
Non-overlapping RGB-D Camera Network Calibration

with Monocular Visual Odometry

Kenji Koide1 and Emanuele Menegatti2

Abstract— This paper describes a calibration method for
RGB-D camera networks consisting of not only static over-
lapping, but also dynamic and non-overlapping cameras. The
proposed method consists of two steps: online visual odometry-
based calibration and depth image-based calibration refine-
ment. It first estimates the transformations between overlap-
ping cameras using fiducial tags, and bridges non-overlapping
camera views through visual odometry that runs on a dynamic
monocular camera. Parameters such as poses of the static
cameras and tags, as well as dynamic camera trajectory,
are estimated in the form of the pose graph-based online
landmark SLAM. Then, depth-based ICP and floor constraints
are added to the pose graph to compensate for the visual
odometry error and refine the calibration result. The proposed
method is validated through evaluation in simulated and real
environments, and a person tracking experiment is conducted
to demonstrate the data integration of static and dynamic
cameras.

I. INTRODUCTION

Camera networks have been widely used for various tasks,

such as surveillance and monitoring. More recently, the emer-

gence of affordable consumer RGB-D cameras allows the

construction of large RGB-D camera network, which realizes

rich human-machine interaction capabilities, such as people

tracking [1], skeleton tracking [2], and face recognition [3].

Extrinsic camera calibration is one of the essential tasks

for camera networks. It is necessary to know the poses of all

cameras with respect to a reference frame (so-called “world”

frame) to integrate the acquired images. The most common

way is to show a calibration pattern (e.g., checkerboard)

to two or more cameras, estimate their relative poses, and

then show the pattern to another new camera and any of

the calibrated ones to estimate the new camera pose with

respect to the calibrated ones. This process is repeated until

all the cameras are appropriately calibrated. This approach

is well-established for overlapping cameras [1], [4].

Such traditional calibration methods, however, have lim-

itations on camera arrangement. For the sake of view area

coverage, it is often desirable that cameras have as minimum

overlap as possible. In such cases, we need to put the

calibration pattern at a small common camera view on image

edges. Typically, there is distortion around the periphery of a

lens, which may affect the calibration accuracy. Moreover, if

1Kenji Koide is with the Department of Information Technology
and Human Factors, National Institute of Advanced Industrial Science
and Technology, Umezono 1-1-1, Tsukuba, 3050061, Ibaraki, Japan,
k.koide@aist.go.jp

2Emanuele Menegatti is with the Department of Information Engi-
neering, University of Padova, via Gradenigo 6/B, 35131, Padova, Italy,
emg@dei.unipd.it

Visual odometry

Static cameras
Non-overlapping
camera

Fig. 1: The non-overlapping cameras are bridged by visual

odometry running on a dynamic monocular camera.

camera views are completely separated and have no overlap-

ping regions, camera calibration with the traditional methods

will become impossible. Furthermore, the calibration pattern

detection becomes difficult when two cameras are distant

from each other, leading to deteriorated calibration result due

to the degraded pattern detection and pose estimation.

In this paper, we propose a method to calibrate RGB-

D camera networks consisting of static non-overlapping

cameras and a dynamic monocular camera through a visual

odometry technique (See Fig. 1). While calibrating the

transformations between overlapping cameras using fiducial

tags, we “bridge” non-overlapping camera views using the

dynamic camera trajectory estimated by a visual odometry

technique. In addition, we introduce a depth image-based cal-

ibration refinement technique to make the proposed method

robust to visual odometry errors.

The contribution of this paper is three-fold. First, a visual

odometry-based camera network calibration method is pro-

posed, which robustly estimates the transformations between

non-overlapping static cameras and a dynamic camera. Sec-

ond, a depth image-based calibration refinement technique

is introduced, which effectively improves the calibration

accuracy of cameras with small overlapping regions. Third,

the implementation is available as an open source software

on a public repository 1.

The rest of this paper is organized as follows. Sec. II

reviews related work on non-overlapping camera network

calibration. Sec. III describes the proposed visual odometry-

1https://github.com/koide3/sparse_dynamic_

calibration/



based calibration method and depth image-based refinement

technique. Sec. IV evaluates the proposed method in both

simulated and real environments, and an experiment to

demonstrate the integration of static non-overlapping cam-

eras and a dynamic camera. Sec. V concludes the paper.

