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Abstract

A music retrieval system that accepts hummed tunes as
queries is described in this paper. This system uses simi-
larity retrieval because a hummed tune may contain errors.
The retrieval result is a list of song names ranked according
to the closeness of the match. Our ultimate goal is that the
correct song should be first on the list. This means that
eventually our system’s similarity retrieval should allow for
only one correct answer.

The most significant improvement our system has over
general query-by-humming systems is that all processing of
musical information is done based on beats instead of notes.
This type of query processing is robust against queries gen-
erated from erroneous input. In addition, acoustic informa-
tion is transcribed and converted into relative intervals and
is used for making feature vectors. This increases the reso-
lution of the retrieval system compared with other general
systems, which use only pitch direction information.

The database currently holds over 10,000 songs, and the
retrieval time is at most one second. This level of perfor-
mance is mainly achieved through the use of indices for re-
trieval. In this paper, we also report on the results of music
analyses of the songs in the database. Based on these results,
new technologies for improving retrieval accuracy, such as
partial feature vectors and or’ed retrieval among multiple
search keys, are proposed. The effectiveness of these tech-
nologies is evaluated quantitatively, and it is found that the
retrieval accuracy increases by more than 20% compared
with the previous system [9]. Practical user interfaces for
the system are also described.

1 Introduction

The use of multimedia data has spread throughout the world
with the availability of high-performance, low-cost personal
computers, and this has led to a need for accurate, efficient
retrieval methods for large multimedia databases. General
retrieval systems accept only key words as queries. However,
many users experience difficulty in formulating a query in
words when they want to retrieve something from a multime-
dia database. Content-based retrieval is seen as a solution
to this problem [4, 7, 10, 15, 21].

Content-based retrieval accepts data-type queries, e.g.,
drawings for an image database and sung tunes for a music
database. As content-based retrieval enables users to repre-
sent what they want directly, it makes the retrieval system
easier to use.

The authors have developed a data-type retrieval system
called EzSight [17, 20] for an image database. We are cur-
rently studying a content-based music retrieval system for a
music database, which we call SoundCompass [8].

In a content-based retrieval system, it is possible for the
users to make a query key from erroneous input. This makes
it difficult to obtain an accurate result through a matching
with the key. Thus, similarity retrieval is useful because re-
trieval results contain multiple alternatives ranked accord-
ing to the closeness of the match. Users can select what
they want from the list even though they cannot make an
accurate query.

The authors have developed the HyperMatch engine [2],
a high-speed similarity retrieval engine based on distance
measurement employing multiple high-dimensional feature
vectors. Each vector retains feature information, and simi-
larity is represented as a weighted combination of the search
results from individual feature vector spaces.

This paper describes our music retrieval system that ac-
cepts a hummed tune as a query. Our ultimate goal for
this system is to have it retrieve the correct song for the
hummed tune as the first item in the retrieved results list.
This means that our system’s similarity retrieval eventually
should allow for only one correct answer.

When matching is done between songs in the database
and the hummed tunes, we have to consider the following
problems:

e We do not know which segment of the song will be
hummed a priori.

e The song may be sung out of tune.

e The tempo may be wrong.

e Users may hum the wrong note, because their memory
of the song is incorrect.

e The transcription may contain a mistake.

We have already described techniques for handling these
problems in a query-by-humming system [9, 13]. The pre-
vious system was demonstrated at ACM Multimedia "99.
Since then, the database has been enlarged, for eventual
practical use of the retrieval system. As a result, the prob-
lems became more complex, and the technologies for im-
proving performance and accuracy of the retrieval system
became more challenging. This paper describes in detail the
technologies for improving the performance and accuracy of
the query-by-humming system for a large music database.
We first report on the results of music analyses on all the



songs in the database. Then, these results are incorporated
in new technologies for database construction and hummed
tune processing. The effectiveness of these technologies is
evaluated quantitatively. Practical user interfaces for the
system are also described.

2 Related Work

We’ll begin by reviewing some of the research on content-
based retrieval for audio databases [4]. With respect to “for
what it searches”, we can find research on identifying a spe-
cific rhythm or sound of an instrument [6, 12], and research
on identifying a song from a melody segment given as a query
[7, 9, 11]. With respect to “by what means it searches”, we
can find research on search by sound file in ”.au” format [6],
search by segment of a MIDI file [18], search by a string rep-
resenting pitch direction [1], and search by hummed tune
[7, 9, 11, 14]. Content-based retrieval using similarity re-
quires that one clarify “for what” and “by what means” it
searches.

String matching is the most often used method of melody
and song retrieval from a music database [1, 7, 11, 14, 18].
This is because music can be represented by a sequence of
notes, and this sequence can be converted into a string of let-
ters. Pitch direction is often used [1, 7, 11, 14] instead of the
pitch itself to construct the string. There are two reasons for
this choice: one is that it ignores the key difference between
a music in a database and an inputted tune, and the other is
that for a hummed tune as input, it realizes robust retrieval
even though the hummed tune may have variations in tone
and tempo. However, for a large database, retrievals using
only this information can not provide a high enough reso-
lution. Thus, optional retrievals using rhythm information
and accurate intervals have been provided as an advanced
search feature in [11], and a more detailed specification de-
scribing pitch direction according to pitch differences has
been proposed in [1].

