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なぜこの論⽂を紹介するか？

⾃然⾔語処理技術：
LLMの解明・効率化研究 / LLM活⽤研究

マルチ/クロスモーダル： ⾔語と画像/動画/⾳声などと組み合わせた⼿法の研究

コンピュータの中に閉じている

LLMの登場より⾃然⾔語タスクの性能が想像以上に向上
⽣活に先端の⾔語処理技術があるのが当たり前
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なぜこの論⽂を紹介するか？
コンピュータの外との⼲渉/やり取り

⾔語と地理空間(物理空間)、⾔語と⽣理指標(医療情報)、⾔語とロボット 等…
「モーション」は現実世界と⾔語の橋渡し的役割

モーションは物理空間の制約を受ける
モーションは⽣物由来のもの、医療情報とも⾔える
モーションは⼈型ロボットの動きを表現

⾔語とモーションの関係性を扱う技術は、
⾔語処理研究をコンピュータの外へ持ち出すための基礎技術の⼀つ

他にも⾯⽩そうな⽅向性が…
「⾔語による指導」と「実技(スポーツ/リハビリ/演技/演奏等)モーション」

最先端の⾔語-モーション研究の紹介を通して、
「⾃分でも⾔語とモーションの研究できそうじゃん」と感じてほしい

本紹介の⽬的
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何が出来るか？
画像・動画は論⽂/デモページより引⽤
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何が出来るか？
画像・動画は論⽂/デモページより引⽤

and more…

15種類のtext-languageタスク

Motion GPT
全てのタスクを⼀つのモデルで実現
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性能

全タスクにおいて性能が良い
（めでたし めでたし）

これ以上の情報は無いので、
以降、実験の説明はしない

E Evaluation of Hyperparameters

We conduct experiments to investigate the impact of different sampling strategies on the generation
results. Specifically, we compare the use of greedy search, which selects the most probable token
at each step, with sampling from the probability distribution and adopting beam search, which is
evaluated in previous language models [38]. Beam search expands the search space for improved
sequence probability matching. The results in Tab. 12 demonstrate that while avoiding sampling and
using beam search can slightly improve generation quality, they also significantly reduce the diversity
of generated motions from the same text description.

Method Sample #beams R Precision FID# MM Dist# Diversity! MModality"Top 3"
Real - - 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

MotionGPT

- 0.780±.002 0.224±.009 3.076±.009 9.492±.056 -
2 0.780±.002 0.199±.008 3.083±.007 9.512±.063 -
3 0.781±.002 0.179±.008 3.099±.009 9.516±.064 -
4 0.782±.002 0.160±.007 3.092±.010 9.536±.060 -

MotionGPT

X - 0.778±.002 0.232±.008 3.096±.008 9.528±.071 2.008±.084

X 2 0.780±.002 0.194±.008 3.091±.010 9.508±.063 1.140±.064

X 3 0.780±.002 0.190±.008 3.089±.011 9.529±.061 0.929±.055

X 4 0.780±.002 0.182±.008 3.093±.008 9.537±.059 0.803±.044

Table 12: Evaluations on hyperparameters for MotionGPT generations. We study the influence of
two hyperparameters: sample stands for sampling from distribution; #beams means the number of
beams for beam search, where empty means no beam search.

F User Study

For the comparisons of text-to-motion task, we use the force-choice paradigm to ask “Which of
the two motions is more realistic?” and “which of the two motions corresponds better to the
text prompt?”. The provided motions are generated from 30 text descriptions from the test set of
HumanML3D [11] dataset. For the comparisons of motion-to-text task, we ask 15 users to choose the
motion descriptions from GT, TM2T [12], and our MotionGPT. The motions are from the test set of
HumanML3D [11] dataset. As shown in Fig. 8, in both two tasks, our MotionGPT was preferred
over the other state-of-the-art methods and even competitive with the ground truth.

73% 69%65% 67%
48% 49%

0%
25%
50%
75%

100%

Which of the two motions is more realistic? which of the two motions corresponds better to the text prompt?
MotionGPT vs MDM MotionGPT vs T2M-GPT MotionGPT  vs GT

46% 43% 11%
0%

25%
50%
75%

100%

Which description can better describe the motion?
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Figure 8: User Study. We investigate our motion quality and the alignment with test descriptions.
The left part is the user study for text-to-motion. The right part is for motion captioning.

G Evaluation Protocols on the Uniform Motion-Language Generation.

We propose a protocol to evaluate our unified MotionGPT on multiple motion-language generation
tasks. Upon previous datasets [11, 33, 26], we build an instruction motion-language dataset, which
is composed of 14 core tasks (Fig. 9) for now. As shown in Tab. 13, each core task has dozens of
instruction prompts (Tab. 13). We will release the pre-processed dataset.

19

Methods Text-to-Motion Motion-to-Text Motion Prediction Motion In-between

R TOP1" FID# DIV! R TOP3" Bleu@4" Cider" FID# DIV! FID# DIV!
Real 0.511±.003 0.002±.000 9.503±.065 0.828 - - 0.002 9.503 0.002 9.503

MLD [54] 0.481±.003 0.473±.013 9.724±.082 - - - - - - -
T2M-GPT [48] 0.491±.003 0.116±.004 9.761±.081 - - - - - - -
TM2T [12] 0.424±.017 1.501±.003 8.589±.076 0.823 7.00 16.8 - - - -
MDM [48] 0.320±005 0.544±.044 9.559±.086 - - - 6.031 7.813 2.698 8.420

MotionGPT (Ours) 0.492±.003 0.232±.008 9.528±.071 0.827 12.47 29.2 0.905 8.972 0.214 9.560

Table 2: Comparison of four motion-related tasks on HumanML3D [11] dataset. The evaluation
metrics are computed using the encoder introduced in [11]. The empty columns of previous methods
indicate that they can not handle the task. The arrows (!) indicate that closer to Real is desirable.
Bold and underline indicate the best and the second best result on text-to-motion task.

text-to-motion datasets: HumanML3D [11] and KIT [33]. The KIT dataset provides 6,353 textual
descriptions corresponding to 3,911 motion sequences, while the HumanML3D dataset [11] is a more
recent dataset that contains 14,616 motion sequences obtained from AMASS [26], along with 44,970
sequence-level textual descriptions. To evaluate MotionGPT as a uniform framework on tasks, such
as motion prediction and motion completion (in-between), we utilize the motion sequences available
in HumanML3D, which is also a subset of the larger AMASS dataset. Following the previous works
[11, 54, 48], we adopt the same motion representation for fair comparisons, which combines joint
velocities, positions, and rotations. By using this consistent representation, MotionGPT enables the
availability to support further studies in the field. (cf. supplement for the benchmark details.)

