
Identification of a Specific Person using Color, Height, and Gait Features
for a Person Following Robot

K. Koidea,∗, J. Miuraa

aDepartment of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan

Abstract

This paper describes a person identification method for mobile service robots using image and range data. Person
identification is a necessary function in order for mobile service robots to locate the target person for those services.
Among various sensory features, image-based appearance features have often been used for person identification.
They are, however, not effective in severe illumination environments such as a strong backlight. Therefore, we use
two illumination-independent features, height and gait, in addition to appearance features for a more robust identi-
fication. To this end, we have developed a new method of extracting the gait feature (step length and speed), based
on a maximum likelihood estimation of supporting leg positions in accumulated range data. We combine these fea-
tures and use an online boosting approach to create the specific person classifier. It allows the robot to identify the
specific person robustly even in a severe illumination environment. We tested our multi-feature person identification
method, combined with a range data-based person tracker, in a specific person following scenario to demonstrate the
effectiveness of this method.

Keywords: Multi-feature person identification, gait feature, mobile service robots.

1. Introduction

There is an increasing demand for service robots
which can attend and support a person. Such robots are
expected to provide services, such as guiding, guarding
and elderly care. Person following is a necessary func-
tion of personal service robots, in order to provide such
services to a specific person. Fig. 1 shows an exam-
ple of following behavior. To follow a person, the robot
has to be able to continuously identify the person, and
the identification function has to be robust and usable
in both indoor and outdoor environments since persons
move across these environments in their daily life.

One way is identification by tracking, that is, to track
a person over time and identify him/her based on mo-
tion continuity. The person tracking function has been
widely studied in many published works. Especially for
mobile robots, laser range finders (LRFs) are often used
for person detection and tracking thanks to their reli-
ability and wide field of view [1, 2, 3]. These works
detect persons from range data and track the persons
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based on their positions. However, if a person is oc-
cluded by other persons for several seconds, the robot
may lose track of the target person or track another per-
son erroneously. It is, therefore, necessary to identify a
specific person from only the sensory features obtained
for a frame or a short period.

Image-based tracking methods (e.g., [4, 5]) have an
advantage in that various information for identification
can be obtained while tracking. Possible types of infor-
mation include color of clothing [6], height [7], face [8],

Figure 1: Person following robot.
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(a) outdoor. (b) indoor.

Figure 2: Extremely severe illumination environments which mobile
robots may face.

gait [9, 10], and skeletal information [11].
Many appearance features are used in image-based

identification, for example HSV, Lab and XYZ color
space histogram [12, 13], Haar-like [14], HOG [15],
LBP [15] and SIFT [16] features. Those features are,
however, not applicable to severe illumination environ-
ments such as a strong backlight or darkness, where col-
ors and edges are not reliably obtained. It is therefore
necessary to combine other features, including those
from other sensors, for more robust identification.

Person re-identification has been extensively studied
in computer vision domain [17, 18, 19, 20, 21]. In
these works multiple non-overlapping cameras are put
in an environment, and persons are tracked and identi-
fied across the cameras for surveillance. Recent person
re-identification methods use novel identification proce-
dures, such as automatic discriminative video fragments
selection [19]. These methods significantly improve
identification performance under observation noise and
illumination changes among cameras. However, it is
difficult to apply these methods to mobile robots directly
for the following two reasons. First, as a robot moves,
the background changes and often becomes very com-
plicated. This makes it difficult to obtain an accurate
foreground mask for each person and eliminate effects
from the background. Secondly, Most of person re-
identification methods rely on appearance features. In
the case of mobile robots, since cameras are put at a
lower height than in surveillance systems, lights or the
sun may easily come into sight (see Fig. 2, for exam-
ple), and mobile robots may face to extremely severe il-
lumination environments where appearance features are
significantly degraded.

Person identification using gait analysis has recently
become popular [9, 10, 22]. These works extract and
use frequency components from silhouette images of a
walking person for identification. Since they also as-
sume a static background, these methods cannot be di-
rectly applied to mobile robots. Little has been pro-
posed for gait analysis using range data [23, 24, 25].

