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Keypoints

Point cloud downsampling technique that accelerates
global registration error minimization

« A sampling result gives the same quadratic registration error function as
that of the original one at the evaluation point

* Only 29 residuals are required to be re-linearized at a minimum

 Drastic reduction of memory consumption (by 99%) and processing time
(by 87%) while retaining the accuracy

Problem and Proposal

Global Registration Error Minimization

Directly minimizes registration errors over the entire map (i.e., multi-scan registration)

©) Accurate loop closing for frames with a very small overlap
© Accurate propagation of per-point scan matching uncertainty to pose variables

|£7 More accurate than the conventional pose graph optimization

@ Needs to remember point correspondences for each factor
@ Needs to re-evaluate registration errors every optimization iteration

I} Large memory consumption and computation cost

Point Cloud Downsampling

Conventional methods (e.g., random and geometry-aware sampling) introduce approx
errors and require a trade-off between processing cost (# of points) and accuracy

[Reijgwart, RA-L 2020] [Wang, RA-L 2022] [Yokozuka, ICRA2021]

Proposal

To reduce points as few as possible while retaining the result as accurate as possible,
we find a subset of input points that yields the same quadratic error function as that of
the original set via efficient coreset extraction
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Exact Downsampling

Proposed Approach to Downsampling

Gauss-Newton optimization models an error function in the quadratic form

fRES (P, P;, T B Ax)

Error function Source /

~ Ax' HAz +2b' Az +c,

Constant

Information matrix / vector

Exact downsampling selects a subset of points that yields the same quadratic function

fD{}WN(fREG:Pi} Pja Tia T‘}) — (ui&ja g’i_‘f):

Evaluation point Weights /

st. H=H, b=b  c=¢

Quadratic function parameters calculated using original set / extracted subset

During optimization, f2£¢ is re-relinearized using the selected subset (i.e., coreset)

Coreset Extraction Algorithm

Hessian matrix H can be represented with at most D% + 1 rows of Jacobian matrix J
without approximation via Caratheodory set extraction

H = JTJ — E agak — Zﬂaizten(t::t,‘,C aj) th =
k-th row of J
Because u" is in the convex hull of hy, Caratheodory theorem
H can be represented by a subset J with
at most D% + 1 rows in J (Caratheodory set) o h1=h ¢
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The classic Caratheodory set extraction
algorithm with SVD on hyper-plane takes
O(N4D?) time

p,h’ = wa;za —+ 'wazb —+ 'wjzc

Every point in the convex hull of a set § € RN can be
represented as a combination of (N 4+ 1) pointsin S

We use an efficient Caraheodory set extraction algorithm [Maalouf, 2019], which
takes O(ND) time, and extend it to:

- reconstruct b and c in addition to H to recover the original quadratic function
- control accuracy-vs-speed by changing the number of data to be selected
- speed up the algorithm by eliminating non-upper-triangular elements of H

[Maalouf, NeurlPS 2019]
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Experimental Results

Approximation Accuracy

Target points (10,000 pts) 2; Source points (10,000 pts) 7

Downsampled points (29 residuals) #/*°

~

P, P72, all yield the same quadratic registration error function for ; at the evaluation point
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(b) Exact sampling (a) Random sampling

Better non-linearity approximation accuracy under displacements

Application to Global Trajectory Optimization

Evaluation on KITTI dataset

« 4,540 pose variables

« 585,417 reqistration error factors

* Re-linearize registration errors of 10,000 points
for each factor at every optimization iteration

Optimization time and memory consumption

13 hours /22 GB
 Exact downsampling 1.7 hours / 0.25 GB

* No downsampling

Sequence Method ATE [m] Optimization time [h]
Method 00 02 05 08 | -------------------- |
. ) Exact sampling (M=29) 0.9553 + 0.4650 1.67
Pose graph optimization (Identity) 1.6257 + 0.7529  23.9856 + 8.2752 1.5149 + 0.6760  9.3636 + 3.2890 Exact sampling (M=256) 00546 " 0. 4¢ae | 88
Pose graph optimization (Hessian) 1.3777 4+ 0.6051  9.3406 =+ 3.1490 1.6249 + 0.8489  5.0532 + 2.5991 E pl ne M_l Py 0.9549 1+ 0.4647 536
Pose graph optimization (Hessian + Dense) 1.1846 + 0.5625  9.3393 + 3.1486 1.6240 + 0.8488  5.0520 =+ 2.5993 xact sampling ( ) .
= Registration error minimization + Exact sampling (M=29) | 0.9553 4 04650 89679 4+ 3.0856  0.2917 4 0.1060  4.4394 + 2.5294 E Original points (10,000 points) E 0.9549 + 0. 464?] 13.21

Large accuracy gain compared to pose graph optimization Small accuracy drop with downsampling

More Information

Q https://github.com/koide3/caratheodory?

ﬁ https://staff.aist.go.jp/k.koide
X  https://twitter.com/k_koide3
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