Errors in input data also have to be considered in a
searching method [7]. Errors in a hummed tune may include
not only variations in tone and tempo, but also fragmenta-
tions, insertions and deletions of notes [11]. Dynamic Pro-
gramming (DP) can be applied to string matching, which
allows errors in inputs. Similarity is calculated by edit dis-
tance in DP matching. In edit distance, costs for insertions,
deletions, and the substitutions of specific pairs of characters
are defined. The smaller the cost, the more the two strings
are regarded as being similar to each other. DP matching
usually has a high retrieval accuracy [11]. However, its re-
trieval time depends on the size of the database because the
search is done by brute force [7]. Thus, a state matching
algorithm [19] has been used in [11] to improve the speed of
retrieval. However, the authors of [11] also reported that the
similarity cannot be sufficiently specified, after inclusion of
the state matching. The authors in [18] investigate how to
best represent the music data and how to calculate the sim-
ilarity between two pieces of music by examining different
combinations of measures (edit distance, n-gram measures,
and so on) and representations (contour, exact interval, and
SO on).

Besides string matching, retrievals that use high-dimensional

feature vectors in which similarity is represented by the dis-
tance between vectors have been proposed [6, 9]. Euclidean
distance or cosine distance is used as the measure. In this
case, since indices are used for retrieval, the larger the size
of the database, the higher the retrieval performance.

To transcribe the inputted tune as accurately as possi-
ble, the user is asked to utter a specific syllable rather than
actually hum. Thus, “humming” here does not mean the or-
dinary humming but instead “singing with only the syllable

ta or da” [9, 11].

Many music databases for melody/song retrieval hold
music data in MIDI format. The number of songs in the
database usually ranges from a few hundred [7] to over
10,000 [18]. Notice that we cannot know the exact size of
the database only from the number of songs it contains be-
cause its size actually depends on the length of each song
and the number of the notes in each song.

3 Music Analysis

In this section, the results of an analysis of the over 10,000
songs in our database are presented. These results gave us
many important clues on MIDI data processing to make a
database and process hummed tunes.

3.1 MIDI Data Information

We currently have 10,069 songs stored in MIDI format. The
division of all the songs is 480. Thus, the length of a quarter-
note is 480 tick times. An interval is represented by a whole
number between 0 and 127. An interval of 1 tone in MIDI
is the same as a half step in the normal musical scale.

3.2 Note Distribution

The 10,069 songs include many musical genres. Some are
short, simple songs such as nursery songs and folk songs,
and some are long, complex pop and rock songs. The total
number of notes is 3,676,773, and the mean number of notes
per song is 365.16, which is about seven times greater than
that of the average folk song that can be downloaded via
the Internet. Figure 1 shows the distribution of the total
number of notes in each song.
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Figure 1: Distribution of the total number of notes per song.

We also investigated the distribution of the length of
notes in the songs. All songs specify the length of a quarter-
note as 480 in tick time, so Figure 2 shows that eighth-notes
are overwhelmingly dominant.  Note that the slower the
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Figure 2: Distribution of the note length of all songs.

tempo is, the greater the number of notes there are whose
length is 120, and the faster the tempo, the greater the num-
ber of notes whose length is 480. This result implies that
there is not a wide variation in the length of the notes that
human beings can sing.



3.3 Repetition Structure of Music

Music is generally self-similar [5], and many songs have a
repetitive structure consisting of two or three similar verses.
Figure 3 shows the ratio of songs that contain identical parts
within themselves, with the song chopped up into overlap-
ping parts every four beats with a length of 16 beats. The
figure shows that about 50% or 60% of the parts of the songs
are exactly the same. This implies that many songs may

2000

Number of songs
=
o
o
o

0 10 20 30 40 50 60 70 80 90 (%)
Repetition Ratio

Figure 3: Ratio of songs that have a % identical portion.

have a second verse. Most of the songs that have a high ra-
tio of repetition ( i.e., more than 80%) are highly rhythmical
songs, such as dance music, and very easily learned songs,
such as cheering songs for sports events.

3.4 Tempo Analysis

When people sing, they themselves decide what tempo to
maintain, and it may well happen that the tempo they
choose is not the same as that of the song in the database.

Figure 4 shows the distribution of the tempo of all the
songs. We found that the faster a song is, the more people
will use a tempo that is only half the correct one. This point
is also relevant to the discussion in Section 3.2.
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Figure 4: Distribution of tempo of all songs.

Why is that people sing a faster song at a tempo that
is half the correct one? Let us consider two songs, A and
B (Figure 5 — 6). The tempo of song A is 180 and that
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Figure 5: Segment of song A. The tempo is 180.
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Figure 6: Segment of song B. The tempo is 90.

of song B is 90. These songs may seem to be very different
from each other, but they are performed in the same way
with respect to the note length. This is because an eighth-
note in tempo 90 is performed with the same length as that
of a quarter-note in tempo 180.

3.5 Interval Distribution

Generally, there is not a wide range of difference in the pitch
between successive notes in many songs. Figure 7 shows the
distribution of the pitch difference between successive notes.
In MIDI data, a difference of a half step is represented with
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Figure 7: Distribution of the pitch difference between successive
notes.

the numeral 1, so +12 represents a tone an octave higher,
and -12 represents a tone an octave lower.