Cifuentes et al. [23] measured the gait features, such as
leg distance and leg orientation, from a mobile robot to
realize a smooth human-robot interaction. The relative
position between the robot and the person is, however,
very limited for avoiding that legs are occluded by the
opposite leg. Nakamura et al. [24] and Song et al. [25]
put several LRFs on the ground and extracted the gait
feature from these data. Since a mobile robot has a sin-
gle viewpoint, a leg is often occluded by the other leg;
the measured gait may be degraded due to this occlu-
sion.

Height features are used for well calibrated and fixed
cameras [7]. Since the height of a person is fixed and
specific to the person, it is suitable for person identifica-
tion. In the case of mobile robots, however, it is difficult
to measure the height of a person using only one camera
because the distance to the person can change largely. In
order to use the height feature for mobile robots, another
sensor which provides the distance is necessary.

Devices for identification, such as radio frequency
identifier (RFID) tags [26, 27] or inertial measurement
units (IMUs) [28], are sometimes used by a robot to lo-
cate a target person who has the devices. Although us-
ing such devices makes target localization easier, it re-
quires users to wear the devices every time when they
require services, and this may be inconvenient to the
users.

In this paper, we propose a method of robustly iden-
tifying a specific person using LRFs and cameras. In
order to ensure the redundancy of features in identifi-
cation, we introduce two illumination-independent fea-
tures, height and gait, in addition to appearance fea-
tures. We combine these features to realize a robust per-
son identification even in severe illumination environ-
ments. We validate by experiments that these two fea-
tures greatly increase the identification robustness. The
contributions of this paper are threefold. First, we pro-
vide a person identification method which adopts gait
and height features as well as color features for a ro-
bust identification. Secondly, we propose a gait esti-
mation method using LRF. The method extends Naka-
mura’s method [24] so that occlusion between legs are
explicitly considered in a maximum likelihood estima-
tion. Thirdly, we propose a new joint feature approach
for combining multiple features with different observa-
tion cycles.

Fig. 3 shows an overview of the proposed system.
The robot is equipped with two-layered laser range find-
ers (Hokuyo UTM-30LX) set at a torso and a leg height
and web cameras, and the maximum speed of the robot
is about 1.2 [m/s]. The method first uses range data
from LRF for tracking persons, and then identifies a
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Figure 3: Person tracking and identification system.
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Figure 4: Torso and leg detection procedure.

specific person. The color feature is extracted from im-
ages while the gait feature is extracted from range data.
The height feature is obtained by combining images and
range data. The proposed method combines these fea-
tures in order to identify the person in any environmen-
tal conditions.

The rest of the paper is organized as follows. Sec. 2
briefly explains a person detection and tracking method
using LRF data. Sec. 3 describes an overview of our
person identification framework using multiple features.
Sec. 4 describes person identification using color and
height features. Sec. 5 describes gait extraction and
its application to person identification. Sec. 6 describes
evaluation of the proposed person identification method.
Sec. 7 describes a person following strategy and experi-
mental results. Sec. 8 concludes the paper and discusses
future work.

2. Person Tracking

2.1. LRF-based Person Tracking

Multiple layered LRFs are sometimes used for hu-
man detection [29]. Typically these sensors are put at
the height of torsos and legs, and then both detection
results are combined. They assume that the torso of a
person is always detected, and if one or two legs are
found under a torso, the torso is judged as a true posi-
tive. By combining detection results of multiple layered
LRFs, we can reduce the number of false positives.

Torsos and legs are typically detected as a segment
separated from background by finding gaps in range

(a) usual (b) partially-occluded (c) merged

Figure 5: Detected torso candidates. Each green circle indicates the
position of a torso candidate.

data [1, 3]. However, in populated environments, tor-
sos and legs are not always separated from background
or another torso/leg. They are also often partially oc-
cluded by another objects. Our method first detects gaps
of range data for clustering (see Fig. 4(a)), and then
finds break points of merged torsos/legs in range data
using two threshold values ∆w and ∆d (see Fig. 4(b)).
For a point in a cluster, if two points separated from the
point by ∆w on both sides are closer by ∆d to the robot
than the point, the point is treated as a break point, and
the cluster is split at that point. We then apply a size
filtering to all the clusters to detect torso/leg candidates.
Fig. 5 shows examples of detected candidates for torso.

The detected candidates are classified into torso/leg
and other objects using Arras’s method [2] and Zain-
udin’s method [3], respectively. Features which repre-
sent the shape of the clusters are extracted, and then the
classification is performed by machine learning method,
such as SVM [30] and Adaboost [31].