II. RELATED WORK

Camera network calibration (i.e., extrinsic calibration of

multiple cameras) has been widely studied in the robotics

and computer vision communities, and a number of methods

have been proposed. The most common and established way

is to use a calibration pattern put on an overlapping region of

cameras. We can estimate the camera poses with respect to

the pattern using a PnP (Perspective-n-Points) algorithm [5].

Moreover, by integrating multiple pattern detection results,

such that the sum of the pattern pose errors is minimized [1],

[4], we can robustly estimate the transformations between

the overlapping cameras. However, for the sake of view area

coverage, it is desirable that cameras have minimum or no

overlap. In such cases, it is difficult or impossible to calibrate

the cameras with the traditional methods.

While overlapping camera network calibration has been

well-established, non-overlapping camera network calibra-

tion is still a challenging problem [6]. Several works tackled

this issue by using moving targets (e.g., pedestrians) [7],

[8], [9]. Those works simultaneously estimated the camera

poses and the moving target trajectories in regions out of

the camera views. However, the uncertainty of the target

motion makes the simultaneous estimation difficult, while the

calibration accuracy is inherently limited to the topological

level.

Huang et al. proposed a calibration method that exploits

a mobile robot [10]. They put a checkerboard on the mobile

robot and detected it from static cameras. Since the robot

motion can be estimated using odometry information even

when it moves out of the camera view, it is possible to

estimate the pose of a separated camera by detecting the

checkerboard when the robot enters in that camera view.

However, this method requires accurate odometry informa-

tion for calibration, as well as a robotic system, which could

be more expensive than the camera network itself.

An interesting idea recently proposed is to introduce a

support camera that bridges separated camera views. Zhao et

al. attached a fiducial tag to each static camera and calibrated

the camera poses by observing the tags with a support camera

[11]. This method can calibrate the camera poses as long as

the support camera can capture the attached tags. However,

in case the static cameras are distant or separated by a wall,

the support camera fails to capture the tags, and thus, the

camera poses cannot be calibrated.

Cansizoglu et al. utilized an RGB-D support camera for

non-overlapping camera calibration [12]. They first created a

3D environmental map using an RGB-D SLAM technique,

then estimated the static camera poses in the environment

by finding the 2D–3D correspondences between the images

of the static cameras and the 3D environmental map. Since

finding correspondences between an image and a 3D point

cloud map is not straightforward, they detected the corre-

spondences by comparing each keyframe image of the RGB-

D SLAM with each static camera image using an appearance-

based matching technique. Thus, this method requires that

any of the keyframes has a view similar to a static camera

view.

The method proposed by Pollok and Monari is also based

on 2D–3D correspondences [13]. They first performed visual

SLAM to obtain the 3D map of the environment, and then, by

solving the PnP problem with given correspondences, they

estimated the static camera pose with respect to the 3D map.

However, in their work, the correspondences are made by

hand. Thus, calibration of a large camera network requires

significant efforts.

III. METHODOLOGY

The proposed camera network calibration method consists

of two steps: online visual odometry-based camera network

calibration, and offline depth image-based calibration refine-

ment.

We first bridge separated camera views through visual

odometry running on a dynamic camera. To estimate the

visual odometry scale and the transformations between static

cameras and the dynamic camera, we take the pose graph-

based landmark SLAM approach with fiducial tags. In this

work, we use Apriltag [14] as fiducial landmarks.

In the depth image-based calibration refinement step, we

add ICP and floor plane constraints to the pose graph

constructed in the online calibration step. ICP constraints

allow us to refine the transformation between cameras with

small overlap, while floor plane constraints refine the poses

of distant and separated cameras. Unlike usual ICP-based

approaches, the proposed method does not require large

overlap between cameras, since we add these constraints to

the pose graph while keeping the graph structure constructed

with visual odometry information in the online step.

For the pose graph optimization, we utilize the Levenberg-

Marquardt optimizer [15] in g2o [16], a general hyper graph

optimization framework.

C0 C1 C2

M0 M1 M2

Vt Vt+1 Vt+2 Vt+3

Static cameras
SE(3)

Fiducial tags
SE(3)

Dynamic camera
Sim(3)

ICP

VO
Visual odometry-based Online calibration

F
Depth-based
Offline refinementFloor plane

sparse_dynamic.html https://www.draw.io/

1 of 1 9/11/19, 4:12 PM

Fig. 2: The proposed graph structure for non-overlapping

camera network calibration with visual odometry.