As shown in Figure 7, the difference in successive notes is
concentrated in 0, -2, and +2. This means that most of the
notes are either the same or within one step of each other.
Another interesting point is that the difference for six half
steps is much less than that for 5 or 7. This interval is called
“tritone” and is the most dissonant interval.

4 Music Retrieval System

This section describes how we generated a query-by-humming
system based on the analysis in Section 3.

4.1 Database Construction

We chose MIDI music data for the database elements. A
lot of MIDI music data, including the latest pop hits, can
be easily obtained in Japan because of the popularity of
karaoke. MIDI music data can be regarded as musical indi-
cators for each channel. Most karaoke recordings store the
melody data on one channel. This allows the melody to be
easily recognized.

To construct a music database, the melody data have
to be extracted first. Currently, only melodies are used
for matching because most people remember a song by its
melody.

Then, the song is analyzed according to its tempo. As
described in Section 3.4, for faster songs users tend to choose
a tempo that is half the correct one. Thus, for fast tempos,
two copies of the song data are made: one at the correct
tempo and another at half that tempo. As a result, users
can retrieve the same song by humming at either tempo.

Next, all the chords are deleted. A chord here means
“notes that partially overlap each other in time”. Chords
that are found in accompaniments are not included because
the melody data are extracted by the process described
above. Most of the chords are made from a succession of
notes that partially overlap (overlaps are included as MIDI
performance effects by the manufacturer). However, most
people cannot sing two tones at the same time when they
hum. Thus, chord deletion is done to enable the melody data
information to be coordinated with that from the hummed
tunes. The note in a chord that occurred earliest is deleted.
For example, if note B begins to sound while note A is sound-
ing, the note A part of the chord is deleted (see Figure 8).
If two notes start to sound simultaneously, the higher note



(— selected
note A sounds note B sounds
o
deleted (— chord

Figure 8: Chord deletion.

is kept.

In addition, double-pitch errors are corrected. This type
of error exists in the transcriptions of the hummed tunes.
However, we require that both the hummed tunes and melody
data be processed in a similar fashion. So this correction
step is performed on both data types. This correction method
is described in Section 4.2.2.

The melody data is then chopped up into melody pieces
of a constant length by the sliding window method[9]. The
pieces are defined as subdata. Each subdata is given re-
dundancy with respect to its predecessor and successor by
letting the length of the slide be shorter than the length of
the window. Chopping up the melody data into subdata of
exactly the same length is necessary for correct similarity
calculation, while chopping up the melody data into over-
lapping subdata allows a user to select whichever part of a
song he or she wishes to hum.

Next, feature information is extracted from each sub-
datum. Multiple features are extracted and converted into
high-dimensional feature vectors. The features are described
in detail in Section 5.

Then, subdata which make the same feature vectors are
deleted (duplication deletion). To put it concretely, subdata
which make the same vectors for all features are detected for
each song, and only one subdatum among them is kept for
the database.

Finally, the feature vectors are loaded to the system’s
memory. The vectors are individually indexed according to
feature and entered in the database’s server. Indices are
made based on an improved version of VAMSplit R-tree [2],
which provides faster retrieval.

4.2 Hummed Tune Processing

This section describes the method of generating the query
key from the hummed tune. The process is similar to the
database construction process. However, before making a
query, some corrections have to be made to the information
obtained from the hummed tune because these tunes may
contain various errors.

4.2.1 How to Hum?

The hummed tune is recorded through a microphone and
is converted into MIDI format by commercial composition
software [16]. The user is required to clearly hum the song
notes using only the syllable “ta” . This is done so that the
hummed tune can be transcribed as accurately as possible.
Note that tunes hummed with the syllables “da” and “la”
produce transcription errors.

Moreover, users are required to hum following the beats
of a metronome. This is done to enable people to hum
in constant tempo; casual singers usually have difficulty in
keeping a constant tempo without any guidance. Moreover,
we have to know the tempo information that the singer fol-
lowed because we use beat-based processing [13]. Of course,
the user may adjust the metronome to the desired tempo.

4.2.2 Maodifications and Making the Search Key

Noise is deleted from the hummed tune after the tune has
been converted into MIDI format. The noise deletion method
is described in detail in Section 8.1.

Double-pitch errors are then corrected. In a double-pitch
error, a note is transcribed at an octave lower in pitch than
the correct one. Errors of this type arise in the pitch detec-
tion part of the transcription software [16]. The fact that
sound waves of a relatively long wave length are weighted in
processing to establish priority when the pitch is extracted
by the auto-correlation function may cause these errors [3].
The method of correcting double-pitch errors is as follows:
if the difference in pitch between a note and its successor
falls within a certain range, raise that note one octave.

Next, the hummed tune is chopped up into hummed
pieces of the same window size and sliding length as that
of the subdata. During the chopping, a waver correction is
also performed. The waver correction compensates for the
subtle variation in tempo of a hummed tune. This correc-
tion adjusts the chop point to be at the start of the note
that is nearest the chop point.

Finally, the same kinds of features as those extracted
from subdata are extracted from each hummed piece. These
are also converted to feature vectors and used for queries.

