
Adaptive Hyperparameter Tuning for Black-box LiDAR Odometry

Kenji Koide1, Masashi Yokozuka1, Shuji Oishi1, and Atsuhiko Banno1

Abstract— This study proposes an adaptive data-driven hy-
perparameter tuning framework for black-box 3D LiDAR
odometry algorithms. The proposed framework comprises of-
fline parameter-error function modeling and online adaptive
parameter selection. In the offline step, we run the odometry
estimation algorithm for tuning with different parameters and
environments and evaluate the accuracy of the estimated trajec-
tories to build a surrogate function that predicts the trajectory
estimation error for the given parameters and environments.
Subsequently, we select the parameter set that is expected to
result in good accuracy in the given environment based on
trajectory error prediction with the surrogate function. The
proposed framework does not require detailed information
on the inner working of the algorithm to be tuned, and
improves its accuracy by adaptively optimizing the parameter
set. We first demonstrate the role of the proposed framework in
improving the accuracy of odometry estimation across different
environments with a simulation-based toy example. Further, an
evaluation on the public dataset KITTI shows that the proposed
framework can improve the accuracy of several odometry
estimation algorithms in practical situations.

I. INTRODUCTION

LiDAR odometry estimation is inevitable for autonomous
systems such as mobile service robots and autonomous
driving vehicles. A number of LiDAR odometry estimation
and mapping algorithms have been proposed, and many
autonomous systems are built based on these robust and
accurate algorithms. However, these algorithms are often
surprisingly complex and involve many hyperparameters.
Their performance can be significantly affected by the choice
of hyperparameters; therefore, the hyperparameters must be
fine-tuned depending on the system and environment. De-
spite their significance, hyperparameters are manually tuned
in most studies, which results in considerable human effort
and suboptimal parameter sets. Although a few studies have
proposed automatic parameter tuning methods for odometry
estimation [1], [2], they are all dedicated to specific algo-
rithms, sensors, and task configurations [3].

In our previous work, we proposed a general and auto-
matic hyperparameter optimization approach for black-box
odometry estimation methods [4]. This approach repeats the
parameter-sampling-and-trial loop with efficient parameter
space exploration based on sequential model-based optimiza-
tion (SMBO). It uses only information on the input parameter
set and output trajectory of the algorithm to be tuned (i.e.,
black-box modeling) and facilitates the improvement of the
performance of any odometry estimation methods without

1 All the authors are with the Department of Information Technology
and Human Factors, the National Institute of Advanced Industrial Sci-
ence and Technology, Umezono 1-1-1, Tsukuba, 3050061, Ibaraki, Japan,
k.koide@aist.go.jp

detailed information on their inner working. Although this
approach is effective in improving the performance of odom-
etry estimation methods on certain metrics and datasets, we
observed that it suffers considerably from overfitting to the
training sequences. If the training set contains only easy
sequences, the SMBO tends to choose a very aggressive
parameter set that results in instability in other sequences.
Conversely, if there is a difficult sequence in the training set,
the optimized parameter set tends to be very conservative,
resulting in deteriorated trajectory accuracy.

In this work, to deal with overfitting and achieve a
balance between robustness and accuracy, we propose a data-
driven approach for adaptively selecting the hyperparameters
of black-box odometry estimation methods. The proposed
framework automatically models the effects of the differ-
ences in hyperparameters on the behavior of the odometry
estimation algorithm, and then selects the best parameter set
for the current environment.

The proposed framework comprises offline parameter-
error function modeling and online adaptive parameter se-
lection. In the offline step, we run the odometry estimation
algorithm F with different parameter samples xj and envi-
ronments Ei and evaluate the trajectory estimation errors yij .
Subsequently, we build a surrogate function S that predicts
the trajectory estimation error of the algorithm for a given
parameter set and environment: S(xj , Ei) ' yij . In the
online step, we identify the parameter set x̃t that minimizes
the predicted trajectory error for the current environment Ẽt:
x̃t = arg min

x
S(x, Ẽt).