Algorithm 1 Non-overlapping Camera Network Calibration

1: D = [v0, · · · , vt, · · · , vN ] ⊲ Visual odometry

2: C = [c0, · · · , cM ] ⊲ Static cameras

3: M∗ = [mi,mj , · · · ] ⊲ Tag detections

4: G = (V, E) ⊲ Pose graph

5: Vt, Cj ,Mi ⊲ Vertices corresponding to vt, cj ,mi

6: procedure CALIBRATION

7: for vt ∈ [v0, · · · , vN ] do ⊲ Add visual odometry

8: Vt ← Vt−1(v
−1

t−1 · vt) ⊲ Initial guess

9: V ← V ∪ Vt

10: E ← E ∪ Edge(Vt−1, Vt, v
−1

t−1 · vt)
11: for mi ∈M

v
t do ⊲ Tags detected at time t

12: ADDTAG(Vt,mi)

13: E ← E ∪ Edge(Vt,Mi,mi)

14: Optimize(G)

15: procedure ADDTAG(Vt,mi)

16: if Mi ∈ V then

17: return

18: Mi ← Vt ·mi ⊲ Initial guess

19: V ← V ∪Mi ⊲ Add tag vertex Mi

20: for cj ∈ C where Cj /∈ V and m′

i ∈M
cj do

21: Cj ←Mi ·m
′−1

i

22: V ← V ∪ Cj ⊲ Add cameras which detect mi

23: E ← E ∪ Edge(Cj ,Mi,m
′

i)
24: for m′

k ∈M
cj do

25: ADDTAG(Cj ,m
′

k) ⊲ Add tags detected by cj

A. Online calibration with visual odometry

The online calibration step takes the form of the graph-

based landmark SLAM, in which landmarks are fiducial tags

placed in the environment, and odometry is given by a visual

odometry technique. The proposed pose graph structure

for camera network calibration is illustrated in Fig. 2. Vt

indicates a Sim(3) vertex (rotation, translation, and scale)

representing the pose of the dynamic camera at time t. Vt

is connected with the consecutive vertices Vt−1 and Vt+1

based on the dynamic camera ego-motion estimated by visual

odometry. Ci and Mj indicate SE(3) vertices (rotation and

translation) representing i-th static camera and j-th tag poses.

The dynamic and static camera vertices are connected with

the tag vertices based on fiducial tag poses detected by each

camera. We use only tag detections within a range threshold

(e.g., 7.5 m), and apply Huber’s robust kernel [17] to each tag

detection edge to address the instability of the PnP algorithm

for distant tags. See Algorithm 1 for details of the pose graph

construction process.

In this work, we use direct sparse odometry (DSO) [18]

to estimate the dynamic camera ego-motion. It is worth

mentioning that we intentionally made the calibration method

independent from the visual odometry algorithm, such that

we can choose a different visual odometry algorithm de-

pending on the situation. For instance, in case we use a

smartphone as a dynamic camera, we can replace DSO with

an IMU-guided visual odometry algorithm, such as [19].

Algorithm 2 Depth Image-based Calibration Refinement

1: G = (V, E) ⊲ Pose graph

2: C = [c0, · · · , cM ] ⊲ Static cameras

3: Pi ⊲ Point cloud of ci
4: procedure REFINEMENT

5: V ← V ∪ F ⊲ Add floor vertex

6: for ci ∈ C do ⊲ Add floor constraints

7: fi ← DETECTFLOOR(Pi)

8: E ← E ∪ Edge(Ci, F, fi)

9: for k ∈ [0, · · · ,K] do ⊲ ICP iteration

10: E ICP ← []
11: for ci ∈ C do ⊲ Find correspondences

12: for cj ∈ C where j < i do

13: N = FindCorresponds(Pi,Pj)
14: E ICP ← E ICP ∪ Edges(Ci, Cj ,N )

15: E ← E ∪ E ICP ⊲ Add ICP constraints

16: Optimize(G)
17: E ← E \ E ICP ⊲ Remove ICP constraints

B. Offline depth-based calibration refinement

The online calibration step allows us to bridge non-

overlapping cameras. However, the calibration accuracy re-

lies on the visual odometry which would get inaccurate due

to, for instance, a texture-less environment and quick camera

motion. To make the calibration robust to visual odometry

errors, we introduce depth image-based floor plane and

ICP constraints. Algorithm 2 explains the offline refinement

process in detail.