Evaluation Metrics are summarized as four parts. (1) Motion quality: Frechet Inception Distance
(FID) is our primary metric based on a feature extractor [11] to evaluate the distance of feature
distributions between the generated and real motions. For motion completion, we utilize metrics
used in motion prediction studies [58, 63, 25], such as Average Displacement Error (ADE) and
Final Displacement Error (FDE), to evaluate the accuracy of the predicted motion. (2) Generation
diversity: We utilize the Diversity (DIV) metric to assess the motions diversity, which calculates
the variance through features extracted from the motions [11]. MultiModality (MM) measures the
diversity of generated motions within the same text description of motion. (3) Text matching: Based
on the feature space from [11], the motion-retrieval precision (R Precision) evaluates the accuracy
of matching between texts and motions using Top 1/2/3 retrieval accuracy. Multi-modal Distance
(MM Dist) measures the distance between motions and texts. (4) Linguistic quality: We follow
[12] utilizing linguistic metrics from natural language studies, including BLUE [29], Rouge [24],
Cider [51], and BertScore [62] to evaluate the quality of generated motion captions.

Implementation Details. We set the codebook of motion tokenizer as K 2 R512⇥512 for most
comparisons. The motion encoder E incorporates a temporal downsampling rate l of 4. We utilize
T5 [38] as the underlying architecture for our language model, with a baseline model consisting
of 12 layers in both the transformer encoder and decoder. The feed-forward networks have an
output dimensionality of dff = 3072, and the attention mechanisms employ an inner dimensionality
of dkv = 64. The remaining sub-layers and embeddings have a dimensionality of dmodel = 768.
Moreover, all our models employ the AdamW optimizer for training. The motion tokenizers are
trained utilizing a 10�4 learning rate and a 256 mini-batch size, while our language models have
a 2 ⇥ 10�4 learning rate for the pre-train stage, 10�4 for the instruction tuning stage, and a 16
mini-batch size for both stages. The motion tokenizer undergoes 150K iterations of training, while
the language model undergoes 300K iterations during the pre-train stage and another 300K iterations
during the instruction tuning stage. All models are trained on 8 Tesla V100 GPUs.

4.2 Comparisons on Motion-relevant Tasks

Comparisons on Multiple Tasks. By introducing a uniform framework that treats human motion
as a foreign language, we open up the exploration of diverse motion-relevant tasks. We employ
a 220M pre-trained Flan-T5-Base[38, 5] model as our backbone and fine-tune the model through
the pre-training and instruction tuning stage (Sec. 3.3) for all following comparisons. As shown in
Tab. 2, we evaluate MotionGPT against state-of-the-art methods on key tasks such as text-conditioned
motion generation [54, 59, 12, 48], motion captioning [12], motion prediction [48], and motion
in-between[48]. While we leverage existing results from previous works or benchmarks for text-
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定量評価

Human Evaluation

⼀つのモデルで複数のタスクが
解けることを明らかにした
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どう実装するか？
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Training of Motion Tokenizer. Motion-language Pre-training. Instruction Tuning.
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Figure 3: Training Scheme. We introduce three training steps for our MotionGPT (Sec. 3.3): First
V learn a codebook for discrete motion representation. Then we train language using a mixture
of language and motion data to learn the semantic coupling between text and motion. Finally, we
fine-tune the model in a multi-task text-motion dataset with instructions.
Motion-language Pre-training Stage. The T5 models [38, 5] are trained and fine-tuned on natural
language datasets with instruction-based phrasing [5, 28]. We continue to pre-train this model using a
mixture of language and motions data in both unsupervised and supervised manners: 1) To generalize
to various downstream tasks like [7, 37, 38, 28], we follow [38] to design an objective, where a
certain percentage (15%) of tokens in the input tokens Xs are randomly replaced with a special
sentinel token. On the other side, the corresponding target sequence is constructed by extracting
the dropped-out spans of tokens, delimited by the same sentinel tokens used in the input sequence,
along with an additional sentinel token to indicate the end of the target sequence. 2) We then learn
the motion-language relation by the supervision of paired text-motion datasets [11, 33]. We train
MotionGPT on the supervised motion-language translation, where the input is either a human motion
or a text description.After unsupervised and supervised training processes, we aim to equip our model
with the understanding of text and motion relationships.

Instruction Tuning Stage. We construct a multi-task text-motion dataset by formulating it as
instructions, building upon the foundation of existing text-to-motion datasets such as HumanML3D
[11] and KIT [33]. Specifically, we define 15 core motion tasks, such as motion generation with text,
motion captioning, motion prediction, and others. For each task, we compose dozens of different
instruction templates, resulting in more than one thousand different tasks, each having a unique
instruction prompt. For example, an instruction prompt for motion generation task could be “Can
you generate a motion sequence that depicts ‘a person emulates the motions of a waltz dance’?”.
Similarly, for the motion captioning task, the instruction prompt could be “Provide an accurate caption
describing the motion of <motion_tokens>”, where <motion_tokens> represents a sequence of motion
tokens generated by our motion tokenizer. We have demonstrated the efficacy of instruction tuning in
Sec. 4.3, which leads to improvement across various tasks and enhances the model performance for
unseen tasks or prompts. More examples of prompts are provided in the supplements.

4 Experiments

Extensive comparisons evaluate the performance of our MotionGPTs across multiple motion-relevant
tasks and datasets. Details of the dataset settings, evaluation metrics, and implementation specifics
(Sec. 4.1) are provided. We first present a uniform benchmark by comparing our approach with other
SOTAs across various tasks (Sec. 4.2). Then, we evaluate each specific comparison on text-to-motion
(Sec. 4.2), motion-to-text (Sec. 4.2), motion prediction and motion in-between (Sec. 4.2). The
supplements include more qualitative results, user studies, and further implementation details.