We first demonstrate the role of the proposed framework in
improving the accuracy of an odometry estimation algorithm
across different environments through a simulation-based
toy example. Further, an evaluation on the public dataset
KITTI shows that the proposed framework can be used in
real applications and improves the accuracy of odometry
estimation algorithms with completely different architectures
(Generalized ICP (GICP) odometry [5], LeGO-LOAM [6],
and SuMa [7]).

II. RELATED WORK

SLAM and odometry estimation algorithms are inherently
very complex and use many hyperparameters (e.g., point
cloud resolution, feature matching threshold, and keyframe
interval). It is known that, to achieve the best results, some
popular SLAM frameworks such as Google Cartographer
[8] need to fine-tune many hyperparameters that affect each



SMBO-based
Parameter Sampling

Odometry Estimation

Environment
Descriptor

Surrogate Function

Error Evaluation

Offline Parameter-Error Function Modeling

Input Cloud Input Cloud

Environment
Descriptor

SMBO-based
Parameter Selection

Odometry Estimation

Online Parameter Selection

Param1

P
ar

am
2

'

Fig. 1: Overview of the proposed adaptive parameter tuning framework.

other1. This tuning process requires a deep understanding of
the inner working of the frameworks and considerable human
effort of trial and error.

Despite the significance of hyperparameters, there are only
a few studies on the automatic parameter tuning of SLAM-
related algorithms. Nobili et al. automatically optimized
the outlier removal parameters of ICP algorithms for a
humanoid robot based on a metric of the overlap between
point cloud pairs [2]. Zheng used an exhaustive grid search
to optimize the parameters of a visual SLAM algorithm
(e.g., number of features, patch size, and edge threshold)
[9]. Similarly, Permeleau et al. investigated the changes in
the ICP registration accuracy depending on the parameter
values using exhaustive parameter-by-parameter evaluation
[1]. Although several techniques have been proposed for
the fine-tuning of SLAM-related algorithms for specific use
scenarios [3], all the above works are dedicated to specific
sensors, environments, and task configurations.

In the context of machine learning, hyperparameter tuning
has been recognized as an important step in maximizing
the performance of learning models [10]. When the number
of parameters to be tuned is small, fine-tuning is often
performed by exhaustive grid and random searches [11].
They are easy to implement and work well for classic models
that use only a few parameters (e.g., RBF SVM parameter
selection [12]). However, the required number of evaluations
with these methods rapidly increases as the number of
parameters increases. Thus, they are not suitable for tuning
computationally expensive models with many parameters
(e.g., deep neural networks).

In recent years, the sequential model-based optimization
(SMBO) approach has been used to efficiently optimize
many parameters in computationally expensive models [13],
[14]. This approach introduces a surrogate model that ap-
proximates the expensive model evaluation and samples
the parameter set that maximizes an acquisition criterion
(e.g., expected improvement) on the surrogate model. This

1https://google-cartographer-ros.readthedocs.io/
en/latest/tuning.html

facilitates the efficient exploration of the parameter space
with fewer evaluations. Recent deep-learning-based methods,
which require the optimization of many hyperparameters for
an expensive training model, have benefited from SMBO-
based automated hyperparameter tuning [15].

Although we can simply apply the SMBO approach to Li-
DAR odometry estimation such that the trajectory evaluation
metric is minimized on training sequences [4], we observed
that simple SMBO-based parameter optimization can con-
siderably suffer from overfitting to the training sequences
for two reasons. First, we typically have fewer training
sequences in the odometry estimation problem compared to
the usual machine learning problems. Second, the corruption
of the trajectory estimation results in a catastrophic error in
the trajectory evaluation metrics (e.g., absolute and relative
trajectory errors [16]), which causes the SMBO to choose
a very conservative parameter set. It is difficult for most
odometry estimation algorithms to deal with different en-
vironments using a single fixed parameter set; hence, we
argue that an adaptive mechanism to select an appropriate
parameter set depending on the environment is necessary
to further improve the trajectory estimation accuracy across
different environments.

Although there are a few works that adaptively optimize
the hyperparameters of specific algorithms depending on the
environment (e.g., adaptive octree-resolution selection for
visual SLAM [17]), to the best of our knowledge, no work
has proposed a general and adaptive hyperparameter tuning
framework without a limitation on the algorithms to be tuned.

