE, 85–88.

[8] Gracenote. 2018. Gracenote Developer Music + Auto APIs. https://developer.gr
acenote.com.

[9] Nicolas Hervé, Pierre Letessier, Mathieu Derval, and Hakim Nabi. 2015. Amalia.Js:
An Open-Source Metadata Driven HTML5 Multimedia Player. In Proceedings of
the 23rd ACM International Conference on Multimedia (MM ’15). ACM, New York,
NY, USA, 709–712. https://doi.org/10.1145/2733373.2807406

[10] Xian-Sheng Hua, Lie Lu, and Hong-Jiang Zhang. 2004. Automatic Music Video
Generation Based on Temporal Pattern Analysis. In Proceedings of the 12th Annual
ACM International Conference on Multimedia (Multimedia ’04). ACM, New York,
NY, USA, 472–475. https://doi.org/10.1145/1027527.1027641

[11] Volker Jung, Stefan Pham, and Stefan Kaiser. 2014. A Web-based Media Synchro-
nization Framework for MPEG-DASH. In Proceedings of the 2014 IEEE Interna-
tional Conference on Multimedia and Expo Workshops (ICMEW ’14). IEEE, 1–2.
https://doi.org/10.1109/ICMEW.2014.6890620

[12] Jun Kato, Tomoyasu Nakano, and Masataka Goto. 2015. TextAlive: Integrated
Design Environment for Kinetic Typography. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (CHI ’15). ACM, New
York, NY, USA, 3403–3412. https://doi.org/10.1145/2702123.2702140

[13] Ada S. Kim and Andrew J. Ko. 2017. A Pedagogical Analysis of Online Cod-
ing Tutorials. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17). ACM, New York, NY, USA, 321–326.
https://doi.org/10.1145/3017680.3017728

[14] Mozilla Labs. 2018. TogetherJS. https://togetherjs.com.
[15] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,

and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 36, 17 pages. https://doi.org/10.
1145/3173574.3173610

[16] Mario Montagud, Pablo Cesar, Fernando Boronat, and Jack Jansen (Eds.). 2018.
Mediasync - HandBook on Multimedia synchronization. Springer. https://doi.org/
10.1007/978-3-319-65840-7

[17] Mu Mu, Lyndon Fawcett, Jamie Bird, Jamie Jellicoe, Steven Simpson, Hans
Stokking, and Nicholas Race. 2017. Closing the Gap: Human Factors in Cross-
Device Media Synchronization. IEEE Journal of Selected Topics in Signal Processing
11, 1 (Feb 2017), 180–195. https://doi.org/10.1109/JSTSP.2016.2638358

[18] Offline. 2017. Offline - formerly Wham City Lights. http://offli.ne.
[19] ESTA Technical Standards Program. 2009. New Edition of DMX512-A Is Now

Available. http://tsp.esta.org/tsp/news/newsdetails.php?newsID=291.
[20] Disneyland Resort. 2018. Made with Magic - Mickey Ears and More. https:

//disneyland.disney.go.com/entertainment/made-with-magic/.
[21] Danielle Sauer and Yee-Hong Yang. 2009. Music-driven Character Animation.

ACM Transaction on Multimedia Computing, Communications, and Applications 5,
4, Article 27 (Nov. 2009), 16 pages. https://doi.org/10.1145/1596990.1596991

[22] David A. Shamma, Bryan Pardo, and Kristian J. Hammond. 2005. MusicStory:
A Personalized Music Video Creator. In Proceedings of the 13th Annual ACM
International Conference on Multimedia (Multimedia ’05). ACM, New York, NY,
USA, 563–566. https://doi.org/10.1145/1101149.1101278

[23] Spotify. 2018. Spotfiy Echo Nest API – Developer. http://static.echonest.com/en
spex/.

[24] Spotify. 2018. Spotify – Developer. https://developer.spotify.com.
[25] WildVreemd. 2016. The Smartphone Orchestra. https://smartphoneorchestra.co

m.
[26] Xylobands. 2012. Xylobands LED Wearable Wristbands. http://xylobands.com/

xylobands.
[27] Adham Zeidan, Armin Lehmann, and Ulrich Trick. 2014. WebRTC Enabled

Multimedia Conferencing and Collaboration Solution. In Proceedings of the World
Telecommunications Congress 2014 (WTC ’14). 1–6.

Session: Experience-1 (Multimedia Entertainment and Experience) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1705

https://doi.org/10.1145/641007.641119
http://www.ntp.org
http://dl.acm.org/citation.cfm?id=1363163.1363164
https://doi.org/10.1145/192593.192700
https://doi.org/10.1145/192593.192700
https://developer.gracenote.com
https://developer.gracenote.com
https://doi.org/10.1145/2733373.2807406
https://doi.org/10.1145/1027527.1027641
https://doi.org/10.1109/ICMEW.2014.6890620
https://doi.org/10.1145/2702123.2702140
https://doi.org/10.1145/3017680.3017728
https://togetherjs.com
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1007/978-3-319-65840-7
https://doi.org/10.1007/978-3-319-65840-7
https://doi.org/10.1109/JSTSP.2016.2638358
http://offli.ne
http://tsp.esta.org/tsp/news/newsdetails.php?newsID=291
https://disneyland.disney.go.com/entertainment/made-with-magic/
https://disneyland.disney.go.com/entertainment/made-with-magic/
https://doi.org/10.1145/1596990.1596991
https://doi.org/10.1145/1101149.1101278
http://static.echonest.com/enspex/
http://static.echonest.com/enspex/
https://developer.spotify.com
https://smartphoneorchestra.com
https://smartphoneorchestra.com
http://xylobands.com/xylobands
http://xylobands.com/xylobands

	Abstract
	1 Introduction
	2 Related Work
	2.1 Music-Driven Applications
	2.2 Music-Driven Development Frameworks

	3 Goal: Music-Driven Multimedia Performance at Scale
	3.1 Instant BYOD Experience for Smartphones
	3.2 Various Devices Synchronized with Music
	3.3 Technical Requirements

	4 Songle Sync
	4.1 Issues with Always-on Connections
	4.2 Autonomous Control Architecture
	4.3 Scalability Features

	5 Software Development Kit
	5.1 Stages with Access and Secret Keys
	5.2 Event-driven Multimedia Framework
	5.3 Example Programs and Interactive Tutorial

	6 Evaluation
	6.1 Performance Evaluations
	6.2 Deployments in the Wild
	6.3 Development Kit Usability

	7 Discussion
	7.1 Internet of Musical Things (IoMT)
	7.2 Lessons Learned

	8 Conclusion
	References