4.1 Experimental Setup

Datasets. General motion synthesis can support diverse task settings, and thus previous datasets
and a modified benchmark are utilized to evaluate MotionGPT. The study primarily focuses on two
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Figure 3: Training Scheme. We introduce three training steps for our MotionGPT (Sec. 3.3): First
V learn a codebook for discrete motion representation. Then we train language using a mixture
of language and motion data to learn the semantic coupling between text and motion. Finally, we
fine-tune the model in a multi-task text-motion dataset with instructions.
Motion-language Pre-training Stage. The T5 models [38, 5] are trained and fine-tuned on natural
language datasets with instruction-based phrasing [5, 28]. We continue to pre-train this model using a
mixture of language and motions data in both unsupervised and supervised manners: 1) To generalize
to various downstream tasks like [7, 37, 38, 28], we follow [38] to design an objective, where a
certain percentage (15%) of tokens in the input tokens Xs are randomly replaced with a special
sentinel token. On the other side, the corresponding target sequence is constructed by extracting
the dropped-out spans of tokens, delimited by the same sentinel tokens used in the input sequence,
along with an additional sentinel token to indicate the end of the target sequence. 2) We then learn
the motion-language relation by the supervision of paired text-motion datasets [11, 33]. We train
MotionGPT on the supervised motion-language translation, where the input is either a human motion
or a text description.After unsupervised and supervised training processes, we aim to equip our model
with the understanding of text and motion relationships.

Instruction Tuning Stage. We construct a multi-task text-motion dataset by formulating it as
instructions, building upon the foundation of existing text-to-motion datasets such as HumanML3D
[11] and KIT [33]. Specifically, we define 15 core motion tasks, such as motion generation with text,
motion captioning, motion prediction, and others. For each task, we compose dozens of different
instruction templates, resulting in more than one thousand different tasks, each having a unique
instruction prompt. For example, an instruction prompt for motion generation task could be “Can
you generate a motion sequence that depicts ‘a person emulates the motions of a waltz dance’?”.
Similarly, for the motion captioning task, the instruction prompt could be “Provide an accurate caption
describing the motion of <motion_tokens>”, where <motion_tokens> represents a sequence of motion
tokens generated by our motion tokenizer. We have demonstrated the efficacy of instruction tuning in
Sec. 4.3, which leads to improvement across various tasks and enhances the model performance for
unseen tasks or prompts. More examples of prompts are provided in the supplements.

4 Experiments

Extensive comparisons evaluate the performance of our MotionGPTs across multiple motion-relevant
tasks and datasets. Details of the dataset settings, evaluation metrics, and implementation specifics
(Sec. 4.1) are provided. We first present a uniform benchmark by comparing our approach with other
SOTAs across various tasks (Sec. 4.2). Then, we evaluate each specific comparison on text-to-motion
(Sec. 4.2), motion-to-text (Sec. 4.2), motion prediction and motion in-between (Sec. 4.2). The
supplements include more qualitative results, user studies, and further implementation details.

4.1 Experimental Setup

Datasets. General motion synthesis can support diverse task settings, and thus previous datasets
and a modified benchmark are utilized to evaluate MotionGPT. The study primarily focuses on two
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キーアイディア
モーションデータを疑似単語へと変換して
⾃然⾔語と⼀緒に⾔語モデルを学習すれば
モーションと⾔語の取り扱いが⼀緒にでき
⼀つのモデルで様々なタスクに対応可能に

具体的な実装法
VQ-VAEでモーションを量⼦化（疑似単語変換）
デコーダで疑似単語からモーション合成も可能

Image as a Foreign Language: BEiT
Pretraining for All Vision and Vision-
Language Tasks (CVPR2023) から着想
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Figure 3: Training Scheme. We introduce three training steps for our MotionGPT (Sec. 3.3): First
V learn a codebook for discrete motion representation. Then we train language using a mixture
of language and motion data to learn the semantic coupling between text and motion. Finally, we
fine-tune the model in a multi-task text-motion dataset with instructions.
Motion-language Pre-training Stage. The T5 models [38, 5] are trained and fine-tuned on natural
language datasets with instruction-based phrasing [5, 28]. We continue to pre-train this model using a
mixture of language and motions data in both unsupervised and supervised manners: 1) To generalize
to various downstream tasks like [7, 37, 38, 28], we follow [38] to design an objective, where a
certain percentage (15%) of tokens in the input tokens Xs are randomly replaced with a special
sentinel token. On the other side, the corresponding target sequence is constructed by extracting
the dropped-out spans of tokens, delimited by the same sentinel tokens used in the input sequence,
along with an additional sentinel token to indicate the end of the target sequence. 2) We then learn
the motion-language relation by the supervision of paired text-motion datasets [11, 33]. We train
MotionGPT on the supervised motion-language translation, where the input is either a human motion
or a text description.After unsupervised and supervised training processes, we aim to equip our model
with the understanding of text and motion relationships.

Instruction Tuning Stage. We construct a multi-task text-motion dataset by formulating it as
instructions, building upon the foundation of existing text-to-motion datasets such as HumanML3D
[11] and KIT [33]. Specifically, we define 15 core motion tasks, such as motion generation with text,
motion captioning, motion prediction, and others. For each task, we compose dozens of different
instruction templates, resulting in more than one thousand different tasks, each having a unique
instruction prompt. For example, an instruction prompt for motion generation task could be “Can
you generate a motion sequence that depicts ‘a person emulates the motions of a waltz dance’?”.
Similarly, for the motion captioning task, the instruction prompt could be “Provide an accurate caption
describing the motion of <motion_tokens>”, where <motion_tokens> represents a sequence of motion
tokens generated by our motion tokenizer. We have demonstrated the efficacy of instruction tuning in
Sec. 4.3, which leads to improvement across various tasks and enhances the model performance for
unseen tasks or prompts. More examples of prompts are provided in the supplements.

4 Experiments

Extensive comparisons evaluate the performance of our MotionGPTs across multiple motion-relevant
tasks and datasets. Details of the dataset settings, evaluation metrics, and implementation specifics
(Sec. 4.1) are provided. We first present a uniform benchmark by comparing our approach with other
SOTAs across various tasks (Sec. 4.2). Then, we evaluate each specific comparison on text-to-motion
(Sec. 4.2), motion-to-text (Sec. 4.2), motion prediction and motion in-between (Sec. 4.2). The
supplements include more qualitative results, user studies, and further implementation details.