III. METHODOLOGY

Fig. 1 shows an overview of the proposed adaptive
hyperparameter tuning framework for black-box odometry
estimation algorithms. We first model a surrogate function S
offline that predicts the trajectory estimation error for a given
parameter set x and environment descriptor E . To achieve
this, we run the odometry estimation algorithm multiple
times with different parameter samples xj and environments
Ei and evaluate the trajectory estimation errors yij . A k-
nearest neighbor regressor-based surrogate function is then

https://google-cartographer-ros.readthedocs.io/en/latest/tuning.html
https://google-cartographer-ros.readthedocs.io/en/latest/tuning.html


fitted to the evaluation results: S(xj , Ei) ' yij . To efficiently
explore the parameter space, we employ an SMBO-based pa-
rameter sampling technique. We then extract the environment
descriptor Ẽt for the input point cloud P̃t and identify the
parameter set x̃t that minimizes the predicted error with the
surrogate function: x̃t = arg min

x
S(Ẽt,x).

It should be noted that, while we assume uniform distribu-
tions for the parameters to be tuned for simplicity, the pro-
posed framework can naturally be extended to accept other
parameter distribution classes (e.g., discrete and categorical
distributions).

A. Offline Parameter-Error Function Modeling

For each training sequence D, we run the odometry esti-
mation algorithm F multiple times with different parameter
samples xj and obtain a set of estimated trajectories Tj =
F(D,xj). The accuracy of each trajectory is evaluated using
a metric G, such as relative trajectory errors (RTEs) [16]. We
use the notation G(F(D,x)) = G(x) for brevity. To effi-
ciently explore the parameter space, we employ the SMBO-
based parameter sampling technique shown in Algorithm 1.
The SMBO fits a surrogate model Mj to the evaluation
history H and samples a parameter set that maximizes the
acquisition criterion A on the surrogate model. We use the
expected improvement (EI) [18] as the acquisition criterion,
with the expectation that y negatively exceeds a threshold
y∗:

EIy∗ :=

∫ ∞
−∞

max (y∗ − y, 0) pMi(y|x)dy. (1)

The parameter set x∗ that maximizes EI can be determined
by introducing two density functions l(x) and h(x), which
are respectively fitted to the evaluation history where y <
y∗ and y >= y∗, and identifying the parameter set that
maximizes g(x)/l(x). y∗ is a threshold chosen such that
the quantile γ = p(y < y∗). We refer the reader to [13] for
a detailed derivation.

For parameter sampling, the SMBO is used to minimize
the average translational RTEs. We set the number of SMBO
iterations to 256, and thus obtain 256 parameter sets and
corresponding trajectories for each training sequence. Fig.
2 shows example parameter values of LeGO-LOAM [6]
sampled with the SMBO. The blue line indicates the density
of the sampled parameters given by the kernel density
estimation. It can be observed that the SMBO efficiently
explores the parameter space by taking more samples from
the region where the error is expected to be small.

For each frame i, we calculate the RTE yij of the sub-
trajectory starting from the frame with a parameter set
xj . The parameter values xj are then concatenated with
the environment descriptor Ei of the starting frame i to
compose a feature vector qij = [Ei,xj ], which describes the
combination of the environment and parameter values. We
then model a surrogate function S that predicts the estimation
error for a given parameter set and environment by fitting a k-
nearest neighbor regressor (k = 5) such that S(Ei,xj) ' yij .

Fig. 2: Example of parameters sampled with SMBO. The
blue dashed line indicates the density of the sampled param-
eters. More parameters are sampled from the region where
the error is expected to be small.

Algorithm 1 Sequential Model-Based Optimization [13]

1: H ← []
2: for j ∈ [1, · · · , N ] do
3: x∗ ← arg max

x
A (Mj−1 (x))

4: y∗ ← G (x∗)
5: H ← H∪ (x∗, y∗)
6: Fit Mj to H

return H

For simplicity, we use the descriptor of the first frame
of a sub-trajectory to predict the trajectory estimation error.
However, error prediction inherently requires information
on all the frames in the time period of the sub-trajectory.
Although this simplification can be justified by assuming
that consecutive frames have similar environment structures
in odometry estimation, extensions using a sequence of
descriptors to capture drastic environmental changes and
sensor motion can be considered in future work.