We adopt a simple procedure for temporal data as-
sociation of detected persons, based on a Kalman filter
with a constant velocity model and a nearest neighbor
(NN) data association. This works well in the majority
of tracking cases. If a person is occluded by another per-
son for several seconds, however, it often fails to track
the person due to an incorrect data association. We thus
take occlusions of persons into account in data associa-
tion as follows.

We model each person by a circle located at the po-
sition predicted by the Kalman filter, and test whether
it is occluded or not. We first predict the range data
which should be obtained from the circle, and then the
predicted range data for the circle are compared with the
actual observed range data. If more than a half of the ac-
tual range data are closer to the robot than the predicted
range data, the person is considered as occluded. The
occluded persons are not associated with the detected
persons to prevent incorrect data association.
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Figure 6: Detecting the person region. The green circles indicates the
person position obtained by the LRF-based tracking. The red trans-
parent regions are the ROI calculated from the person position. The
green transparent regions are the detected person regions.

2.2. Detecting Person Region on the image

A person region on an image is required to extract
features for person identification. We first calculate a
Region of Interest (ROI) from a person position ob-
tained by the LRF-based tracking, and then detect the
upper body of the person from the ROI using the cas-
caded HOG classifier [32]. To calculate the ROI, we
model the person as a cylinder located at the person po-
sition and project the cylinder into the image (see Fig.
6). The detected regions are used for extracting the per-
son features.

3. Person Identification Framework

In this section, we briefly describe our person iden-
tification framework and a joint feature approach. To
identify the person, we employ the color, the height, and
the gait feature as it will be explained in detail in Sec.
4 and 5. Those features are merged into a joint feature
and learned by online boosting [33].

3.1. Person identification using online boosting

Online boosting is one of the online learning methods
which constructs an ensemble of weak classifiers and
uses it as a strong classifier. This method has been used
for people tracking due to its adaptability and real time
performance [14, 34]. In our case, each weak classifier
uses only one of the three features. Since online boost-
ing selects the best weak classifiers, only the effective
features are used for person identification. For example,
when they are in a severe illumination environment, the
color feature is not effective and only the height and the
gait features are used in the classifier. As a result, we

can obtain a reliable person classifier even in a severe
illumination environment (see experiments in Sec. 6).

While the target person is tracked by the LRF-based
tracker, the person classifier is updated with observed
features. While the LRF-based tracker is losing the tar-
get, updating of the person classifier stops and the robot
looks for the target person using the latest person clas-
sifier. If a person who is judged as the target person by
the classifier is found, the robot sets the person as the
target to track, and resumes tracking.

3.2. Joint feature for online boosting

The observation cycles of the proposed features are
largely different. To apply the features to online boost-
ing, they have to be synchronized and merged into a sin-
gle joint feature. There are basically two approaches to
synchronize features: synchronizing features to the one
with the shortest or the longest cycle.

If we take the first approach, while the feature with
the shortest cycle is varying, features with long cycles
are kept constant or interpolated. Weak classifiers using
those with long cycles are updated by one observation
until a new observation is obtained. It may cause an
overfitting. We thus take the second approach.

In a traditional way for the second approach, every
time the feature with the longest cycle is obtained, lat-
est feature values are simply concatenated to construct
a feature vector [35]. In our system, however, the obser-
vation cycles of the proposed features are very different
from each other; those of the color and the height feature
are about 30 msec long, while that of the gait feature is
about 500 msec long. By using only the latest feature
values, a large amount of observations with short cycles
are discarded (see Fig. 7(a)), and the identification re-
sult may be degraded. Therefore, we also make use of
the values of features with shorter cycles obtained dur-
ing an interval of the feature with the longest cycle by
calculating their statistics and concatenating them with
the feature with the longest cycle (see Fig. 7(b)).

In this paper, the statistics of two features, the height
and the gait, are calculated. Since the height of a person
is fixed, the distribution of the height feature can be ex-
pected to be unimodal. On the other hand, if we observe
a person for a while, the distribution of the color feature
may become multimodal due to illumination changes.
However, in our case, the duration for summarizing the
features is about 0.5 [sec] (i.e., the observation cycle of
the gait feature). We assume that the duration is small
enough to model the distribution of the color features as
unimodal. We thus employ mean and standard deviation
to summarize the features.
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Figure 7: Comparing joint feature approaches.