1) Floor plane constraint: We assume that the environ-

ment has a single flat floor or parallel floors. We first detect

the floor plane from each static camera, then add floor

plane constraints, which optimizes the static camera pose

such that the detected floor planes become the same or

parallel. Following [20], we detect the floor plane from a

point cloud using RANSAC [21], and add an edge between

the vertices of the static camera and the floor plane. We use

a tuple of azimuth angle, elevation angle, intercept length as

a minimum plane representation [22]. The floor constraint

mode (same/parallel) is selected by a program option; thus,

the user has to choose either of them beforehand.

2) ICP constraint: To optimize the transformations be-

tween overlapping cameras, we add ICP-based constraints

to the pose graph. We extract correspondences between two

point clouds using a KD tree-based nearest neighbor search,

and validate them with the reciprocal correspondence check.

Then, we add edges, which calculate the point-to-plane

distance [23] between corresponding points. After adding

ICP edges, we optimize the pose graph, remove all the ICP

edges, extract new correspondences, and add them to the

graph. We repeat this process until the χ2 error of the pose

graph converges.



P3DX with
Camera

RGB-D
Cameras

Tag

(a) Simulation environment. (b) Camera arrangement (Sim1). (c) Camera arrangement (Sim2).

Fig. 3: The simulation environment.

Dynamic camera trajectory
Static cameras
Fiducial tags

Fig. 4: The constructed pose graph for calibration.

IV. EXPERIMENTS

A. Evaluation in a simulated environment

To evaluate the proposed method, we built a camera

network environment with the gazebo simulator [24] and

models in 3DGEMS dataset [25]. Fig. 3 (a) shows the

simulation environment. We placed eight RGB-D cameras

and several Apriltags in the environment so that each camera

can observe at least one tag. We tested the proposed method

in two camera arrangements referred to as Sim1 and Sim2. In

Sim1, the cameras have small overlap while being separated

into four groups in Sim2 (See Fig. 3 (b)(c)). For each camera

arrangement, we recorded a dynamic camera image stream,

in which all the tags are observed at least once using a camera

mounted on a mobile robot. To analyze the impact of visual

odometry errors on the calibration result, we added small lens

distortion (coefficients = 10−4) to the images and evaluated

the proposed method with the distorted image stream.

Fig. 4 shows the pose graph constructed in Sim1 arrange-

ment. The red points indicate the estimated dynamic camera

trajectory (the visual odometry scaled and aligned with re-

spect to the world frame). The blue and green points indicate

(a) Before refinement. (b) After refinement.

Fig. 5: The accumulated point cloud before and after the

calibration refinement.

the estimated static camera and tag poses, respectively. The

lines between points are relative pose edges. We can see that

all the static camera poses are correctly estimated, although

they have no common tag detections due to the dynamic

camera vertices that bridge the static camera vertices via tag

vertices.

Fig. 5 shows the accumulated point clouds of the static

cameras before and after the depth-based refinement step.

Before the refinement, the point clouds are not well aligned

due to the visual odometry error caused by the injected lens

distortion. However, after the refinement, ICP and floor plane

constraints effectively correct the error, and the point clouds

of the cameras are well matched together.

Table I summarizes the calibration errors. In Sim1, the

visual odometry works well in the case without distortion,

and we achieve relatively small calibration errors (1.52 cm

and 0.09°, 1.58 cm and 0.17°with and without refinement,

respectively) in large environment (15 m in width). In the

case with distortion, the calibration error gets almost four

times larger (6.10 cm and 0.31°) due to the degraded visual

odometry accuracy. However, the depth-based refinement

successfully compensates for the visual odometry error,

allowing the calibration accuracy to recover back to the level



TABLE I: Calibration accuracy evaluation result in the simulated environment

w/o lens distortion (small VO error) w/ lens distortion (large VO error)
Translation [m] Rotation [°] Translation [m] Rotation [°]

Sim1
w/o refinement 0.0158 ± 0.0055 0.1704 ± 0.0683 0.0610 ± 0.0408 0.3098 ± 0.2343
w/ refinement 0.0152 ± 0.0094 0.0918 ± 0.0833 0.0158 ± 0.0095 0.1337 ± 0.0838

Sim2
w/o refinement 0.0220 ± 0.0139 0.2805 ± 0.0878 0.0489 ± 0.0237 0.2803 ± 0.0924
w/ refinement 0.0151 ± 0.0087 0.2275 ± 0.1845 0.0342 ± 0.0302 0.1349 ± 0.0759

Arrangement1 (single room)
Arrangement2 (inter-room)

Fig. 6: The evaluation environment. Five Kinects are placed

in a single room in Arrangement1, while they are placed

in multiple rooms in Arrangement2 such that they are com-

pletely separated. The Kinect marked with a star is removed

later to reduce the camera overlap.

of the case without distortion (1.58 cm and 0.13°).