B. Online Parameter Selection

For the online parameter selection, we first extract the
environment descriptor Ẽt for the input point cloud P̃t and
find the parameter set x̃t that minimizes the predicted error
with the surrogate function:

x̃t = arg min
x

S(Ẽt,x). (2)

Because the surrogate function S is a k-nearest neighbor
regressor that is nonlinear and non-convex, its minimization
is not trivial. Thus, we again use the SMBO parameter
search to determine the best parameter set x̃t for the current
environment. We perform parameter selection every second
and update the parameter set.

C. Environment Descriptor

As a descriptor to represent the environment structure,
we use simple NDT (Normal Distributions Transform) voxel
classification-based features [19]. Following [19], we calcu-
late the normal distribution voxels for the input point cloud.
Based on the eigenvalues of the covariance matrices (λ1 >



C

A

A

C B

B

Fig. 3: Simulation environment for the toy example. The
robot moves across cave (A) and outdoor (C) environments
through an open space (B). These environments have very
different structures and thus require different parameter set-
tings.

λ2 > λ3), we classify the voxels into linear (λ2/λ1 < te),
planar (λ3/λ2 < te), and spherical (other cases) distribu-
tions; te is a constant in (0, 1). Each distribution class has
three subclasses based on the line tilt angle, plane tilt angle,
and eigenvalue ratio (λ1/λ2), and they are invariant to yaw
rotation. We count the number of each subclass for several
distance ranges and create a histogram (3.0 m × 10 bins ×
9 sub-classes). We then apply PCA dimensionality reduction
(D = 10) to obtain the feature vector E representing the
environment structure.

It is worth mentioning that the proposed framework is
agnostic to the environment descriptor, and other features
(e.g., hand-crafted [20] as well as learned features [21]) can
be used with slight modifications.

IV. EXPERIMENTS

A. Simulation-based Toy Example

To demonstrate the process where the proposed framework
adaptively selects parameters and improves the accuracy of
the odometry estimation across different environments, we
conducted experiments in a simulated environment, as shown
in Fig. 3. The environment consists of a cave (A), open space
(B), and outdoor street environments (C). They have very
different environmental structures and thus require different
parameter settings. We generate LiDAR point clouds at 10
Hz with the sensor configuration of Velodyne HDL32e.

We used a simple keyframe-based NDT scan matching
odometry algorithm with only two parameters: NDT voxel
resolution and keyframe update interval. This uses the NDT
algorithm with the specified voxel resolution value, and
updates the keyframe (registration target point cloud) every

A CB

N
DT

 re
so

lu
tio

n 
[m

]
Ke

yf
ra

m
e 

in
te

rv
al

 [m
]

Time [Frame ID]

Fig. 4: Adaptively selected parameters through different
environments in the toy example.

time the travelled distance from the last keyframe exceeds
the keyframe interval threshold parameter. These parameters
provide a trade-off between accuracy and stability (large
voxel size: better convergence and lower accuracy, large
keyframe interval: low drift and worse stability) and need
to be tuned depending on the environment.

For offline parameter-error function modeling, we
recorded four LiDAR data sequences and ground truth tra-
jectories for each of the cave and outdoor environments.
For each sequence, we sampled 256 parameter sets and
calculated the translational RTEs of 25 m sub-trajectories
to evaluate the estimated trajectories. For validation, we
recorded a sequence across the cave, open space, and outdoor
environments.

We ran the NDT scan matching odometry algorithm on
the validation sequence with three parameter settings: 1)
manually tuned baseline parameter set, 2) fixed parameter
set tuned with SMBO for the training sequences, and 3)
adaptively selected parameter sets. Fig. 4 shows a plot of
the adaptively selected NDT resolution and keyframe interval
parameters. It can be observed that small keyframe interval
values were selected to prevent estimation corruption in the
cave environment (A), whereas large interval values were
selected after the sensor moved out from the cave to improve
the accuracy (B)(C). It can also be observed that large NDT
resolution values tend to be selected in (B) and (C) to better
capture the structure of the open environments. It is worth
emphasizing that the proposed framework automatically de-
termines how the parameters should be tuned for different
environments using the data-driven approach; consequently,
it does not require detailed information on the inner working
of the algorithm to be tuned.

