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1. Introduction
Dynamic control problems often require a set of control rules. For example, an inverted pendulum

system requires two different control rules for swinging up and stabilization of a pendulum. Recurrent
neural networks (RNNs) are potential candidates for service as controllers of such complex tasks.
RNNs memorize, recall and discriminate time-series information in a parallel way, extracting information
from large amounts of real-world data, deciding subsequent behavior, and controlling the actuator to
achieve suitable dynamic movement. For instance, we have shown that a recurrent network comprising
binary output neuron can acquire a set of time-dependent limit cycles in a small network [3]. However,
there is no powerful design method for recurrent neural networks. We compose a genetic algorithm
that uses copy operators for recurrent neural network learning. The copy operator copies one part of a
gene to another part. We show that the proposed algorithm accelerates learning in comparison with a
simple genetic algorithm; also, it can embed two different control rules in a single recurrent network.
2. Conventional Learning Method for Recurrent Neural Networks

Supervised learning methods studied for the RNNs, i.e., back-propagation through time (BPTT)
[1] and real-time recurrent learning (RTRL) [2] are not applicable for most problems because they
require teaching signals. Hill-climbing methods also suffer from the local minimum problem.
Reinforcement learning is sometimes powerful in acquiring a classifier system, yet that method is not
suficiently powerful to learn a set of sequences, especially sequences including context-sensitive
conditional branches.

The genetic algorithm, a potential learning technique for RNNs, offers advantage that it can
search an entire solution space without the local minimum problem. However, its disadvantage is that
it consumes an enormous amount of time in network learning. Many researchers have attempted to
apply the genetic algorithm to neural network learning [5]. Thereby, they showed that the learning
speed of a simple genetic algorithm is extremely inefficient when a network is large. One reason is that
the crossover operator often makes a weak descendant because a neural network can assume different
structures for a certain function [6]. The genetic algorithm must also repeatedly learn the same functions.
A complex network is assumed to comprise many functional blocks, some of which appear repeatedly
in a network that is composed of many neurons that are primitive function units. The simple genetic
algorithm has no operator to copy functional blocks; therefore, it must re-learn the same function block
repeatedly.
3. Genetic Algorithm with Copy Operator

We introduced a genetic algorithm operator, internal copy, responsible for copying the block of
loci in each gene [7]. This operator copies a function block that has been acquired by learning and
accelerates learning. These copied function blocks are expected to become seeds of a new function
block. A set of copied units may also compose other function blocks.  We also introduced an interindividual
copy operator that copies one part of a gene to another part of another gene. Next, we define the gene
encoding and algorithm used in this study (Fig.1). The gene is composed of loci. Each locus contains a
threshold value and weight values of connections from neurons and external input. The training
algorithm with internal copy operator is as follows:

1) Initialize all genes in the population with a random function.



2) Duplicate all genes. Note that “duplicated” genes are “copied” and “original” genes are “original”.
3) Apply one operator to each copied gene. The applied operator is chosen from a set of operators with
equal probability for each gene.
4) Evaluate each gene with evaluation function f () and (1).
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5) Select half of the genes for the next generation  in sequence of performance.
6) Go to 2)

In stage 3) of the above algorithm, we used the following four copy operators: mutation, crossover,
internal copy, and interindividual copy.

(a) Mutation: This operator modifies each element in a gene with probability m according to the
following equation:

∆ω
ω

= ( )rnd k , (2)

where ∆ω  is the quantity of modifications of each parameter, and rnd k
ω

( ) is an equally random

function whose range is −( )k k
ω ω

, . In this study, k
w
= 0 5. .

(b) Internal copy: The internal copy operator copies a consecutive block of loci to another portion of
the same gene. A source and destination are chosen by random number. The length of a copied locus
block is determined as follows.

locilength = Rnd(NB ) (3)

where Rnd NB( )  is an equally random integer function whose range is 1, NB[ ] .
(c) Interindividual copy: The interindividual copy operator copies several loci to a destination as in
internal copy, but a source gene is chosen from another  gene with a random function.