4. Image-based Person Identification

4.1. Color feature

Color features can easily be extracted from an image
and are effective for identifying a person by their cloth-
ing color [12, 14, 34]. Texture and shape features, such
as HOG [15] and SIFT [16], are also used for a more
robust person identification. However, all such appear-
ance features are weak under severe illumination envi-
ronments [17]. We thus use only a color feature as an
appearance feature for simplicity.

Color histogram is one of the most popular repre-
sentations for color modeling. We use a hue-saturation
histogram (HS-histogram) to reduce the effect of light
intensity changes. To obtain a histogram, we follow
Luber’s histogram extraction approach [14]. A HS-
histogram is constructed from pixels in a rectangular re-
gion with randomized positions and sizes in the person
region. By online boosting [33], histogram extraction
regions are sampled randomly, and regions with better
identification rate are used for constructing an ensem-
ble of classifiers. An example of histogram extraction
regions generated by online boosting is shown in Fig. 8.

4.2. Height feature

The height of a person can be used as another fea-
ture for person identification. Even if there are multiple
persons with similar heights, the height is useful for re-
ducing the number of candidates for the target person.
To calculate the height of a person, we first determine
the topmost position (i.e., sinciput of the head region) in

Figure 8: An example of regions for color histogram extraction se-
lected by online boosting. The blue rectangles are the regions for hue
histogram extraction, and the green rectangles are the regions for sat-
uration histogram extraction.

the image, and then estimate the height using the camera
geometry.

A saturation-intensity histogram of a hair region is
computed from the hair images in advance, and then
a Gaussian mixture model (GMM) is fitted to the his-
togram. Hair images are collected from about fifty peo-
ple in various environments, and the total number of hair
images are about two hundred. Since we collected hair
images from Asian people, most of pixels will be the
ones with zero saturation (black or gray pixels). We
thus fit a separate univariate GMM to the intensity dis-
tribution of zero saturation pixels. The resultant GMM
is used as the hair color model (see Fig. 9 and Fig. 10).
Currently, the hair color model is specialized for peo-
ple with black or gray hair. However, the model can be
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Figure 9: Hair color model. The green circles indicate gaussian distri-
butions. The gaussian in the high value region corresponds to bright
pixels caused by direct reflections of light.

Figure 10: Hair color model for zero saturation pixels. The blue line
indicates the hair color model and the rest lines indicate the gaussian
distributions which compose the model.

extended for other people by adding their hair images.
We make two images from an input image, one repre-

senting the similarity of hair color and the other repre-
senting the magnitude of the gradient, and calculate the
pixel-wise product of the images. The pixel which has
the highest product value is considered as the sinciput
of the person (see Fig. 11).

The sinciput position in the image is combined with
the person position obtained by the LRF-based tracking
to calculate the person height. The relationship between
the 3D coordinate relative to the camera (X,Y, Z) and the
projected screen coordinate (u, v) in the pinhole camera
model is given by

s

uv1
 =
 fx 0 cx

0 fy cy

0 0 1


XYZ
 , (1)

where ( fx, fy) is the focal length, and (cx, cy) is the center

Similarity to hair color

Sinciput

Magnitude of the gradient

Figure 11: Sinciput detection procedure.

point of the image. From this equation, we obtain:

Y =
Z(v − cy)

fy
(2)

The depth Z between the camera and the person is ob-
tained by the LRF-based tracking, and v is the sinciput
height in the image. By putting these values into eq. (2),
we obtain the persons height.

To reduce the effects of a failure of the sinciput detec-
tion, we apply a robust estimation to the person height
calculation. We adopt the M estimation with Tukey’s
biweight function [36] to estimate the person’s height.

5. LRF-based Person Identification

5.1. Gait feature
In computer vision, gait recognition has been stud-

ied widely [9, 10, 37]. It is, however, difficult to ap-
ply their methods to mobile robots since they assume a
static background to extract silhouette images of a walk-
ing person. By using an RGB-D camera, such as Kinect,
we can separate the person region from the background
region, and then extract gait features [38, 39]. However,
Stone et al. reported that the gait analysis using depth
images shows a lower accuracy than those using RGB
images [38]. Furthermore, infrared depth cameras, like
Kinect, are not usable in outdoor scenes.