Table I shows the averaged translational RTEs for the dif-
ferent parameter settings. Although the fixed tuned parameter
set exhibited slightly better accuracy (0.759 %) compared
to the manually tuned baseline (0.767 %), the improvement



TABLE I: Translational RTEs [%] on the toy example
sequence with different parameter sets

Method Parameter setting RTE

NDT odometry
Baseline 0.767

Tuned (Fixed) 0.759 (-0.008)
Tuned (Adaptive) 0.530 (-0.237)

Values in parentheses are with respect to the baseline

Fig. 5: Parameters of GICP scan matching odometry sampled
with SMBO for KITTI sequence 00 to 06. The color of the
points indicates translational RTE [%].

was small. This is because it needed to select a conservative
parameter set for the cave environment, which did not
result in accuracy improvement in the outdoor environment.
In contrast, the adaptive parameter selection significantly
improved the estimation accuracy (0.530 %). This is because
it adaptively changed the parameter set from conservative to
aggressive after leaving the cave environment.

This simple toy example illustrates the necessity of an
adaptive parameter selection mechanism to enhance the
trajectory estimation accuracy across different environments.

B. Evaluation on KITTI

Next, we conducted an evaluation on a public LiDAR
odometry dataset, KITTI, to demonstrate that the proposed
approach improves the accuracy of several odometry estima-
tion algorithms in practical situations. The dataset contained
11 sequences recorded using Velodyne HDL-64E at a rate
of 10 Hz. We used sequences 00-05 for the parameter
optimization, and sequences 06-10 for validation.

(a) Environment (sequence 08) (b) Keyframe interval

Fig. 6: Example of adaptively optimized hyperparameters.

We evaluated three odometry estimation algorithms with
different architectures: keyframe-based GICP odometry [5],
LeGO-LOAM [6], and SuMa [7] 2. We added slight modifi-
cations to LeGO-LOAM and SuMa to dynamically update
the hyper-parameters via ROS param mechanism. As the
baseline, we manually tuned the parameter sets of the GICP
odometry and LeGO-LOAM for sequence 00. For SuMa,
we used the parameter set optimized for all the sequences in
[7]. We compared the trajectory errors of these algorithms
with 1) the manually tuned baseline parameter set, 2) a
fixed parameter set optimized with SMBO for the entire
training sequences, and 3) adaptively selected parameter sets
(the parameter-error function is modeled on the training set
offline, and the parameters are adaptively selected on each
sequence online). For the parameter-error function modeling
of the adaptive parameter selection, we used translational
RTEs of 100 m sub-trajectories as the evaluation metric.

The offline parameter-error function modeling terminated
in about six hours for each odometry estimation method. The
online feature extraction and parameter optimization, which
were executed every second, took 40 msec and 700 msec,
respectively.

Fig. 5 shows the parameters of the GICP odometry (max-
imum correspondence distance and keyframe interval) for
each training sequence (sequence 00-05) sampled during the
offline parameter-error function modeling. The color of the
points indicates the translational RTE. It can be observed
that different sequences require very different parameters. In
particular, sequence 01, which is the most difficult sequence
in KITTI owing to the feature-less environment structure,
requires a very large maximum correspondence distance
parameter to prevent estimation corruption. It can also be
observed that the required keyframe interval is significantly
changed for each sequence. This result clearly demonstrates
the necessity of the adaptive parameter tuning mechanism.
If a conservative parameter set is chosen for the difficult

2The list of tuned parameters of each algorithm is available
athttps://github.com/SMRT-AIST/automatic_tuning/
blob/devel/adaptive_parameters.md

https://github.com/SMRT-AIST/automatic_tuning/blob/devel/adaptive_parameters.md
https://github.com/SMRT-AIST/automatic_tuning/blob/devel/adaptive_parameters.md


TABLE II: Average translational RTEs [%] for KITTI

Method
Training set Test set

Seq. ID 00 01 02 03 04 05 Avg. 06 07 08 09 10 Avg.# Frames 4541 1101 4661 801 271 2761 1101 1101 4071 1591 1201

