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SUMMARY  This paper presents a method of predicting future human
driving behavior under the condition that its resultant behavior and past
observations are given. The proposed method makes use of a dynamic
Bayesian network and the junction tree algorithm for probabilistic infer-
ence. The method is applied to behavior prediction for a vehicle assumed
to stop at an intersection. Such a predictive system would facilitate warning
and assistance to prevent dangerous activitics. such as red-light violations,
by allowing detection of a deviation from normal behavior.
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1. Introduction

Collision warning and avoidance systems (CWS/CAS) help
prevent traffic accidents by giving assistance to drivers when
they are about to come into collision [1]-[4]. Timing of the
resultant warning or assistance is critical to their effective
performance. Conventional CWS/CAS give assistance with
reference to a critical distance, a distance required to avoid
collisions while maintaining a safety margin. For example,
a CWS/CAS for rear-end collisions gives assistance when
the headway distance becomes less than a critical distance,
which is determined using a function of physical quantities
such as relative distance, vehicle velocity, and relative ve-
locity [5]. A defect of that method is not to estimate the risk
of collisions. It merely detects that a driver does not main-
tain the safety margin. For that reason, a system designed
to avoid collisions by keeping a large safety margin often
gives false alarms and interferes with normal driving ma-
neuvers[1],[5]. CWS/CAS systems that assist drivers with
more appropriate timing could be established it some proba-
bility estimation of future collisions were available. Predic-
tion of human driving behavior is important to develop such
an advanced CWS/CAS.

Bayesian approaches have been applied for inference
of driving behavior that depends on uncertainty and/or unob-
servable variables including individual driving characteris-
tics, environmental conditions, driving intention, and so on.
Especially, dynamic Bayesian networks (DBN) are consid-
ered to be appropriate for modeling and inference regarding
the dynamics of driving behavior. In one study [6], a DBN
served as a decision-making model for an autonomous ve-
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hicle. Another study [7] used a hidden Markov model, a
simple DBN, for modeling and recognition of driving be-
havior at a tactical level. A switching Kalman filter was
also applied for the same purpose [8]. Nevertheless, few in-
vestigations have addressed prediction of driving behavior.
Most dynamic Bayesian network applications have provided
methods for recognition, but not for estimation ot future be-
havior. Some studies have applied static Bayesian networks
to estimate future braking timing [9]. However, the range
of static networks’ application is limited because static net-
works are inappropriate for modeling and inference with re-
gard to dynamic behavior such as driving maneuvers.

We have studied inference algorithms to predict hu-
man driving behavior in the near future through a simple
DBN. Previous works have examined algorithms for cases
in which past observations are given[10],[11]. This paper
presents an algorithm through a switching linear dynamic
system (SLDS) for a case in which the result of the behavior
is also given as a time series. Using assumptions regard-
ing the behavior result, the proposed algorithm is applicable
to behavior prediction for a vehicle that is assumed to stop
because of a red light, an on-coming vehicle. or for some
other reason. This estimation would be useful for testing a
hypothesis that the vehicle is going to stop. and allow detec-
tion of red-light violations.

2. Structure of the Driving Behavior Model

Considering driving behavior characteristics, this study
adopts the behavior model shown in Fig. 1 [10],[11]. In this
model, the current internal state depends on the preceding
internal state. Observable behavior depends on the current
internal state and the previous observable behavior. A math-
ematical model of driving behavior is formulated as

St+1)= D a 060, Y+ 1) = feenG@), (1)
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where t is discrete time: s(t) is the discrete internal state at
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Fig.1 A switching linear dynamic system.
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time r; §;(¢) is the probability of internal state j at time f,
i.e. Pr(s(?) = j) = 6;(t): a;; is the internal state transition
probability from internal state i to j; y(f) is the observable
values at time #; and f;(y(#)) is the function that determines
observable values from internal state i and the preceding ob-
servable values. We assume that

Jiy(®) ~ N + wiy(h), Zi), ()

where N(y; +w;y(1), 2;) is a multivariate normal distribution
whose mean is y; + w;y(t) and covariance is Z;. The above
model is termed an SLDS or autoregressive hidden Markov
model [12]. Learning and inference algorithms of SLDS are
given as the extension of those of hidden Markov models
(HMM).

3. Prediction Algorithm

A prediction algorithm that incorporates only past obser-
vations [11] is shown first. Given past observation y, =
{....y(T = 1), y(T))}, the estimation of future behavior y(T +
1), y(T+2).. .. is performed in the following straightforward
manner.

POW 1y,) = Y paiDpyiD), t=T+1,T+2....

P L 60 13, i L GO 13,050 = 1) 3)
/))',E(T) = y(T)- l)ts.i(T) = 6I(T) |y,) (4)
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ps.j(1) = Z a;, jpsi(t = 1) (6)
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We approximated (5) above as follows because (5) is com-
putationally intractable. Without losing generality, we can
rewrite py(f) in (5) as (7) because the probability distribu-
tion of py (1) is always a normalized summation of normal
distributions:

pri) ~ Y qjON (1, (1 = 1. Zi 1 = 1) (7)

=

where ¢; is a scalar and ¢, (1) > g2(t) > . ..
We approximate (7) to (8) by neglecting minor terms
whose index j is greater than K.

