OCTOBER 1 - 5, 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems

Keypoints

Point cloud downsampling technique that accelerates global registration error minimization

-zcz iROS

- A sampling result gives the **same quadratic registration error** function as that of the original one at the evaluation point
- Only 29 residuals are required to be re-linearized at a minimum
- Drastic reduction of memory consumption (by 99%) and processing time (**by 87%**) while retaining the accuracy

Problem and Proposal

Global Registration Error Minimization

Directly minimizes registration errors over the entire map (i.e., multi-scan registration)

Observation of the second seco Observation of per-point scan matching uncertainty to pose variables

More accurate than the conventional pose graph optimization

Needs to remember point correspondences for each factor Solution Needs to re-evaluate registration errors every optimization iteration

Large memory consumption and computation cost

Point Cloud Downsampling

Conventional methods (e.g., random and geometry-aware sampling) introduce approx errors and require a trade-off between processing cost (# of points) and accuracy

[Reijgwart, RA-L 2020] [Wang, RA-L 2022] [Yokozuka, ICRA2021]

Proposal

To reduce points as few as possible while retaining the result as accurate as possible, we find a subset of input points that yields the same quadratic error function as that of the original set via **efficient coreset extraction**

Exact Point Cloud Downsampling for Fast and Accurate Global Trajectory Optimization

Kenji Koide, Shuji Oishi, Masashi Yokozuka, and Atsuhiko Banno National Institute of Advanced Industrial Science and Technology, Japan

Exact Downsampling

Proposed Approach to Downsampling

Gauss-Newton optimization models an error function in the quadratic form

 $f^{REG}(\mathcal{P}_i, \mathcal{P}_j, \breve{T} \boxplus \Delta x)$ Error function Source / Target points

Exact downsampling selects a subset of points that yields the same quadratic function

 $f^{DOWN}(f^{REG}, \mathcal{P}_i, \mathcal{P}_j, \underline{\breve{T}_i}, \underline{\breve{T}_j}) = (\underline{w}_{ij}, \underline{g}_{ij}),$

H = H, s.t.

Quadratic function parameters calculated using original set / extracted subset

During optimization, <u>f^{REG} is re-relinearized using the selected subset</u> (i.e., coreset)

Coreset Extraction Algorithm

<u>Hessian matrix **H**</u> can be represented with at most $D^2 + 1$ rows of Jacobian matrix **J** without approximation via Caratheodory set extraction

Because μ^h is in the convex hull of h_k , **H** can be represented by a subset \tilde{J} with at most $\underline{D^2 + 1}$ rows in **J** (Caratheodory set)

The classic Caratheodory set extraction algorithm with SVD on hyper-plane takes $O(N^2D^2)$ time

We use an efficient Caraheodory set extraction algorithm [Maalouf, 2019], which takes O(ND) time, and extend it to:

- reconstruct **b** and c in addition to **H** to recover the original quadratic function
- control accuracy-vs-speed by changing the number of data to be selected

[Maalouf, NeurIPS 2019]

$$\approx \Delta x^T \underline{H} \Delta x + 2 \underline{b}^T \Delta x + \underline{c},$$
Information matrix / vector Constan

Evaluation point Weights / Residual indices

$$\mathbf{b} = \tilde{\mathbf{b}}, \quad \underline{c} = \tilde{c},$$

Caratheodory theorem

Every point in the convex hull of a set $S \in \mathbb{R}^N$ can be represented as a combination of (N + 1) points in S

- speed up the algorithm by eliminating non-upper-triangular elements of **H**

$\mathcal{P}_{j}, \tilde{\mathcal{P}}_{j}^{29}, \mathfrak{C}$

Application to Global Trajectory Optimization

Evaluation on KITTI dataset

- <u>4,540 pose variables</u>
- <u>585,417 registration error factors</u>

Optimization time and memory consumption

- <u>No downsampling</u>
- Exact downsampling 1.7 hours / 0.25 GB

Pose graph optimization (Identity) Pose graph optimization (Hessian)

Pose graph optimization (Hessian + Dense) Registration error minimization + Exact sampling (M=2)

Large accuracy gain cor

Experimental Results

Approximation Accuracy

Downsampled points (29 residuals) $\tilde{\mathcal{P}}_i^{29}$

Downsampled points (512 residuals) $\tilde{\mathcal{P}}_i^{512}$

AIST

all yield the same quadratic registration error function for \mathcal{P}_i at the evaluation point

Better non-linearity approximation accuracy under displacements

• Re-linearize registration errors of <u>10,000 points</u> for each factor at every optimization iteration

13 hours / 22 GB

	Sequence 05			Method	ATE [m]	Optimization time [h]
00	02	05	08			
16257 ± 0.7520	23.0856 ± 8.2752	15140 ± 0.6760	0.3636 ± 3.2800	Exact sampling (M=29)	0.9553 ± 0.4650	1.67
1.0237 ± 0.7329	23.9650 ± 6.2752	1.5149 ± 0.0700	9.3030 ± 3.2890	Exact sampling (M=256)	0.9549 ± 0.4646	1.88
$1.3/7/ \pm 0.6051$	9.3406 ± 3.1490	1.6249 ± 0.8489	5.0532 ± 2.5991	Exact sampling (M-1024)	0.9549 ± 0.4647	2 36
1.1846 ± 0.5625	9.3393 ± 3.1486	1.6240 ± 0.8488	5.0520 ± 2.5993	Exact sampling (W=1024)	0.9549 ± 0.4047	2.50
$ 0.9553 \pm 0.4650$	8.9679 ± 3.0856	0.2917 ± 0.1060	4.4394 ± 2.5294	Original points (10,000 points)	0.9549 ± 0.4647	13.21
*****************			***************************************			
npared to pose graph optimization Small accuracy drop with downsampling						

More Information

https://github.com/koide3/caratheodory2

https://staff.aist.go.jp/k.koide

https://twitter.com/k koide3