GICP
Baseline 1.30 2.42 1.72 1.08 1.89 0.90 1.46 0.78 1.30 1.43 1.17 1.72 1.33

Fixed 1.21 2.45 1.66 1.08 0.99 0.61 1.34 (-0.12) 0.55 1.35 2.00 1.06 1.12 1.54 (+0.21)
Adaptive 1.21 2.16 1.48 0.97 0.78 0.64 1.26 (-0.20) 0.57 0.92 1.18 1.22 1.50 1.13 (-0.20)

LeGO-LOAM
Baseline 1.73 13.33 1.76 1.61 1.35 1.07 2.44 1.05 0.97 1.69 1.33 1.77 1.52

Fixed 1.87 3.07 1.83 1.63 1.33 1.02 1.77 (-0.67) 1.09 1.02 1.76 1.29 1.83 1.56 (+0.04)
Adaptive 1.47 2.78 1.53 1.22 1.21 0.79 1.45 (-0.99) 0.90 1.02 1.58 1.28 1.73 1.43 (-0.09)

SuMa
Baseline 0.89 6.76 1.37 1.37 0.48 1.06 1.52 0.62 0.70 1.36 1.06 1.93 1.23

Fixed 0.84 5.59 1.27 1.14 0.56 0.87 1.35 (-0.17) 0.60 0.66 1.43 0.86 1.73 1.21 (-0.02)
Adaptive 0.90 5.69 1.24 1.19 0.58 1.00 1.39 (-0.13) 0.61 0.65 1.40 0.94 1.65 1.20 (-0.03)

Values in parentheses are with respect to the baseline

sequence (sequence 01), the estimation results of other
sequences would deteriorate. Conversely, if a parameter set
for another sequence (e.g., sequence 00) is chosen, the esti-
mation would be corrupted on the difficult sequence. There
is no parameter set that works well for all the sequences, and
thus the parameter set must be adaptively selected depending
on the environment.

Table II shows the translational RTEs averaged over 100
to 800 m trajectories for the odometry estimation algorithms
with different parameter settings. We used the KITTI official
evaluation code to calculate the RTEs.

Although the fixed parameter set optimized with SMBO
improved the RTEs of the GICP odometry for the training
sequences, the RTEs on the test set deteriorated compared
to the baseline. This is because the fixed parameter selection
strategy required to choose a conservative parameter set for
the difficult sequences to improve the RTEs on the training
set. The proposed approach significantly improved the RTEs
on both the training and test sets by adaptively selecting the
best parameter sets depending on the environment. Fig. 6
shows the adaptively selected keyframe interval values of the
GICP odometry for sequence 08. Small interval values were
selected on corners to prevent estimation corruption, whereas
large values were selected on several long straight paths to
reduce the odometry drift and achieve better accuracy.

The results of LeGO-LOAM exhibited a similar trend to
that of the GICP odometry. Although the fixed parameter set
significantly improved the translational RTEs on the training
set, the RTEs on the test set deteriorated. The adaptive
parameter selection successfully improved the RTEs for both
the training and test sets.

Although both the fixed and adaptive parameter sets sig-
nificantly improved the RTEs of SuMa on the training set,
the improvement on the test set was very small. This may be
because 1) the baseline parameter set was highly optimized
for the entire dataset, and 2) the modified parameters affected
the consistency of the surfel map of SuMa, resulting in better
accuracy in some test sequences (sequences 06, 07, 09, and
10) but worse accuracy in a long sequence (sequence 08).
These results indicate the shortcomings of the current form
of the proposed framework; it uses a simple environment
descriptor and regression model that may not capture the
fine behavior of the odometry estimation algorithm. We infer
that this can be further improved by considering as input

environment descriptor sequences to better represent the
changing environmental structures and introducing a small
amount of prior information on the relationship between the
parameters and odometry estimation algorithm behavior.