K
pvi) ~ D" qi(T + N (f, (T +n).Zi (T +m)  (8)
Jj=1

Given past observations Yp = {...,y(0), y(1)} and the
result of future behavior y, = {y(T),y(T + 1),...}, the es-
timation of future behavior y(2),y(3),....y(T — 1) is per-
formed through the junction tree algorithm. The following
inference algorithm is derived through message passing with
the junction tree shown in Fig. 2.
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Fig.2 A junction tree for SLDS.
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The same approximation technique is used in calculation of
py,i(1) and Ay (1) because (12) and (14) are the same type as
(5).

The algorithms shown above are also applicable to
HMM because HMM are special cases of SLDS.

4. Modeling of Driving Behavior

We prepared driving behavior data in a real road environ-
ment to evaluate the proposed method. We developed a ve-
hicle equipped with sensing devices to collect data [9]. The
sampling rate was 15 Hz for sensor signals. One test subject
drove the vehicle. We measured the driver’s side turn be-
havior (i.e., right-turn behavior in Japan) 33 times at an in-
tersection in a suburb of Tsukuba City, Japan. We extracted
those parts of measured data that were taken at 20km/h or
lower speeds. The vehicle stopped once or twice in 16 of
33 cases because traffic or a traffic signal blocked the road-
way beyond. In other cases, the vehicle passed through the
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intersection without stopping. We used half the records as
training data and the remainder as test data.

The vehicle’s speed and the brake and accelerator pedal
strokes were given to an SLDS as observable data. The
pedal strokes were given as a combination variable: the sub-
traction of the stroke of brake pedal from that of the acceler-
ator pedal (hereafter called the pedal stroke). We determined
the number of internal states, Q, using cross-validation. The
increase of Q contributed to improving the prediction ac-
curacy, whereas performance was not so sensitive to Q and
sensitive to initial values as Q was greater than about 7. We
chose Q = 11 in this study.

We investigated the role of each internal state of SLDS
to confirm the model’s validity. Figure 3 shows a time
course of vehicle's speed and internal states inferred by the
inference algorithm[12], where we assume that O = 7 to
clarify and simplify our illustration of the role of internal
states. Each internal state corresponded to each behavior el-
ement: acceleration, stop, accelerator on, pedal off. or de-
celeration. Each state represented the dynamics of each el-
ement. For instance, another examination demonstrated that
a transient response in each internal state approximated that
of corresponding behavior. Figure 4 shows the major transi-
tions between these internal states. A sequence of behavior
from deceleration, stop, accelerator on, then to acceleration,
appeared clearly in the transition through internal states 7 to
lor6tol, 1t02,and2 to3 or 2 to4. There were no phys-
ically impossible transitions, such as that from acceleration
to stop. i.e. from internal state 2 to 1. The above results show
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Fig.5  An example of driving behavior prediction.
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Fig.6  An example of estimation and actual behavior. Observations of

actual behavior before time 0's and after time 4 s were given for the estima-
tion of behavior from time 0s to 4 s.

that driving behavior was acquired in an efficient manner in
the proposed model.

5. Estimation of Stop Behavior

We applied the proposed method for estimation of stop be-
havior for the last 4 s before stopping to demonstrate its ef-
fectiveness. Figures S and 6 show an example of results.
Figure 5 shows the probability distribution of behavior as
estimated by the proposed method. Here, the actual driving
behavior data before time Os and the information that the
vehicle stopped after 4 s were given. Figure 6 shows a time
course of actual vehicle’s speed and the mean and standard
deviation of estimation. The error between the mean and
actual speed was less than 2 km/h and less than a standard
deviation. We conducted the same estimation through those
parts of seven test data that consisted of stop maneuvers.
Experiments showed that the error was less than 2 km/h at
the maximum and the average of error was less than 1 km/h
(Fig.7). The proposed method provided a good estimation
of stop behavior.
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Fig.7  Estimation error.

6. Discussion

This study presented a method of inferring future human
driving behavior when its resultant behavior and past obser-
vations are given. The proposed method provided a good
estimation of stop behavior under the condition that past
driving behavior and information on a future stop were
given. Only deterministic information was given in this
study; however, the method is also applicable to more un-
certain cases in which past and future information is given
as probability distributions.

Estimation of stop behavior would allow early de-
tection of “non stopping behavior” by testing a hypothe-
sis that driving behavior is a stop behavior, and establish-
ing CWS/CAS as an effective assistance. The proposed
method would also be useful for mining data from a behav-
ior database: extracting models of maneuvers whose results
are assumed, such as stopping at a stop sign, acceleration in
the acceleration lane and so on.

Obstacles remain to this method’s application for
CWS/CAS. First, estimation must be valid for a wide range
of situations in addition to those of limited intersections, cer-
tain time periods, and so on. Moreover, it must be shown
that the proposed method is effective for unspecified drivers.
We have confirmed the effectiveness of this method for only
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a few subjects aside from the experiments explained herein.
Second, the proposed method poses constraint conditions as
a function of time. We posited that a vehicle would stop
45 later. However, distance is more important than time in
CWS/CAS applications. This method should accept a con-
straint condition on distance. That is, driving behavior must
be explained as a function of distance, such as a dynamic
Bayesian network whose sequence is indexed by distance
instead of time.
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