4.1 Experimental Setup

Datasets. General motion synthesis can support diverse task settings, and thus previous datasets
and a modified benchmark are utilized to evaluate MotionGPT. The study primarily focuses on two
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Figure 3: Training Scheme. We introduce three training steps for our MotionGPT (Sec. 3.3): First
V learn a codebook for discrete motion representation. Then we train language using a mixture
of language and motion data to learn the semantic coupling between text and motion. Finally, we
fine-tune the model in a multi-task text-motion dataset with instructions.
Motion-language Pre-training Stage. The T5 models [38, 5] are trained and fine-tuned on natural
language datasets with instruction-based phrasing [5, 28]. We continue to pre-train this model using a
mixture of language and motions data in both unsupervised and supervised manners: 1) To generalize
to various downstream tasks like [7, 37, 38, 28], we follow [38] to design an objective, where a
certain percentage (15%) of tokens in the input tokens Xs are randomly replaced with a special
sentinel token. On the other side, the corresponding target sequence is constructed by extracting
the dropped-out spans of tokens, delimited by the same sentinel tokens used in the input sequence,
along with an additional sentinel token to indicate the end of the target sequence. 2) We then learn
the motion-language relation by the supervision of paired text-motion datasets [11, 33]. We train
MotionGPT on the supervised motion-language translation, where the input is either a human motion
or a text description.After unsupervised and supervised training processes, we aim to equip our model
with the understanding of text and motion relationships.

Instruction Tuning Stage. We construct a multi-task text-motion dataset by formulating it as
instructions, building upon the foundation of existing text-to-motion datasets such as HumanML3D
[11] and KIT [33]. Specifically, we define 15 core motion tasks, such as motion generation with text,
motion captioning, motion prediction, and others. For each task, we compose dozens of different
instruction templates, resulting in more than one thousand different tasks, each having a unique
instruction prompt. For example, an instruction prompt for motion generation task could be “Can
you generate a motion sequence that depicts ‘a person emulates the motions of a waltz dance’?”.
Similarly, for the motion captioning task, the instruction prompt could be “Provide an accurate caption
describing the motion of <motion_tokens>”, where <motion_tokens> represents a sequence of motion
tokens generated by our motion tokenizer. We have demonstrated the efficacy of instruction tuning in
Sec. 4.3, which leads to improvement across various tasks and enhances the model performance for
unseen tasks or prompts. More examples of prompts are provided in the supplements.

4 Experiments

Extensive comparisons evaluate the performance of our MotionGPTs across multiple motion-relevant
tasks and datasets. Details of the dataset settings, evaluation metrics, and implementation specifics
(Sec. 4.1) are provided. We first present a uniform benchmark by comparing our approach with other
SOTAs across various tasks (Sec. 4.2). Then, we evaluate each specific comparison on text-to-motion
(Sec. 4.2), motion-to-text (Sec. 4.2), motion prediction and motion in-between (Sec. 4.2). The
supplements include more qualitative results, user studies, and further implementation details.

4.1 Experimental Setup

Datasets. General motion synthesis can support diverse task settings, and thus previous datasets
and a modified benchmark are utilized to evaluate MotionGPT. The study primarily focuses on two
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1. 15種類のモーション-テキストタスクを定義
2. 各タスクのInstruction テンプレートを作成

3. Instruction テンプレートを使い学習データ
を作成し、T5モデルをFine-tuneする

例: Text-to-motion: ⻘字がtext description
Can you generate a motion sequence that depicts ‘a person emulates 
the motions of a waltz dance’?
例: Motion-to-text: ⻘字が量⼦化されたモーショントークン
Provide an accurate caption describing the motion of <motion_tokens>

Motion GPT 完成
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Figure 3: Training Scheme. We introduce three training steps for our MotionGPT (Sec. 3.3): First
V learn a codebook for discrete motion representation. Then we train language using a mixture
of language and motion data to learn the semantic coupling between text and motion. Finally, we
fine-tune the model in a multi-task text-motion dataset with instructions.
Motion-language Pre-training Stage. The T5 models [38, 5] are trained and fine-tuned on natural
language datasets with instruction-based phrasing [5, 28]. We continue to pre-train this model using a
mixture of language and motions data in both unsupervised and supervised manners: 1) To generalize
to various downstream tasks like [7, 37, 38, 28], we follow [38] to design an objective, where a
certain percentage (15%) of tokens in the input tokens Xs are randomly replaced with a special
sentinel token. On the other side, the corresponding target sequence is constructed by extracting
the dropped-out spans of tokens, delimited by the same sentinel tokens used in the input sequence,
along with an additional sentinel token to indicate the end of the target sequence. 2) We then learn
the motion-language relation by the supervision of paired text-motion datasets [11, 33]. We train
MotionGPT on the supervised motion-language translation, where the input is either a human motion
or a text description.After unsupervised and supervised training processes, we aim to equip our model
with the understanding of text and motion relationships.

Instruction Tuning Stage. We construct a multi-task text-motion dataset by formulating it as
instructions, building upon the foundation of existing text-to-motion datasets such as HumanML3D
[11] and KIT [33]. Specifically, we define 15 core motion tasks, such as motion generation with text,
motion captioning, motion prediction, and others. For each task, we compose dozens of different
instruction templates, resulting in more than one thousand different tasks, each having a unique
instruction prompt. For example, an instruction prompt for motion generation task could be “Can
you generate a motion sequence that depicts ‘a person emulates the motions of a waltz dance’?”.
Similarly, for the motion captioning task, the instruction prompt could be “Provide an accurate caption
describing the motion of <motion_tokens>”, where <motion_tokens> represents a sequence of motion
tokens generated by our motion tokenizer. We have demonstrated the efficacy of instruction tuning in
Sec. 4.3, which leads to improvement across various tasks and enhances the model performance for
unseen tasks or prompts. More examples of prompts are provided in the supplements.

4 Experiments

Extensive comparisons evaluate the performance of our MotionGPTs across multiple motion-relevant
tasks and datasets. Details of the dataset settings, evaluation metrics, and implementation specifics
(Sec. 4.1) are provided. We first present a uniform benchmark by comparing our approach with other
SOTAs across various tasks (Sec. 4.2). Then, we evaluate each specific comparison on text-to-motion
(Sec. 4.2), motion-to-text (Sec. 4.2), motion prediction and motion in-between (Sec. 4.2). The
supplements include more qualitative results, user studies, and further implementation details.