4.3 Similarity Measurement, Similarity Retrieval

The similarity retrieval finds vectors in each feature’s vector
space that are close to the vectors generated by the hummed
tune. Dissimilarity is calculated for each subdatum by using
the weighted linear summation of the distance between the
vectors. Euclidean distance is used for the measurement.
The shorter the distance to the subdata is, the higher the
ranking of the retrieval results. The final retrieval result is a
weighted combination of the search results from individual
feature vector spaces and is presented as a ranked list of
songs.

Figure 9 presents an image of the content of this section.

5 Feature Vectors

This section explains how feature vectors are generated from
each subdatum and each hummed piece. The parameters
used for the generation of the vectors are based on the results
in Section 3. Section 7 describes these parameters in detail.
The feature vectors are chosen so that a correct answer could
be obtained from as little feature information as possible.

5.1 Tone Transition Feature Vector

People can usually identify a song they know by hearing
a only part of it, even if the hummed tune is somewhat
out of tempo or tune. They also tend to think that time-
wise transitions in the pitch and duration of tones are the
most important feature of music. Thus, it is useful to define
a feature vector that can represent a timewise transition,
hereafter called a tone transition feature vector [9).

A tone transition feature vector is a sequence of tones
in which each tone sounds within successive constant beats
(resolution beat “r”). This is why we describe our query-by-
humming system as being beat-based and not note-based.
The value of each dimension of a feature vector is a typical
tone in a succession of resolution beats. So, problems such
as note fragmentation and note insertion [11] have no affect
on matching. A tone is considered to be representative, if
it is the longest tone in the resolution beat. Thus, a short
note that is incorrectly transcribed (due to variation in tone)
does not affect the generation of the feature vector.
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Figure 10: Image of making a tone transition feature vector.

Figure 10 shows how to make a tone transition feature
vector from a tune with the resolution of an eighth-note.
F4, F4, and G4 are MIDI codes, and the numbers to their
right are the MIDI note number. Thus, an eight-dimensional
feature vector, (64, 64, 65, 65, 67, 67, 65, 65), can be made
from this four-beat tune. In addition, a vector that does not
depend on the key difference between a hummed tune and
a melody data in the database can be made if each value in
the vector represents pitch relative to a certain tone (called
base tone). For example, if the most common tone in the
tune in Figure 10 is selected as a base tone (65) and let it
be “07, the final feature vector of eight dimensions is (-1, -1,
0,0, 2,2,0,0).

5.2 Partial Tone Transition Feature Vector

As described in Section 4.1 and Section 4.2.2, both melody
data in the database and hummed tunes are chopped up
into subdata and hummed pieces respectively of the same
length in every slide length by the sliding window method.
Since we cannot know which portion of a song a user will

sing a priori, this redundant chopping generally makes it
possible for a user to hum any part of a song (usually users
tend to hum the beginnings of a song or its phrases) in
order to retrieve the song. However, this of itself is not
enough, because people do not always remember a song by
its beginning or its phrases. Thus, the beginning of the
hummed tune is not always the beginning of the song or
the beginning of a phrase. Furthermore, the beginnings of
subdata are not always the beginnings of phrases or bridges.
In particular, in many current pop songs, the start beat of
songs is inconsistent with the start beats of the phrases and
the bridges.

Let us consider the tune shown in Figure 11. The
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Figure 11: A tune in which the start beat of the beginning part
(A) is different from the start beat of the bridge part (B).

bridge begins at the fourth beat (B) of the third bar, and
the start of the song is at the first beat (A) of the first bar.
This means that this tune is an example of an anacrusis
with respect to the bridge. All of the starts of the subdata
made from this tune are at the first beat of each bar if the
slide length of the sliding window method for chopping is
four beats. Thus, when the user hums the bridge, there is
no subdata in the database whose start is consistent with
the start of the hummed tune. That is to say, between the
starts of the subdata and the starts of the hummed pieces,
there can actually be a gap that is as much as half the slide
length when melodies and hummed tunes are chopped up
automatically in the sliding window method.

We therefore propose another tone transition feature vec-
tor to solve this problem. Of course, the length of the
slide can be reduced; however, this increases the size of
the database. Thus, we invented a partial tone transition
feature vector to solve this problem without increasing the
database. In a partial tone transition feature vector, the
starts of the vectors are inconsistent with the starts of the
subdata and hummed pieces.

The vector is made by picking out the values of (w — s) X
r~+ 1 dimensions from the values of w X r dimensions, where
r is the resolution of the feature vector, w is the window size,
and s is the slide length. The start of the vector is selected
according to a certain rule from the values within s beats.
For example, suppose that the tune in Figure 10 is the four
beats of the beginning of a certain subdata. The value of s is
four here. If we let the place where the highest tone initially
appears be the beginning of the vector, the fifth place of G4
is the start of the vector and a (w — 4) X 2 4+ 1-dimensional
vector is generated.

Using the same parameters, let us make another vector
from the tune in Figure 11. Vectors whose starts are con-
sistent with the starts of the subdata are generated up to
the fourth vector; however, the start of the fifth vector is
different from the start of the subdata because the start of
the fifth vector is the place marked C in the figure. Thus,
if a user hums the bridge part including the fifth bar, the
retrieval system can find a vector whose start is consistent
with the start of a vector made from the hummed tune in
the database.