V. CONCLUSIONS

This study proposed an automatic and adaptive hyperpa-
rameter tuning framework for black-box LiDAR odometry
estimation algorithms. The proposed method first runs the
odometry estimation algorithm to be tuned with different
parameters and environments offline, and creates a surrogate
function to predict the estimation error for novel param-
eters and environments. For online parameter selection, it
chooses the parameter set that is expected to yield bet-
ter accuracy in the given environment with the surrogate
function. We employed an SMBO technique for efficient
offline parameter space exploration and online surrogate
function minimization. The evaluation results showed that the
proposed approach improves the accuracy of the odometry
estimation algorithms without detailed information on their
inner working.

While it has been shown that the proposed framework
enables to adaptively optimize hyper-parameters across dif-
ferent environments, it is still challenging to select good
parameters in novel environments. We plan to further eval-
uate and enhance the generality of the adaptively tuning
framework with, e.g., data augmentation and regularization
techniques.

ACKNOWLEDGMENT

This work was supported in part by a project com-
missioned by the New Energy and Industrial Technology
Development Organization (NEDO).

REFERENCES

[1] F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Siegwart,
“Tracking a depth camera: Parameter exploration for fast ICP,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, Sept. 2011.

[2] S. Nobili, R. Scona, M. Caravagna, and M. Fallon, “Overlap-based
ICP tuning for robust localization of a humanoid robot,” in IEEE
International Conference on Robotics and Automation. IEEE, May
2017.

[3] F. Pomerleau, F. Colas, and R. Siegwart, “A review of point cloud
registration algorithms for mobile robotics,” Foundations and Trends
in Robotics, vol. 4, no. 1, pp. 1–104, May 2015.



[4] K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Automatic hyper-
parameter tuning for black-box lidar odometry,” in IEEE International
Conference on Robotics and Automation. IEEE, May 2021.

[5] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Robotics:
Science and Systems. Robotics: Science and Systems Foundation,
June 2009.

[6] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, Oct. 2018.

[7] J. Behley and C. Stachniss, “Efficient surfel-based SLAM using 3d
laser range data in urban environments,” in Robotics: Science and
Systems. Robotics: Science and Systems Foundation, June 2018.

[8] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d LIDAR SLAM,” in IEEE International Conference on Robotics
and Automation. IEEE, May 2016.

[9] Z. Zheng, “Feature based monocular visual odometry for autonomous
driving and hyperparameter tuning to improve trajectory estimation,”
Journal of Physics: Conference Series, vol. 1453, p. 012067, Jan. 2020.

[10] P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: Importance of
hyperparameters of machine learning algorithms.” Journal of Machine
Learning Research, vol. 20, no. 53, pp. 1–32, Mar. 2019.

[11] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13, no.
null, p. 281–305, Feb. 2012.

[12] S. Han, Cao Qubo, and Han Meng, “Parameter selection in svm with
rbf kernel function,” in World Automation Congress, June 2012, pp.
1–4.

[13] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information

Processing Systems, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, Eds., Dec. 2011, pp. 2546–2554.

[14] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, Jan.
2016.

[15] X. Liang, “Image-based post-disaster inspection of reinforced concrete
bridge systems using deep learning with bayesian optimization,”
Computer-Aided Civil and Infrastructure Engineering, vol. 34, no. 5,
pp. 415–430, Dec. 2018.

[16] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, Oct. 2018.

[17] E. Vespa, N. Funk, P. H. J. Kelly, and S. Leutenegger, “Adaptive-
resolution octree-based volumetric SLAM,” in International Confer-
ence on 3D Vision. IEEE, Sept. 2019.

[18] D. Zhan and H. Xing, “Expected improvement for expensive opti-
mization: a review,” Journal of Global Optimization, vol. 78, no. 3,
pp. 507–544, July 2020.

[19] M. Magnusson, H. Andreasson, A. Nuchter, and A. Lilienthal,
“Appearance-based loop detection from 3d laser data using the normal
distributions transform,” in IEEE International Conference on Robotics
and Automation. IEEE, May 2009.

[20] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3d registration,” in IEEE International Conference on
Robotics and Automation. IEEE, May 2009.

[21] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match:
3d point cloud matching with smoothed densities,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE,
June 2019.


	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Offline Parameter-Error Function Modeling
	Online Parameter Selection
	Environment Descriptor

	Experiments
	Simulation-based Toy Example
	Evaluation on KITTI

	Conclusions
	References