4.1 Experimental Setup

Datasets. General motion synthesis can support diverse task settings, and thus previous datasets
and a modified benchmark are utilized to evaluate MotionGPT. The study primarily focuses on two
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Fig. 3: Typical human pose and shape representations with
the same pose in (a) 2D keypoints, (b) 3D keypoints, (c) 3D
marker keypoints, and (d) rotation-based model.

Fig. 4: Human motion data collection methods. (a) Examples
of marker-based motion capture setup where (left) optical
markers [65] or (right) IMUs [66] are attached to the subject’s
body surface. (b) Example of the markerless multiview
motion capture system [41]. (c) Pseudo-labeling pipeline
involves using pose or mesh estimators to generate pseudo
labels [67]. (d) Example interface for manual collection using
MikuMikuDance (MMD) resources.

some works [33], [34] model the human with statistical mesh
models that further capture the shape of the body and the
deformations that occur during movement. A widely-used
statistical body model is the Skinned Multi-Person Linear
(SMPL) model [33].

The SMPL model is parametrized by a set of pose and
shape parameters, which can be used to generate a 3D mesh
of a human body in a specific pose and shape, as shown in
Figure 3 (d). Pose parameters ✓ 2 RK⇥3 of each joint are
defined by the relative rotation with respect to its parent in
a standard skeletal kinematic tree with K = 24 joints. For
simplicity, we include the root orientation as part of the pose
parameters for the root joint in our formulation. The shape
parameters � 2 R10 indicate the body shape configurations,
such as height. Given the pose and shape parameters, the
model deforms accordingly and generates a triangulated
mesh comprising N = 6890 vertices as M(✓,�) 2 RN⇥3.
The deformation process M(✓,�) is differentiable with
respect to the pose ✓ and shape � parameters. Once the
final mesh is obtained, sparse 3D keypoints can be mapped
from vertices through a pretrained linear regressor. Other
models such as SMPL-X [34] extends SMPL [33] model and
constructs a comprehensive model, wherein the body, face,
and hands are modeled jointly. In addition to SMPL-based
linear models, alternative modeling approaches have been
explored, such as GHUM [63] and STAR [64]. To ensure
conciseness, we employ the shorthand term “Rot.” in the
tables below to encompass both joint-based 3D rotations and
their applications in statistical human models (e.g. SMPL),
without delving into intricate differentiation between the
two.

3.1.2 Motion Data Collection
There are four main approaches to collecting human motion
data: (i) marker-based motion capture, (ii) markerless motion
capture, (iii) pseudo-labeling, and (iv) manual annotation.

Marker-based motion capture involves placing small re-
flective markers or Inertial Measurement Units (IMUs) at
specific locations in the subject’s body and then tracking the
movement of these markers in a 3D space. See Figure 4 (a) for
illustration. This data can then be used to obtain 3D keypoints
by applying forward kinematics [39] or a parametric body
mesh such as SMPL [33] with the help of MoSh [68]. Optical
markers provide more accurate data than IMUs, but are
less portable and are typically used in indoor environments,
while IMUs can be used in outdoor settings.
Markerless motion capture solutions track the movement of
the subject’s body without the need for markers from one or
multiple cameras and use computer vision algorithms (e.g.,
[69], [70], [71]) to get the 3D motion by exploiting multi-view
geometry, as shown in Figure 4 (b). Multiple RGB or RGB-D
cameras will be set up and synchronized during the capture
process. This solution is less accurate than marker-based
motion capture, but is more convenient and can be used in a
wider range of settings.
Pseudo-labeling of human motion is primarily intended
for in-the-wild captured monocular RGB images or videos.
This involves predicting 2D or 3D human keypoints with
existing human pose estimators such as OpenPose [72] and
VideoPose3D [37], or fits body model to image evidence to
generate pseudo 3D mesh labels, e.g., by using SMPLify-X
[67]. See Figure 4 (c). However, pseudo-labels tend to have
more errors compared to motion capture systems.
Manual annotation involves designing human motion with
an animation engine manually, typically using a team
of skilled artists. Figure 4 (d) shows an example engine
interface of MikuMikuDance (MMD). While this approach
can produce high-quality animations, it is expensive, time-
consuming, and not scalable.

3.2 Motion Generation Methods

We roughly classify human motion generation methods into
two classes. The first class of methods is based on regression
models to predict human motion using features encoded
from input conditions. They fall into the supervised learning
paradigm and aim to establish a direct mapping from input
conditions to target motions. The other class of methods base
on generative models. They focus on modeling the underlying
distribution of motion (or joint distribution with conditions)
in an unsupervised manner. Typical deep generative models
include Generative Adversarial Networks (GANs), Varia-
tional Autoencoders (VAEs), Normalizing Flows, and Denois-
ing Diffusion Probabilistic Models (DDPMs). In addition to
the general generative models, a task-specific model, motion
graph, has also been widely used especially in the field
of computer graphics and animation. Figure 5 shows an
overview of different generative models. In the following,
we will briefly go over commonly used generative models in
motion generation.
Generative Adversarial Networks. GANs [21] are a class
of generative models composed of two neural networks:
the generator G and the discriminator D. The generator
produces synthetic data from a noise vector z to deceive
the discriminator. Conversely, the discriminator tries to
differentiate between real data and synthetic data produced
by the generator. This dynamic between the generator and
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TABLE 2: Datasets for human motion generation. “Kpts.” and “Rot.” denotes keypoints and 3D rotations, respectively.

Name Venue Collection Representation Subjects Sequences Frames Length Condition Remarks

Human3.6M [39] TPAMI 2014 Marker-based Kpts. (3D) 11 - 3.6M 5.0h - 15 actions
CMU Mocap [65] Online 2015 Marker-based Rot. 109 2605 - 9h - 6 categories, 23 subcategories
AMASS [40] ICCV 2019 Marker-based Rot. 344 11265 - 40.0h - Unifies 15 marker-based MoCap datasets
HuMMan [42] ECCV 2022 Markerless Rot. 1000 400K 60M - - 500 actions

KIT Motion Language [100] Big data 2016 Marker-based Kpts. (3D) 111 3911 - 10.3h Text 6.3k Text descriptions
UESTC [91] MM 2018 Markerless Kpts. (3D) 118 25.6K - 83h Text 40 Action classes
NTU-RGB+D [87] TPAMI 2019 Markerless Kpts. (3D) 106 114.4K - 74h Text 120 Action classes
HumanAct12 [7] MM 2020 Markerless Kpts. (3D) 12 1191 90K 6h Text 12 Action classes
BABEL [96] CVPR 2021 Marker-based Rot. 344 - - 43.5h Text 260 Action classes
HumanML3D [3] CVPR 2022 Marker-based & Markerless Kpts. (3D) 344 14.6K - 28.5h Text 44.9K Text descriptions