5.3 Tone Distribution Feature Vector

The partial tone transition vector proposed in Section 5.2
can solve the inconsistency of the starts of the vectors gen-
erated by both the subdata and the hummed pieces. How-
ever, some of the starts of the vectors in the database will



still be inconsistent with the starts of the vectors generated
from the hummed tune. Furthermore, feature vectors that
enable us to roughly grasp the characteristics of the hummed
tune are needed because there may be variations in tempo
and tone in the hummed tune. Thus, we have introduced
another type of feature vector that represents the distribu-
tion of tones of each subdatum [9]. This type of vector can
represent the total number of occurrences of each tone and
represent the total number of beats that each tone sounds.
Figure 12 depicts a histogram which shows the total number
of beats that each tone sounds. A four-dimensional tone dis-
tribution feature vector (2,4,0,2) can be made, if we define
64 as the lowest tone and 67 as the highest.
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Figure 12: Image of making a tone distribution feature vector.

6 Or’ed Retrieval among Search Keys

As described in Section 4.2.2, hummed tunes are also chopped
up into hummed pieces of the same length with the sliding
window method. Thus, multiple search keys can be gener-
ated from a hummed tune, if the user hums for a time period
longer than that specified by the window size. Since most
tunes are not hummed well at the very beginning or at the
very end, we made a search key for the middle part of a
hummed tune by requiring users to hum for a period of time
a little longer than the window size [8]. However, some peo-
ple hum in tune only at the beginning, while others become
more in tune the longer they hum. Moreover, some parts of
songs are easy to hum, while others are more difficult.

We propose generating multiple search keys from the en-
tire hummed tune, if a user hums for a period of time that
is longer than the window size, and retrieving songs using
all keys.

We also propose making the final results by or’ing each
result of search keys.

Let us illustrate this with the following example. Sup-
pose that a user hums a little longer than the time period
specified by the window size, and as a result, three search
keys, hi,hs2, and hs, are generated. There are four songs,
A,B,C, and D, in the database. Suppose that these three
keys retrieve the results shown in Table 1. The values in
parenthesis are dissimilarities calculated from each subdata.
The retrieval result can be made as follows. First, the re-

Table 1: Retrieval Results of Each Hummed Key of a Hummed
Tune.

key | result(dissimilarity)

hi | D(09) B(1.5) C(18) A(58)
he | A0.3) B(1.2) C(2.0) D(5.9)
hs | B(1.0) C(1.2) D(L5) A(6.0)

sults are gathered for each song, then we let the minimum
dissimilarity within the results of each song be the dissim-
ilarity of the song. The result is presented as a ranked list
of songs in ascending order of dissimilarity. This method
makes use of the fact that a vector made from a subdatum
that correctly matches a vector made from a hummed piece
must have minimum dissimilarity. As a result, we can obtain

the final result, A(0.3) D(0.9) B(1.0) C(1.2), by processing
the results in Table 1, and decide the correct answer is song
A. This method is called or’ed retrieval among search keys.

7 Evaluation

In this section, we present retrieval accuracy evaluation re-
sults for the database (described in Section 4.1) and for the
feature vectors (described in Section 5), both of which are
generated based on the analysis results given in Section 3.
We also present another retrieval accuracy evaluation for the
method proposed in Section 6 to determine the final result
and a performance evaluation of the use of indices.

7.1 System Parameters

Experiments for the accuracy evaluation and the perfor-
mance evaluation were done with the 10,069-song database.

A total of 258 tunes were hummed by 25 people (21 males
and four females). Of the 258 tunes, we selected 186 tunes
which are transcribed into MIDI representation and were
recognizable as a part of a melody when they were heard.
All the 186 tunes are a part of a song which is registered
in our song database. Most of the 25 subjects were casual
singers, but some of them were members of a choral group.

A window size of 16 beats was chosen for chopping up
melody data and hummed tunes. This is because most of
the songs in the database are in 4/4 time, and in that case,
the length of 16 beats corresponds to four bars. The length
of four bars was found to be the minimum length of a phrase
or a unit of a part of a melody for many songs.

A slide length of four beats was chosen. With this length
a few hummed pieces can be made from a tune that is
hummed for a period of time that is a little longer than
the window size.

For successive notes, a difference in the MIDI note num-
ber ranging between -10 and -14 was chosen to be the range
for double-pitch error correction. This point is also relevant
to the discussion in Section 8.1. Figure 7 shows that about
97.5% of the entire tone differences in successive notes were
in the range between -12 and +12. Though more radical
changes in tones can be seen when the next phrase starts, it
appears that users seldom hum a tune that has overlapped
phrases. As the figure also shows, the difference in succes-
sive notes is concentrated around 0, -2, and +2. Thus, a
double-pitch error may be found in the range between -12-
2 and -12+2 in tones of successive notes. As a result, the
range between -14 and -10 of MIDI notes determines the
thresholds of double-pitch error correction.

A DELL PowerEdge 2300 with twin 500MHz Pentium 3’s
and 1GB main memory was used as the database server for
the performance evaluation.

