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Keypoints
Point cloud downsampling technique that accelerates 
global registration error minimization

https://staff.aist.go.jp/k.koide

https://github.com/koide3/caratheodory2

To reduce points as few as possible while retaining the result as accurate as possible,
we find a subset of input points that yields the same quadratic error function as that of 
the original set via efficient coreset extraction

Hessian matrix 𝑯 can be represented with at most 𝐷2 + 1 rows of Jacobian matrix 𝑱
without approximation via Caratheodory set extraction

k-th row of J

Selected rows
(at most 𝐷2 + 1 rows)

Weights

Better non-linearity approximation accuracy under displacements

13 hours / 22 GB

1.7 hours / 0.25 GB

• No downsampling

• Exact downsampling

Global Registration Error Minimization

• A sampling result gives the same quadratic registration error function as 
that of the original one at the evaluation point

• Only 29 residuals are required to be re-linearized at a minimum

• Drastic reduction of memory consumption (by 99%) and  processing time 
(by 87%) while retaining the accuracy

Problem and Proposal

Exact Downsampling Experimental Results

More Information

https://twitter.com/k_koide3

☺ Accurate loop closing for frames with a very small overlap
☺ Accurate propagation of per-point scan matching uncertainty to pose variables

☹ Needs to remember point correspondences for each factor
☹ Needs to re-evaluate registration errors every optimization iteration

More accurate than the conventional pose graph optimization

Large memory consumption and computation cost

Directly minimizes registration errors over the entire map (i.e., multi-scan registration)

Point Cloud Downsampling
Conventional methods (e.g., random and geometry-aware sampling) introduce approx
errors and require a trade-off between processing cost (# of points) and accuracy

[Reijgwart, RA-L 2020] [Wang, RA-L 2022] [Yokozuka, ICRA2021]

Proposal

Error function Information matrix / vector ConstantSource / Target points

Gauss-Newton optimization models an error function in the quadratic form

Exact downsampling selects a subset of points that yields the same quadratic function

Quadratic function parameters calculated using original set / extracted subset

Weights / Residual indicesEvaluation point

s.t.

During optimization, 𝑓𝑅𝐸𝐺 is re-relinearized using the selected subset (i.e., coreset)

Coreset Extraction Algorithm

Proposed Approach to Downsampling
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Caratheodory theorem

Every point in the convex hull of a set 𝑺 ∈ ℝ𝑁 can be 
represented as a combination of 𝑁 + 1 points in 𝑺

Because 𝝁𝒉 is in the convex hull of 𝒉𝒌,
𝑯 can be represented by a subset ෨𝑱 with
at most 𝐷2 + 1 rows in 𝑱 (Caratheodory set)

[Maalouf, NeurIPS 2019]

We use an efficient Caraheodory set extraction algorithm [Maalouf, 2019], which 
takes 𝑂(𝑁𝐷) time, and extend it to:

- reconstruct 𝒃 and 𝑐 in addition to 𝑯 to recover the original quadratic function
- control accuracy-vs-speed  by changing the number of data to be selected
- speed up the algorithm by eliminating non-upper-triangular elements of 𝑯

Target points (10,000 pts)  𝒫𝑖 Source points (10,000 pts)  𝒫𝑗

Downsampled points (29 residuals) ෨𝒫𝑗
29 Downsampled points (512 residuals) ෨𝒫𝑗

512

𝒫𝑗 , ෨𝒫𝑗
29, ෨𝒫𝑗

512 all yield the same quadratic registration error function for 𝒫𝑖 at the evaluation point

Approximation Accuracy

Application to Global Trajectory Optimization

Evaluation on KITTI dataset

• 4,540 pose variables
• 585,417 registration error factors
• Re-linearize registration errors of 10,000 points

for each factor at every optimization iteration

Optimization time and memory consumption

Large accuracy gain compared to pose graph optimization Small accuracy drop with downsampling

The classic Caratheodory set extraction 
algorithm with SVD on hyper-plane takes 
𝑂(𝑁2𝐷2) time
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