Tang et al. [117] MM 2018 Marker-based Kpts. (3D) - 61 907K 1.6h Music 4 genres
Lee et al. [118] NeurIPS 2019 Pseudo-labeling Kpts. (2D) - 361K - 71h Music 3 genres
Huang et al. [119] ICLR 2021 Pseudo-labeling Kpts. (2D) - 790 - 12h Music 3 genres
AIST++ [115] ICCV 2021 Markerless Rot. 30 1,408 10.1M 5.2h Music 10 genres
PMSD [120] TOG 2021 Marker-based Kpts. (3D) 8 - - 3.8h Music 4 genres
ShaderMotion [120] TOG 2021 Marker-based Kpts. (3D) 8 - - 10.2h Music 2 genres
Chen et al. [86] TOG 2021 Manual annotation Rot. - - 160K 9.9h Music 9 genres
PhantomDance [123] AAAI 2022 Manual annotation Rot. - 260 795K 3.7h Music 13 genres
MMD-ARC [8] MM 2022 Manual annotation Rot. - 213 - 11.3h Music -
MDC [126] MM 2022 Manual annotation Rot. - 798 - 3.5h Music 2 genres
Aristidou et al. [128] TVCG 2022 Marker-based Rot. 32 - - 2.4h Music 3 genres
AIOZ-GDANCE [129] CVPR 2023 Pseudo-labeling Rot. >4000 - - 16.7h Music 7 dance styles, 16 music genres
Trinity [134] IVA 2018 Pseudo-labeling Kpts. (2D) 1 23 - 4.1h Speech Casual talks
TED-Gesture [136] ICRA 2019 Pseudo-labeling Kpts. (3D) - 1,295 - 52.7h Text TED talks
Speech2Gesture [130] CVPR 2019 Pseudo-labeling Kpts. (2D) 10 - - 144h Speech TV shows, Lectures
TED-Gesture++ [135] TOG 2020 Pseudo-labeling Kpts. (3D) - 1,766 - 97.0h Speech, Text Extension of [136]
PATS [132] ECCV 2020 Pseudo-labeling Kpts. (2D) 25 - - 251h Speech, Text Extension of [130]
Speech2Gesture-3D [137] IVA 2021 Pseudo-labeling Kpts. (3D) 6 - - 33h Speech Videos from [130]
BEAT [144] ECCV 2022 Marker-based Rot. 30 2508 30M 76h Speech, Text, Emotion 8 emotions, 4 languages
Chinese Gesture [146] TOG 2022 Marker-based Rot. 5 - - 4h Speech, Text Chinese
ZEGGS [150] CGF 2023 Marker-based Rot. 1 67 - 2.3h Speech, Style 19 Styles
SHOW [148] CVPR 2023 Pseudo-labeling Rot. - - - 27h Speech Videos from [130]

WBHM [153] ICAR 2015 Marker-based Rot. 43 3704 691K 7.68h Object 41 objects
PiGraph [182] TOG 2016 Markerless Kpts. (3D) 5 63 0.1M 2h Scene, Object 30 scenes, 19 objects
PROX [155] ICCV 2019 Markerless Rot. 20 60 0.1M 1h Scene, Object 12 indoor scenes
i3DB [159] SIGGRAPH 2019 Pseudo-labeling Kpts. (3D) 1 - - - Scene, Object 15 scenes
GTA-IM [154] ECCV 2020 Marker-based Kpts. (3D) 50 119 1M - Scene Synthetic, 10 indoor scenes
GRAB [97] ECCV 2020 Marker-based Rot. 10 1334 1.6M - Object 51 objects
HPS [187] CVPR 2021 Marker-based Rot. 7 - 300K - Scene 8 large scenes, some > 1000 m2

SAMP [160] ICCV 2021 Marker-based Rot. 1 - 185K 0.83h Scene, Object 7 objects
COUCH [66] ECCV 2022 Marker-based Rot. 6 >500 - 3h Scene, Chairs 3 chairs, hand interaction on chairs
HUMANISE [16] NeurIPS 2022 Marker-based Rot. - 19.6K 1.2M - Scene, Object, Text 643 scenes
CIRCLE [168] CVPR 2023 Marker-based Rot. 5 >7K 4.3M 10h Scene 9 scenes

and semantic relevance annotations. It also includes facial
expressions and multi-lingual speeches.
Chinese Gesture [146] is a Chinese speech gesture dataset
that allows for the exploration of cross-language gesture
generation.

In addition to MoCap-based solutions, several works also
propose to extract the audio-motion pairs from character
animation resources produced by animators. For example,
Chen et al. [86] and MMD-ARC [8] utilize MikuMikuDance
(MMD) resources from the anime community. Phantom-
Dance [123] recruits a team of experienced animators in-
structed by professional dancers to create the dance motions.
MDC. Multi-Dancer Choreography [126] dataset focuses on
group dance and they invite the dancers to arrange mo-
tion phrases and annotate the temporal dancer activation
sequences.

7.2.2 In-the-wild Datasets
Lee et al. [118] collects dance videos from the Internet with
keywords (ballet, Zumba, and hip-hop) and extract 2D body
keypoints with OpenPose [72].
Huang et al. [119] addresses the lack of a long-term dance
generation dataset. It features one-minute music-dance pairs
from the Internet.
AIOZ-GDANCE [129] collects in-the-wild group dancing
videos along with music and fits SMPL sequences to the
tracked 2D keypoints using a temporal extension of SMPLify-
X [67]. They manually fix the incorrect cases for 2D keypoints
and 3D motion, and use human annotations for multi-person
relative depth.