Figure 13 shows the structure of the experimental sys-
tem. A database server and a client PC were connected

Network

[ —
/——/M{jphone

{-Transcription Software

1 3.5 Honesty
2 14.3 My Life
3 33.8 Pressure

Client PC
Result

Index

Database Server Machine Dalabase Server

Figure 13: Experimental system structure.



through a network. The query-by-humming system server
(SoundCompass Server), a master program that handles queries,
and a database server worked together in the server machine.
The database server housed the indices of feature vectors.
A microphone was connected to the client PC, which in-
cluded a GUI and the transcription software for the query-
by-humming system. Hummed tunes input through the mi-
crophone were transcribed and converted into MIDI format
and sent to the SoundCompass Server. The server processed
the hummed tunes in MIDI format according to the method
described in Section 4.2 and then sent a query to the master
program. The master then sent the query to the database
server and the server returned the retrieval result to the
SoundCompass Server. The SoundCompass Server sent the
result to the client PC, and the results were displayed by
the GUL

7.2 Evaluation for Size of Database

As shown in Figure 3, about 60% of the subdata of a song
have a duplicate structure. By chopping up the 10,069
melody data with a 16-beat window size and a four-beat
slide length, 938,028 subdata can be generated. After the
duplication deletion, the number of subdata was reduced to
548,195. As a result, we were able to reduce the size of the
database by 38.6%. The accuracy of the retrieval results ob-
tained from the smaller database was the same as the results
obtained from the large database.

Fast-tempo songs were copied to make half-tempo songs.
According to Figure 4, the number of songs with tempo
150 or more is 1,063, which is 10% of the total number of
songs in the database. Thus, our database held 11,132 song
versions (10,069 songs). As a result, songs that had not been
retrieved because of tempo errors could be retrieved.

The maximum number of songs that can be copied de-
pends on the size of the database to be managed. We
thought that copying only songs with tempo 150 or more
might not completely ensure retrieval. However, users did
not seem to make any tempo mistakes for songs with tempo
140 or less. By copying these songs, an additional 70,017
subdata units were generated but that number was reduced
to 52,146 by deleting the duplication of identical subdata.

The number of subdata before duplication deletion was
938,028. However, after the deletion, it became 600,342 (a
36% reduction in size) even when subdata generated from
half-tempo songs were added. As a result, we were able
to obtain a smaller database and more accurate retrieval
results.

7.3 Evaluation for Feature Vectors

In this section, the effects of feature vectors on retrieval
accuracy are examined.

7.3.1 Evaluation of Resolution

As shown in Figure 2, the eighth-note is the most frequently
occurring note. To determine the effective resolution for
tone transition feature vectors, accuracy of the retrieval re-
sults is compared with the results generated through the
use of tone transition feature vectors whose resolution is an
eighth-note, and the results generated through the use of
vectors whose resolution is a quarter-note. Figure 14 shows
the results obtained. The figure shows the percentage of
times in which a correct song name appears within the rank.
In the figure, the x axis represents rank, and the y axis rep-
resents percentage of correct retrieval. For example, in 65%
of the 186 hummed tunes the correct answer was retrieved
within the 10th rank when the eighth-note was used as the
resolution for tone transition feature vectors.

(%)

Resolution eighth-note

esolution quater-note’

1 6 8 10
2 4 Rank

Figure 14: Evaluation of resolution for tone transition feature
vectors.

Figure 14 reveals that the eighth-note is better than a
quarter-note as the resolution for tone transition feature vec-
tors.

7.3.2 Evaluation of Partial Feature Vector

A partial tone transition feature vector was proposed in Sec-
tion 5.2 to solve the problem that the starts of tone transi-
tion feature vectors generated from melody subdata are not
always consistent with the starts of the vectors generated
from hummed pieces.

Figure 15 shows the retrieval results for examining the
effect of the partial tone transition feature vectors on re-
trieval accuracy. The figure shows the percentage of times

(%)

| — ] Partial Feature Vector

Entire Feature Vector

1 2 4 8 10

Rank

Figure 15: Evaluation of the partial tone transition feature vec-
tor.

in which a correct song name appears within the rank. In
the figure, the x axis represents rank, and the y axis repre-
sents percentage. For example, in 70% of the 186 hummed
tunes the correct song name was retrieved within the second
rank when the partial feature vector was used.

Figure 15 reveals that the partial feature vector is an
extremely good measure for retrieval. The main reason for
this improvement in accuracy is that hummed tunes that
could not be retrieved correctly because of the gaps between
the starts of vectors became retrievable.

7.3.3 Evaluation of Combination of Tone Transition Fea-
ture Vector and Tone Distribution Feature Vector

The functions of tone transition feature vectors and/or tone
distribution feature vectors were investigated based on the
discussion in Section 5.

The partial tone transition vector alone seems to be good
enough for retrieval, however, it may retrieve multiple possi-
ble answers with an identical similarity. On the other hand,
the tone distribution feature vector alone can not retrieve
as many correct answers as the tone transition feature vec-
tor does. However, through the combined use of the two,
more accurate retrieval results can be obtained because the
addition of the extra information helps the system narrow
down the number of possible correct answers. The figure
shows the percentage of times in which a correct song name
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Figure 16: Evaluation of combination.

appears within the rank. In the figure, the x axis repre-
sents rank, and the y axis represents percentage of correct
retrieval. For example, in 75% of the 186 hummed tunes the
correct answer was retrieved within the fifth rank when both
tone transition feature vector and tone distribution feature
vector were used.