When a person is walking, the legs of the person
swing and stop alternately. The interval when a leg is
stopping is referred to as stance phase, and the inter-
val when a leg is swinging is referred to as swing phase
[40]. During the stance phase, the leg which stops and
supports the body of the person is referred to as a sup-
porting leg. If we can obtain the supporting leg posi-
tions (where the leg touches the ground), we can cal-
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supporting leg positions
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Figure 12: Accumulated range data of the legs of a walking person.
High-density regions are considered as the over around the supporting
legs.

culate gait features, such as a step length and a stance
width, from these positions.

Nakamura et al. [24] proposed a method of detect-
ing the supporting leg positions from LRF data. They
observed the legs of walking persons by several LRFs
from different directions at a railway station and accu-
mulated range data over time. Since the supporting leg
positions have high accumulated values, they are ex-
tracted by Mean shift method [41]. Fig. 12 shows an
example accumulation of range data; supporting leg po-
sitions can be found at high-density positions. We basi-
cally use their approach but a difference is that a mobile
robot has a single viewpoint for LRF. This causes oc-
clusion of supporting legs by the other ones, which may
degrade the spotting of supporting leg positions in the
accumulated range data.

We thus develop a method of reliably spotting support
leg positions based on maximum likelihood estimation
which takes such occlusions into account.

Let X = [x1, y1, · · · , xn, yn] be positions of supporting
legs, Y = [x′1, y

′
1, · · · , x′n, y′n] be their observed positions,

and Σ = [σ2
1, · · · , σ2

n] be the observation variances. The
Likelihood function L is defined as:

L =
n∏

i=1

1
2πσ2

i

exp
− (x′i − xi)2 + (y′i − yi)2

2σ2
i

 (3)

We minimize the following objective function J.

J = − log L

=

n∑
i=1

log 2πσ2
i +

n∑
i=1

1
2σ2

i

{
(x′i − xi)2 + (y′i − yi)2

}
(4)

Since the step length of a person at a stationary walk is
constant [37], we assume that and obtain:

(xi+1 − xi)2 + (yi+1 − yi)2 = const.
i = (1, 2, · · · , n − 1)

(5)

From this equation, we obtain the following constraint
function gi:

gi =(xi+1 − xi)2 + (yi+1 − yi)2−
(xi − xi−1)2 − (yi − yi−1)2 = 0

i = (2, 3, · · · , n − 2, n − 1)

(6)

According to the method of Lagrange multiplier, we de-
fine the following function.

F = J −
n−1∑
i=2

λigi (7)

Then we find a set of leg positions which satisfies the
following equations:

∂F
∂xi
= 0,

∂F
∂yi
= 0,

∂F
∂λi
= 0 (8)

The partial differentiations of F are introduced as fol-
lowing equations. Note that λi = 0 for i ≤ 0.

∂F
∂xi
= − 1
πσ2

i

(x′i − xi) − 2λi(xi+1 − xi)

+2λi−1(xi+1 − xi−1) − 2λi−2(xi − xi−1) (9)
∂F
∂yi
= − 1
πσ2

i

(y′i − yi) − 2λi(yi+1 − yi)

+2λi−1(yi+1 − yi−1) − 2λi−2(yi − yi−1) (10)
∂F
∂λi
= x2

i+2 − 2xi+1(xi+2 − xi)

−x2
i + y2

i+2 − 2yi+1(yi+2 − yi) − y2
i (11)

We use five walking steps for estimation of support-
ing leg positions and the duration of the observation is
about 2.5 [sec]. We assume that the walking speed is
constant for this duration.

When the robot observes a walk from a side position,
a leg on the robot side is always visible while the other
is sometimes occluded. We thus give the observation
of the supporting leg on the robot side a small variance
(i.e., high reliability) and that of the other leg a large
variance (low reliability).

Fig. 13 shows how to determine the side of a support-
ing leg. We draw a line every two positions and see if
the point between them is on the same side as the robot.
In the case of the figure, pt−1 is given a small variance
while pt a large variance.

We use the pair of step length and walking speed as
the gait feature since those are determined by physical
characteristics of the person (e.g. weight, height, and
lengths of limbs) and specific to an individual [37].
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Figure 13: Assigning reliabilities to the measurement of supporting
legs.

(a) Estimation from observation from side of a person.

(b) Estimation from observation from front of a person.

Figure 14: Estimated step length.