TED-Gesture [136] is a co-speech gesture of TED talks
that contains videos and English transcripts (along with
timestamps for phrases). The authors use OpenPose [72] to
extract 2D poses, then design a neural network to convert
2D poses into 3D poses.
Speech2Gesture [130] is a speaker-specific gesture dataset.
It is based on the unlabeled in-the-wild videos of television
shows and university lectures. The pseudo ground truth
is obtained with an off-the-shelf 2D pose estimation algo-
rithm [72]. The dataset contains 10 speakers with diverse
motion styles, including television show hosts, university
lecturers, and televangelists, and therefore enables studying
person-specific motion generation.
TED-Gesture++ [135] extends TED-Gesture [136] with more
videos, featuring synchronized video, speech audio, and
transcribed English speech text. The 3D body keypoints are
obtained with a temporal 3D pose estimation method [37].
PATS. Pose-Audio-Transcript-Style [132] extends [130] to more
speakers including 15 talk show hosts, 5 lecturers, 3 YouTu-
bers, and 2 televangelists. Similarly, they extract the skeletal
keypoints with OpenPose [72]. In addition, PATS provides
the transcripts corresponding to motion and audio signals.
Speech2Gesture-3D [137] annotates the Speech2Gesture
dataset [130] with state-of-the-art 3D face [190], [191],
body [192] and hand [193] pose estimation algorithms. Some
videos and subjects from [130] are excluded due to low
resolution and poor 3D reconstruction results.
SHOW. Synchronous Holistic Optimization in the Wild [148]
fits SMPL-X [67] parametric model with hand gestures and

モーションデータだけでも
これだけある

最近、Motion-Xという8万以上
のテキストとモーションのペア
データセットが出てきた。
(Motion-X++も出てくる予定)
Motion-X: A Large-scale 3D Expressive Whole-
body Human Motion Dataset, Lin+ , 
NeurIPS2024

近年になって利⽤可能な
データが増えてきた
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Fig. 3: Typical human pose and shape representations with
the same pose in (a) 2D keypoints, (b) 3D keypoints, (c) 3D
marker keypoints, and (d) rotation-based model.

Fig. 4: Human motion data collection methods. (a) Examples
of marker-based motion capture setup where (left) optical
markers [65] or (right) IMUs [66] are attached to the subject’s
body surface. (b) Example of the markerless multiview
motion capture system [41]. (c) Pseudo-labeling pipeline
involves using pose or mesh estimators to generate pseudo
labels [67]. (d) Example interface for manual collection using
MikuMikuDance (MMD) resources.

some works [33], [34] model the human with statistical mesh
models that further capture the shape of the body and the
deformations that occur during movement. A widely-used
statistical body model is the Skinned Multi-Person Linear
(SMPL) model [33].

The SMPL model is parametrized by a set of pose and
shape parameters, which can be used to generate a 3D mesh
of a human body in a specific pose and shape, as shown in
Figure 3 (d). Pose parameters ✓ 2 RK⇥3 of each joint are
defined by the relative rotation with respect to its parent in
a standard skeletal kinematic tree with K = 24 joints. For
simplicity, we include the root orientation as part of the pose
parameters for the root joint in our formulation. The shape
parameters � 2 R10 indicate the body shape configurations,
such as height. Given the pose and shape parameters, the
model deforms accordingly and generates a triangulated
mesh comprising N = 6890 vertices as M(✓,�) 2 RN⇥3.
The deformation process M(✓,�) is differentiable with
respect to the pose ✓ and shape � parameters. Once the
final mesh is obtained, sparse 3D keypoints can be mapped
from vertices through a pretrained linear regressor. Other
models such as SMPL-X [34] extends SMPL [33] model and
constructs a comprehensive model, wherein the body, face,
and hands are modeled jointly. In addition to SMPL-based
linear models, alternative modeling approaches have been
explored, such as GHUM [63] and STAR [64]. To ensure
conciseness, we employ the shorthand term “Rot.” in the
tables below to encompass both joint-based 3D rotations and
their applications in statistical human models (e.g. SMPL),
without delving into intricate differentiation between the
two.

3.1.2 Motion Data Collection
There are four main approaches to collecting human motion
data: (i) marker-based motion capture, (ii) markerless motion
capture, (iii) pseudo-labeling, and (iv) manual annotation.

Marker-based motion capture involves placing small re-
flective markers or Inertial Measurement Units (IMUs) at
specific locations in the subject’s body and then tracking the
movement of these markers in a 3D space. See Figure 4 (a) for
illustration. This data can then be used to obtain 3D keypoints
by applying forward kinematics [39] or a parametric body
mesh such as SMPL [33] with the help of MoSh [68]. Optical
markers provide more accurate data than IMUs, but are
less portable and are typically used in indoor environments,
while IMUs can be used in outdoor settings.
Markerless motion capture solutions track the movement of
the subject’s body without the need for markers from one or
multiple cameras and use computer vision algorithms (e.g.,
[69], [70], [71]) to get the 3D motion by exploiting multi-view
geometry, as shown in Figure 4 (b). Multiple RGB or RGB-D
cameras will be set up and synchronized during the capture
process. This solution is less accurate than marker-based
motion capture, but is more convenient and can be used in a
wider range of settings.
Pseudo-labeling of human motion is primarily intended
for in-the-wild captured monocular RGB images or videos.
This involves predicting 2D or 3D human keypoints with
existing human pose estimators such as OpenPose [72] and
VideoPose3D [37], or fits body model to image evidence to
generate pseudo 3D mesh labels, e.g., by using SMPLify-X
[67]. See Figure 4 (c). However, pseudo-labels tend to have
more errors compared to motion capture systems.
Manual annotation involves designing human motion with
an animation engine manually, typically using a team
of skilled artists. Figure 4 (d) shows an example engine
interface of MikuMikuDance (MMD). While this approach
can produce high-quality animations, it is expensive, time-
consuming, and not scalable.