Thus, this figure reveals that the combined use of both
feature vectors can increase the retrieval accuracy.

7.4 Evaluation for Or’ed Retrieval

In Section 6, retrieval was done by making multiple search
keys from a hummed tune when a user hummed for a pe-
riod of time longer than the window size for chopping, and
getting the final result by or’ed retrieval among the search
keys.

Figure 17 shows the retrieval results obtained by the
or’ed retrieval among the search keys and those obtained
only by a search key generated from the middle part of the
hummed tunes. The figure shows the percentage of times
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Figure 17: Evaluation for or’ed retrieval.

in which a correct song name appears within the rank. In
the figure, the x axis represents rank, and the y axis repre-
sents percentage. For example, in 74% of the 186 hummed
tunes the correct answer was retrieved within the second
rank when or’ed retrieval among the search keys was used.

Thus, this figure reveals that or’ed retrieval among the
search keys provides more accurate results than can be ob-
tained with a single search key.

7.5 Evaluation of Performance

Figure 18 shows the execution times in the database server.
One line represents the retrieval time when indices are used,
and the other was obtained through the use of brute force
searching. Songs to make subsets of the database for this
experiment were chosen randomly.

This figure reveals that the greater the size of the database
is, the higher the efficiency the indices provide. It also re-
veals that the database server with indices can provide a
result within one second for the database with all 11,132
song versions.
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Figure 18: Performance evaluation.

7.6 Summary of Evaluations

In our music retrieval system, a database that holds copied
half-tempo songs and has no duplicated subdata was gener-
ated. Partial tone transition feature vectors are used instead
of the entire tone transition feature vectors. Their resolu-
tion is an eighth-note. Both a partial tone transition feature
vector and a tone distribution feature vector are used. Mul-
tiple search keys are generated from a hummed tune and
the result obtained by or’ed retrieval among the search keys
becomes the final result. Indices are used for retrieval.

As a result, this music retrieval system is able to pro-
vide correct answers within the fifth rank for about 75% of
hummed tunes that are recognizable as a part of a song. The
answer, which is the combination of each result generated
from multiple feature vector spaces, can be obtained in at
most one second.

8 Towards Practical Use

This section describes a practical query-by-humming system
that we hope to offer commercially in the near future. We
visualize a system that will be used, for example, in the fol-
lowing situation:

Situation example:

Some people are singing happily in a karaoke room about
three meters square. Person A is singing, and it’s Person
B’s turn next. Person B knows the song he wants to sing
but not its title. So while A is singing, B retrieves the
song title by humming it, so now he can enter the title
into the karaoke system so he can sing it.

In this section, problems related to noise and note fragmen-
tation are discussed in addition to the problems presented
in Section 4.2.

The tunes in Figure 19 and 20 are from the same song
and were hummed by the same person. The one in Figure
19 was hummed in a quiet place, and the other in Figure 20
was hummed in a noisy place. These scores are used as aids
in the following discussion.
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Figure 20: Hummed tune of a song C in a noisy place.



8.1 Noise Deletion

Noise is a note that was recorded when the hummed tune
was recorded, but has nothing to do with the melody. Noise
is caused by the singing of others, e.g. A in the situation
example, and by mistakes made by the hummer. For ex-
ample, in Figure 20, there are 21 notes, and three notes, 1,
4, and 14, are definitely noise notes. Noise notes must be
deleted from hummed tunes to extract correct features from
the tunes and then to make effective feature vectors.

As shown in Figure 7, successive notes seldom have big
differences in pitch. Thus, we propose these rules for delet-
ing noise note.

1. If there is a duration of silence of more than m beats
within n beats from the beginning of the recording,
the part before the silence is deleted.

2. A note which has a wide range of difference exceeding
a threshold p in pitch for a mean tone is regarded as a
noise note and hence is deleted. The checking of noise
notes is done twice in a tune, once in timewise normal
order, and then in timewise opposite order.

The mean tone is recalculated whenever the tones of the
notes are checked. In this recalculation, notes whose tone
exceeds the threshold p are not used for the calculation. As a
result, the more the recalculation is done, the more accurate
the mean tone becomes.

8.2 Note Fragmentation

The number of relatively short notes in a tune hummed in a
noisy place is greater than those of one hummed in a quiet
place, even if the same person hummed both in the same
way. This may be caused by confusion of the transcription
software, which cannot decide whether or not a tone to be
recorded has been sounded in a noisy environment. Thus,
note processing of the hummed tune is not appropriate when
the tune is recorded in a noisy place. Fortunately, our sys-
tem uses beat processing rather than note processing, as
described in Section 4.2.1. Thus, note fragmentation has no
effect on our system performance.

8.3 Evaluation of Noise Deletion

A query-by-humming experiment in a noisy place was con-
ducted to evaluate the noise deletion method described in
Section 8.1. In this experiment, 8, 4, and 15 were selected
as parameters for m, n, and p respectively. From our expe-
rience, we had found that there are few songs with relatively
long rests (four beats) at the beginning of a phrase. Thus,
we selected eight beats as the threshold to detect a long rest
and delete the midi data before the rest as noise notes.