5.2. Gait estimation evaluation

We describe an evaluation of our gait estimation
method. We placed markers evenly on the ground every
0.6 m and a person walked by stepping at every marker
so that we could obtain a constant step length. The robot
observed the walk both from the front and the side of the
person for comparison.

When the robot observes the person from the side (see
Fig. 14(a)), the measured step lengths fluctuate due to
the occlusion of the supporting leg. The effect of occlu-
sion is then largely reduced by the proposed estimation
method. On the other hand, when the robot observes
from the front (see Fig. 14(b)), the measured step length
is much more stable since no occlusions occur.

Table 1 summarizes the evaluation. The fluctuation
of the observation from the side is larger than the ob-
servation from the front obviously due to the occlusion.
The proposed estimation could reduce the fluctuation in
the both cases.

5.3. Gait identification experiment

A gait identification experiment was conducted. We
recorded gait data of about 30 steps long (about 20 sec-
onds long) for eight persons at a normal walking speed
as a training set and constructed a classifier for each per-
son using online boosting [33]. In the experiments, the
number of weak classifier selectors is five and each se-
lector contains ten weak classifiers. Fig. 15 shows the
gait data for training; we can see some persons (e.g.,
persons C, E, and H) have distinctive gaits.

We recorded another set of data in the same settings
for evaluating the identification performance. Table 2
shows the result of the experiment. The first row indi-
cates the constructed models, and the first column in-
dicates the test data. Each cell indicates the acceptance
rate of the test data by the constructed model. For model
C and D, the correct person shows a higher identifica-
tion rate than the others. For model A, B, E, F, and
H, the correct person’s are the second highest. These
results show that the gait feature is mostly effective to
identify a person or to reduce the number of possible
identities of a person.

The model B, however, shows the lower identification
rate for the correct person, since the gait data of person
B is in the most dense area. It is difficult to identify the
person using only the gait feature in some cases, such as
person B. This will be dealt with by combining with the
other features.

6. Person Identification Experiment

6.1. Person identification experiment

In order to compare the effectiveness of the features,
we conducted person identification experiments. In the
experiments, two people walk side by side while the
robot is controlled manually and follows both persons
and measures their person features. To evaluate the ef-
fectiveness of the each feature, five person classifiers
are constructed. These classifiers use the following fea-
tures, respectively.

1. Height feature
2. Gait feature
3. Color feature
4. All proposed features with the traditional joint fea-

ture approach
5. All proposed features with the proposed joint fea-

ture approach

For the classifiers with all the proposed features, we
tested two methods: one with a traditional joint feature
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Table 1: Step length estimation result.

w/ estimation w/o estimation
No. of data mean [m] SD [m] mean [m] SD [m]

observation from side 42 0.6006 0.01387 0.5988 0.06469
observation from front 32 0.6078 0.00862 0.6049 0.0114

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 .5 0 . 55 0 . 6 0 .6 5 0 .7 0 . 75 0 . 8 0 . 85 0 . 9

A

B

C

D

E

F

G

H

w
al

k
in

g
 s

p
ee

d
 [

m
/s

]

step length [m]

Figure 15: Observed gait data.

Table 2: Gait-based Identification Results.

A B C D E F G H

A 0.946 0.486 0.000 0.676 1.000 0.054 1.000 0.270

B 0.711 0.658 0.553 0.789 0.184 0.947 0.500 0.474

C 0.361 0.667 0.944 0.694 0.056 0.722 0.167 0.972

D 0.978 0.609 0.022 0.848 0.761 0.500 0.783 0.174

E 0.564 0.231 0.000 0.103 1.000 0.000 1.000 0.282

F 0.854 0.563 0.375 0.833 0.313 0.917 0.500 0.542

G 0.878 0.366 0.000 0.805 0.780 0.512 0.854 0.268

H 0.529 0.412 0.882 0.500 0.118 0.824 0.206 0.882

model

test data

Table 3: Precision of person identification.

height gait color all features with traditional all features with proposed
joint feature approach joint feature approach

experiment 1 0.542 0.712 0.949 0.949 0.966
experiment 2 0.924 0.532 0.684 0.937 0.937
experiment 3 0.810 0.726 0.903 0.921 0.948
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(a) Experiment 1. Persons with
the similar heights and the differ-
ent color clothes.

(b) Experiment 2. Persons with
the different heights and the sim-
ilar color clothes.