Operators are denoted as M, IC and II. We denote a two-point crossover operator as C. The
combination of operators is expressed through +, e.g., M+IC means the combination of  mutation and
internal copy operators.
4. Swinging up and Stabilization of a Pendulum

We apply the proposed algorithm to the control problem of an inverted pendulum. The goal of
task is to swing up and stabilize a pendulum at an inverted position. In this task, we ignore the position
of the cart. However, solving the problem by learning remains difficult because swinging up and
stabilization of a pendulum require two completely different control rules. A controller must realize
these two control rules continuously.
4.1 Recurrent Network

We assume that a neural network consists of a time-discrete binary output leaky integrator model,
i.e., Caianiello-Nagumo neuron model [3][4] because this network model acquires different types of
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limit cycles in a simple network. The binary output network must use many neurons to express a



continuous value, meaning that information is continuously and distributively memorized in many
neurons. Neuron output is fed back and the neuron has a refractory period (Fig.2). Each neuron has
mutual connections and receives stimuli from an external input. Incoming data are weighted, integrated
by the leaky integration way inside the connection path [3], and then summed. The result is compared
with a threshold. Each neuron updates its output value simultaneously as follows:
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where f xs ( )  is the function that outputs 0 if (x<0) or outputs 1 if (x>=0), yi(k) is the output value of
neuron i at time k, uj(k) is the external input value to neuron j, wij is the weight of connection from
neuron i  to neuron j, and vij is the weight of connection from external input i to neuron j. The threshold
value of neuron i is hi, and T (0<=T<1; in this paper, T=0.5) is the decay parameter. xi(k) is defined in
(4); we call this the neuron state i. N is the number of neurons. M is the number of external inputs.
4.2 Inverted Pendulum System

The following constitute the equation of motion of an inverted pendulum system and parameters
which are used here.
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 (5)
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  M : . [ ]0 625 kg    C : . [ ]13 6 Ns/m
The manipulated value u is calculated as follows.
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Learning conditions are:
NB=4, N=12. (9)

Instead of θ , sin θ( ) and cos θ( ) are given to a network
as external inputs. We give a network two additonal binary

inputs. We assign 1-0 when θ < 0 3. , 0-1 when θ ≥ 0 3.
.
The following are evaluation functions.
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The above evaluation function is very simple, but it is
slightly complicated by formula expression. In eq. (11),
the first term of the right part evaluates swinging up; and
the second term evaluates how long a pendulum is in the

top position. θ
0
 gives the initial value of θ . Through

experimentations, population size is determined as 12.
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4.3 Results of experiments
(a) Stabilization of an inverted pendulum

First we applied the proposed genetic algorithm to stabilization of a pendulum with the following
evaluation.

f f f
sw sw

= − +( ) ( )0 30 0 30. . (12)

Then the network stabilized the pendulum (Fig. 4). Figure 6 (left) shows how many generations are
required for stabilization in each set of genetic operators. Clearly, internal copy and interindividual
operators accelerate learning.
(b) Swinging up and stabilization of a pendulum

We applied the proposed algorithm to a network which had already learned how to stabilize the
pendulum by the above experiments with the following evaluation equation.

f f f f
sw sw sw

= + − +( ) ( ) ( )π 0 30 0 30. . (13)

The network acquired the rules to swing up and stabilize a pendulum at top position (Fig. 5). Learning
is accelerated by interindividual and internal copy operators again (Fig. 6 (right)).
5. Projected Work

This study introduced two copy operators: one is internal copy and the other is interindividual
copy. These operators worked effectively in dynamic control problems. However, the effectiveness of
the copy operators, probably depends on gene coding and how gene blocks are chosen and copied.
Intuitively, it is possible to increase algorithm capability by regulating the manner of copying; e.g., one
of the most general ways is to encode how copying is to be done in the gene.
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Fig. 6 (Left) The number of generations required to stabilize a pendulum at top position. (Right)The
number of generations required to swing up and stabilize a pendulum at top position. Ten experiments
were conducted for each set of operators. While M was applied, the network could not stabilize a
pendulum in 3 of 10 experiments (not plotted).
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