A threshold of 15 in tone difference for noise deletion was
chosen. This is also relevant to the discussion in Section 7.1,
which showed that there may be double-pitch errors in tone
difference in the range between -12-2 and -12+2. The value
of £ 15, which exceeds the threshold for double-pitch error
correction, was selected as the threshold for the noise note
deletion.

For example, the tune in Figure 21 was obtained from the
hummed tune in Figure 20 after deleting noise notes with the
method described in Section 8.1 and correcting double-pitch
errors with the method described in Section 4.2.2. In other
words, two noise notes (1 and 4) can be deleted, but one (14)
can not be. The third note (3) was a double-pitch note, and
it was corrected by the method described in Section 4.2.2.

In this experiment, 31 hummed tunes were recorded in a
noisy place. Two people, one male and one female, recorded
their hummed tunes in a room where four kinds of back-
ground music with vocals were played very loudly. The total
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Figure 21: Hummed tune of a song C after noise removal.

number of hummed notes was 1,492. There were 87 noisy
notes which were definitely judged as noise, and 61 noise
notes were deleted, while 20 notes that were not noise were
deleted.

Figure 22 shows the results of the accuracy evaluation
of the retrieval for these 31 hummed tunes. A noise dele-
tion routine was added to the retrieval system described in
Section 7.6.

The figure shows the percentage of times in which a cor-
rect answer appears within the rank. In the figure, the x
axis represents rank, and the y axis represents percentage.
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Figure 22: Evaluation for noise note deletion.

This figure reveals that the method for noise deletion
proposed in Section 8.1 is efficient because accuracy was
increased.

8.4 GUI and User Interface Hardware

We created the graphics and prepared equipment shown in
Figure 23 for practical use, where (a) to (c¢) show the graph-
ics and (d) shows the equipment for the user interface.

Figure 23(a) shows a graphic for the opening. In the
graphic, the title “Query by Singing” appears in large Japanese
letters. The doll on the right is a character named “Onpu-
chan”. Its head is an eighth-note and it is named after the
term “note” in Japanese. It tells users to sing clearly with
the syllable “ta” and also tells them to keep tempo by mov-
ing its body right and left.

Figure 23(b) is a graphic for recording hummings. Here,
Onpu-chan moves its body right and left again as a metronome.
The speed can be adjusted using the direction bar under
Onpu-chan. Onpu-chan requires the user to find the tempo
at which it is easy for them to sing and then push the record
button.

Figure 23(c) is a graphic showing the retrieval results.
When the user pushes the retrieval button after recording a
hummed tune in Figure 23(b), this graphic appears within
a few seconds. In this graphic, the scores registered for each
song are shown in addition to the song title. The score
is calculated from the dissimilarity of the match using a
certain function. For example, “Love Train” was retrieved
as the second match in the database, and the system says
the hummed tune was similar to “Love Train” with a score
of 80 out of 100.

Figure 23(d) shows the equipment for the user interface:
a microphone with a headphone and a game pad for user
input. Tempo can be recognized by listening to the ticks of



a metronome through the headphone, as well as by following
the movements of Onpu-chan. The game pad is used for
input because it is familiar to young people in Japan.

(b) Recording a Hummed
Tune
(1 798 MEHBET

(c) Retrieval Result

(d) Microphone and Game
Pad

Figure 23: Practical query-by-humming system.

9 Conclusion

This paper describes a music retrieval system that accepts
hummed tunes as queries. The database currently holds
11,132 song versions (10,069 songs), and the database server
is able to retrieve songs from the database in at most one
second. The hummed tunes can be any part of a song. In
about 75% of the retrievals, the correct song name of rec-
ognizable hummed tunes is listed within the fifth rank. In
addition to this result, medleys that included a part of a
song that had a part similar to the hummed tune were also
retrieved. The previous system [9] provided correct song
names within the fifth rank for about 50% of the hummed
tunes. Thus, the accuracy of retrieval increased by more
than 20% over that of the previous system.

To achieve these results, we introduced partial tone tran-
sition feature vectors, implemented or’ed retrieval among
the search keys, made copies of fast songs at half-tempo, de-
creased the size of the database, and corrected double-pitch
errors based on the results of music analyses. Furthermore,
in aiming towards the development of a practical service, we
prepared graphics and equipment for users and proposed a
noise note deletion method.

10 Future Directions

We are still researching this music retrieval system in the
hope of improving its performance and accuracy. We also
hope to decrease the size of the database without remov-
ing any songs, and make the retrieval system easier to use.
This research represents our first step in the development of
a query-by-humming system for practical use with a large
music database. Further investigations and evaluations will
be needed.

A very wide range of issues, e.g., from the technical side,
such as the implementation of more efficient feature vectors,
to fundamentals, such as what the similarities in music are,
remain as future work.

It is well known that people can often identify a song by
hearing only a part of it hummed, even if the humming is
out of tempo or tune. Our system has significant tolerance
to input errors but does not approach the ability of most
people when it comes to identifying hummed tunes of music
they are familiar with. Our future research will focus on
making the system more human-like in this regard.
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