(c) Experiment 3. Persons with
the different heights and the dif-
ferent color clothes.

Figure 16: The environments of the person identification experiment.

approach and the other with the proposed one. In the all
experiments, online boosting contains 10 weak classi-
fier selectors, and each selector contains 10 weak clas-
sifiers.

The experiments are conducted in three different
cases (see Fig. 16); two persons are with similar colors
and different heights in case (a); those with different col-
ors and similar heights in case (b); those with different
colors and heights in case (c). The learning process of
the classifier with all the proposed features takes about
20 msec long for one person. We tested the proposed
system in this experiment, and calculate the precision
of the identification. Table 3 shows the result of the ex-
periments.

The classifiers using a single feature show a good pre-
cision in specific cases but not in the others. The clas-
sifiers with all the proposed features show superior per-
formances in all cases. In addition, the classifier with
the proposed joint feature shows equal or greater preci-
sion than the one with traditional one. This shows the
effectiveness of the proposed joint feature.

6.2. Person identification experiment in severe illumi-
nation environments

We conducted person identification experiments for
two target persons and for two different illumination
environments. Fig. 17 shows snapshots of the exper-
iments. In experiments 1 and 3, most of the persons
were wearing similarly colored clothes and sometimes
entered shadowed areas. In experiments 2 and 4, color
information is almost lost due to a strong backlight. In
all cases, it is very difficult to identify the target person
using color information only.

Fig. 18 shows snapshots of the experiment 2; The ex-
periment was conducted in the most severe illumination
environment. Green rectangles in the images indicate
detected persons and the red triangles above them indi-
cate the target person. At the beginning of the exper-
iment, the robot learned the features of the target per-

son and created a person classifier (Fig. 18 (a)), and
then some persons occluded the target person (Fig. 18
(b)(c)). The LRF-based tracker failed to track the target
person several times due to the occlusion of the person
(Fig. 18 (d)(e)). The robot however, found the correct
target person using the person classifier, and resumed
correct tracking (Fig. 18(f)). In this experiment, the
robot successfully continued to track a specific person in
spite of temporarily-lost situations thanks to the height
and the gait feature.

Table 4 shows the result of the four experiments.
The total time for the experiments was about 765 [sec]
and the target person was occluded by others 43 times
through all of the experiments. The robot lost track of
the target person 16 times due to occlusions. The per-
son classifier, however, found the correct target person
and resumed the tracking every time. The robot tracked
a wrong person as the target for 6 [sec] (0.8% of the ex-
periments) due to a wrong data association. However,
that person was then judged not to be the target and the
robot then found the correct person. Among the rest of
the time, the robot correctly tracked the target person for
620 [sec] (81.0%) and looked for him while calculating
the gait feature values for 139 [sec] (18.2%)

The person classifier with only the color feature was
also tested in the experiments. The robot with the classi-
fier successfully tracked the target person in experiment
1. In the other experiments, however, the robot tracked
wrong persons in many frames (221 [sec] (28.9%)) due
to severe illumination environments.

7. Person Following Framework

7.1. Tracking strategy
The LRF-based tracking method described above

may sometimes fail to track the target person. The robot
has to be able to recover from such a failure situation.
We therefore define three states which switch in the op-
eration as follows (see Fig. 19).
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(a) Experiment 1. Direct light con-
dition. Target person is subject A.

(b) Experiment 2. Backlight con-
dition. Target person is subject A.

(c) Experiment 3. Direct light con-
dition. Target person is subject B.

(d) Experiment 4. Backlight con-
dition. Target person is subject B.

Figure 17: The environments of the person identification experiment.

(a) (b) (c)

(d) (e) (f)

Figure 18: Person identification experiment in a severe illumination environment: Red triangles above green rectangles indicate the identified target
person.

Table 4: Result of the experiments in the severe environments.

exp. 1 exp. 2 exp. 3 exp. 4 total

time [sec] 157 213 195 200 765

occlusion of the target [times] 11 11 8 13 43

successfully tracked [sec] 128 168 167 157 620 (81.0%)

lost track of the target [sec] 29 45 22 43 139 (18.2%)

tracked wrong person [sec] 0 0 6 0 6 (0.8%)

lost track of the target [times] 3 6 3 4 16

wrong association [times] 0 0 1 0 1

successfully tracked [sec] 128 102 74 105 409 (53.5%)

lost track of the target [sec] 29 61 24 21 135 (17.6%)

tracked wrong person [sec] 0 50 97 74 221 (28.9%)

lost track of the target [times] 3 1 1 2 7

wrong association [times] 0 0 1 0 1
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the target person is lost

a person judged as the target person is found

learning tracking temporary lost

the person features are measured enough

Figure 19: State machine for person following behavior.