3.2 Motion Generation Methods

We roughly classify human motion generation methods into
two classes. The first class of methods is based on regression
models to predict human motion using features encoded
from input conditions. They fall into the supervised learning
paradigm and aim to establish a direct mapping from input
conditions to target motions. The other class of methods base
on generative models. They focus on modeling the underlying
distribution of motion (or joint distribution with conditions)
in an unsupervised manner. Typical deep generative models
include Generative Adversarial Networks (GANs), Varia-
tional Autoencoders (VAEs), Normalizing Flows, and Denois-
ing Diffusion Probabilistic Models (DDPMs). In addition to
the general generative models, a task-specific model, motion
graph, has also been widely used especially in the field
of computer graphics and animation. Figure 5 shows an
overview of different generative models. In the following,
we will briefly go over commonly used generative models in
motion generation.
Generative Adversarial Networks. GANs [21] are a class
of generative models composed of two neural networks:
the generator G and the discriminator D. The generator
produces synthetic data from a noise vector z to deceive
the discriminator. Conversely, the discriminator tries to
differentiate between real data and synthetic data produced
by the generator. This dynamic between the generator and
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Fig. 5: An overview of different generative models.

the discriminator can be viewed as a zero-sum or min-max
game. The loss function representing their interaction can be
formulated as:

LD = �Ex⇠px [log(D(x))]� Ez⇠pz [log(1�D(G(z)))], (1)
LG = �Ez⇠pz [log(D(G(z)))]. (2)

With the rise of deep learning, various deep learning-based
GANs have been proposed. Models such as DCGAN [73],
PGGAN [74], and StyleGAN [75], [76] have demonstrated
remarkable achievements and potential. These advancements
in GANs have contributed significantly to the field of gener-
ative models, especially in the generation of synthetic data.
However, GANs face several challenges, including training
instability, convergence problems, and mode collapse.
Variational Autoencoders. VAEs [19] are notable generative
models that provide robust solution for data representation.
They address the challanges of interactable likelihood by us-
ing feed-forward model, denoted as q�(z|x), to approximate
the intractable posterior. The primary optimization goal is
to minimize the KL divergence between this approximation
and the original posterior. VAEs adopt the Evidence Lower
Bound (ELBO) as loss function:

ELBO = Ez⇠q�(z|x)
log(p✓(x|z))�DKL(q�(z|x)||p✓(z)) (3)

VAEs efficiently generate and infer new samples due to the
feed-forward mode of q�(z|x). Additionally, the reparameter-
ization trick enables differentiable sample generation and the
utilization of a reconstruction-based loss function, ultimately
enhancing training efficiency and stability. These advantages
have led to the widespread adoption of VAEs variants, such
as CVAE [77], LVAE [78], and VQ-VAE [79], in various fields
and drive advances in generative models. However, VAEs
are subject to the risk of posterior collapse and may produce
less sharp samples compared to GANs.
Normalizing Flows. GANs and VAEs implicitly learn the
probability density of data. They can hardly calculate the ex-
act likelihood. In contrast, Normalizing Flows [20] is a class of
generative models that explicitly learn the data distribution
p (x) and allows for tractable probability density estimation.
These models employ a series of invertible transformations
{fi}1:N to map a simple prior distribution p(z0) (e.g., a
standard Gaussian) to a complex data distribution p(x):

zi = fi (zi�1) (4)
x = zN = fN � fN�1 � · · · � f1(z0) (5)

The density of the target distribution can be obtained by
applying the change of variables theorem:

log p(zi) = log p(zi�1)� log

����det
dfi

dzi�1

���� (6)

log p(x) = log p(z0)�
KX

i=1

log

����det
dfi

dzi�1

���� (7)

where det is short for the determinant of a square matrix.
Normalizing Flows can be typically trained by maximizing
the log-likelihood of the observed data. Owing to the invert-
ible transformation, Normalizing Flows offer flexibility, exact
likelihood computation, and easy data sampling. However,
they require a large number of transformations to model
complex distributions and can be computationally expensive
and difficult to train.
Diffusion Models. Diffusion models [22], [80], [81] define
a forward diffusion process that gradually adds a small
amount of Gaussian noise to the input data x0 in T steps,
producing a series of noisy samples {xt}1:T . Noise is sched-
uled by {�t}1:T .

q(xt|xt�1) = N (xt;
p
1� �txt�1,�tI), (8)

q(x1:T |x0) =

TY

t=1

q(xt|xt�1). (9)

As T ! 1, xT is actually a Gaussian distribution. If
we know the reverse transition q(xt�1|xt), then we can
sample from a Gaussian prior xt ⇠ N (0, I) and run the
diffusion process in reverse to get a sample from the real
data distribution p(x0). However, since q(xt�1|xt) depends
on the entire dataset and is hard to estimate, we train a neural
network p✓ to match the posterior q(xt�1|xt,x0), a tractable
Gaussian, instead of q(xt�1|xt):

p✓(xt�1|xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)) (10)

p✓ is learned by optimizing the ELBO like VAE. In practice,
diffusion models are able to produce high-quality samples
and can benefit from stable training. However, it relies on
a long Markov chain of reverse diffusion steps to generate
samples, so it can be computationally expensive and slower
than GANs and VAEs.
Motion Graph. Motion graph [82], [83], [84] can be rep-
resented mathematically as a directed graph G = hV,Ei
where V denotes the set of nodes or vertices, and E denotes
the set of directed edges or transitions. Each node v 2 V
represents a pose or keyframe, and each directed edge
e 2 E connects two vertices (v1, v2) and represents a
feasible transition between the corresponding poses. Motion
graphs are first constructed based on a collection of motion
clips. To ensure smooth transitions, the algorithm identifies
compatible poses within the motion clips and connects
them with edges, forming a graph that can be traversed
to generate new motion sequences. After constructing the
motion graph, a random walk W = (v1, v2, . . . , vn) can be
performed on the graph, starting from an initial node and
following the directed edges. The output motion sequence is
a concatenation of the poses corresponding to the traversed
nodes, ensuring smooth transitions between consecutive
poses. Meanwhile, further constraints can be incorporated
as optimization objectives [85], [86]. This process effectively

この研究ではVQ-VAEで量⼦化と
エンコード/デコードを兼ねている

今のトレンド、画像⽣成で成功し
たように、モーション⽣成も成功

基本的には画像⽣成を踏襲している

→⾔語処理⼿法で扱うには妥当な選択
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まとめ
• ⾔語と現実世界を経由するための「モーション」という⽅向性
• 「モーションデータ」の扱い⽅の簡単な導⼊
• Motion-GPT： 先端であるにも関わらず簡単な実装

利⽤可能なデータも増えている
= 参⼊しやすい

• 鍵は量⼦化：シンボルにしてしまえば、NLPの領域
• 調査されていないこと/気になること

• モーションにも⽂法や、⾔語に共通する性質があるのか？
• モーションと⼀緒に学習した⾔語モデルは物理法則を学習しているのか？

• 「ゆっくり-速い」「右-左」などの速度や⽅向、⼤きさなどがどう特徴量化されている？
• 現状は「モーション」と「モーションの説明⽂」ペアのみ

• 別種のモーションとテキストペアの可能性

• モーションがNLPを「コンピュータの外」へ連れ出すきっかけになる？
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