In the initial state, the robot measures the person fea-
tures while following the target person. If a sufficient
number of person features are measured, the robot con-
structs a person classifier from the features and transits
to the tracking state. In the tracking state, the robot per-
forms the usual tracking and identification. When the
LRF-based tracking loses the target, the robot transits
to the temporary lost state. In this state, while the robot
is looking for the target person using the person classi-
fier, the position of the target person is predicted from
the most recent person movement, and the robot moves
toward the position. If a person is judged as the target,
that is, the target person is re-identified, the robot tran-
sits to the tracking state.

7.2. Person following experiment
We applied the proposed system to person following

experiment. The experiment was conducted in both in-
door and outdoor environments. The experimental en-
vironment is a public space in Toyohashi university of
technology, and there were many ordinary persons. Fig.
20 shows snapshots of the experiment. The left images
show experimental scenes. The right images show the
images captured by the robot. The rectangular region
in the upper right corner of the right images indicates
range data and the conditions of the LRF-based tracker.
The circles in the region indicate the tracked persons by
the LRF-based tracker. The circles under the persons in
the images also indicate the position of the tracked per-
sons. Green rectangles in the images indicate detected
person regions and the red triangles above them indicate
the target person.

The experiment started in a populated outdoor en-
vironment. The robot followed a target person while
measuring his features (Fig. 20(a)). Then, the robot
constructed the person classifier and continued the fol-
lowing behavior. Several persons walked with the tar-
get person, and often occluded the target person (Fig.
20(b)). The LRF-based tracker lost the target person
due to the occlusion (Fig. 20(c)). The green circle in
the upper right rectangular region in the right image of
Fig. 20(c) indicates the predicted target person position
to witch the robot was moving. Once the target person
appeared and walked for several steps (Fig. 20(d)), the

robot realized that the person was the correct target to
track (Fig. 20(e)). After the robot followed the person
for a while, the target person moved to the indoor en-
vironment (Fig. 20(f)). While the person and the robot
were moving into the indoor environment, a strong il-
lumination change occurred (Fig. 20(g)) and the tar-
get person was also occluded by another person (Fig.
20(h)). However, the robot successfully found the tar-
get person (Fig. 20(i)(j)). After that, the person returned
to the outdoor environment and continued the following
behavior (Fig. 20(k)(l)).

The duration of the experiment is 920 [sec], and the
LRF-based tracker lost the target person 11 times due
to occlusions. However, the robot re-identified the tar-
get every time and successfully continued to follow
the target throughout the experiment. The average re-
identification time after the person appeared was 5.6
[sec]. Since during that time, the robot kept moving
towards the predicted position of the target, it was able
to find the target when he appeared again.

8. Conclusions and Discussion

This paper has described a method of identifying a
specific person using color, height and gait features. An
HS histogram is extracted from the randomized rectan-
gular region in the person region and used as a color
feature. To measure the height of a person, we de-
tect the sinciput position in the image using the hair
color model, gradient image, and the person position
obtained by the LRF-based tracking. We also develop
a new method of estimating the gait feature from accu-
mulated range data by spotting supporting leg positions
using mean shift and a maximum likelihood estimation
with a constant step length constraint. These features
are combined into the joint features and learned using
online boosting. We tested the proposed multi-feature
identification method in a scenario where occlusions
frequently occurred under a severe illumination envi-
ronment to show the effectiveness of the method.

We currently suppose that the target person stays
close enough to the robot so that the robot can recognize
them when they are not occluded. If the person happens
to be far from the robot, it then has to move around and
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search a wide area for the person. To reduce the possi-
bility of encountering such a situation, the robot has to
be able to reliably predict the movement of the person in
various cases. By using the predicted position, we can
narrow down areas where the person may be there, and
reduce the number of the candidates for the person. We
are now working on modeling person movements and
incorporating the predicted position information into the
current identification method.
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Figure 20: The person following experiment.
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