In Sim2, the separated cameras are properly calibrated

owing to the visual odometry-based bridging. Although

the calibration accuracy deteriorates slightly (2.20 cm and

0.28°), it is improved after the refinement (1.51 cm and

0.228°). In the case with distortion, the depth-based refine-

ment cannot recover the calibration accuracy to the level

without distortion, because it does not create constraints

between separated cameras. However, it refines the relative

poses between cameras which sharing a common field of

view, and thus, the final calibration accuracy improves (from

4.89 cm and 0.28°to 3.42 cm 0.13°). It is worth mentioning

that the calibration accuracy can be improved further by

observing more fiducial tags with the dynamic camera, so

that the visual odometry drift is corrected with multiple

observations (i.e., loop closing).

B. Evaluation in a real environment

We evaluated the proposed method in a real environment

shown in Fig. 6. The number of RGB-D cameras (Kinect V2)

is five, and we evaluated the proposed method in two camera

arrangements. In Arrangement1, we placed all the cameras

in a single room such that they have enough overlap. In

Arrangement2, we placed them in three different rooms to

separate their fields of view. We measured the ground truth

of the camera positions using a high-definition 3D scanner

(FARO FOCUS), recorded an image stream using a mobile

Fig. 7: The accumulated point cloud.

(a) Traditional [1]. (b) Before refinement. (c) After refinement.

Fig. 8: Floor and table surfaces.

camera (Pointgrey Flea3) for each camera arrangement, and

calibrated all the camera poses with the proposed method.

In Arrangement1, for comparison, we additionally evalu-

ated a traditional camera network calibration method based

on checkerboard detection [1]. To determine the impact of

the overlap region size on the calibration result, we also

removed the camera marked with the star in Fig. 9 to reduce

the camera overlap, and calibrated the network with the

remaining cameras.

Fig. 7 shows the accumulated point clouds of the cameras

calibrated with the proposed method in Arrangement2. We

can see that all the camera poses are properly estimated,

although they are in separated rooms.

Fig. 8 shows the accumulated point clouds of the floor and

a table in Arrangement1 with different calibration methods.

Green and orange points correspond to the surfaces of the

table and the floor, respectively. The traditional method

suffers from distortion and noise on the input images, and as



TABLE II: Calibration accuracy evaluation result in the real environment

Translation error [m]
Traditional Proposed

[1] w/o refinement w/ refinement

Arrangement1 0.060 ± 0.047 0.065 ± 0.021 0.058 ± 0.034

Arrangement1 (Small overlap) 0.071 ± 0.058 0.064 ± 0.025 0.060 ± 0.032

Arrangement2 (Inter-room) N/A 0.052 ± 0.034 0.041 ± 0.029

Observer

Subject

Fig. 9: The experimental environment. A subject walks over

separated camera views, and an observer carrying a mobile

camera follows them.

a result, doubled planes are observed. Although the proposed

method also suffers from such disturbances, the depth-based

refinement enables proper alignment of the point clouds of

the static cameras, leading to the observation of consistent

surfaces for each floor and table.

Table II summarizes the calibration results. Because it

was not feasible to measure the ground truth of the sensor

orientations, we evaluated only the RMSE (root mean square

erros) of the translation part. We can see that the proposed

and the traditional [1] methods show comparable results in

Arrangement1 (about 6 cm errors). When we remove the star-

marked camera in Arrangement1, the calibration accuracy of

the traditional method decreases to 7 cm, because cameras

are distant with small overlap, while the accuracy of pattern

detection and pose estimation deteriorates in this setting.

This result shows that the traditional method requires a

large overlap between cameras for accurate calibration, while

limiting the camera arrangement. By contrast, the proposed

method is not affected by the sparse camera arrangement,

because the visual odometry helps to estimate the poses of

the distant cameras. In Arrangement2, the traditional method

is no longer able to calibrate the camera network, while

the proposed one successfully estimates the poses of all the

cameras in different rooms. In Arrangement2, the average

calibration error of the proposed method is 5.2 cm, and

it further improves to 4.1 cm after the depth image-based

refinement.

In this experiment, the online calibration ran at real-time,

and the offline refinement converged in about five seconds.

C. Person tracking over non-overlapping camera views

To demonstrate that the proposed method allows the

integration of static and dynamic camera images in a unified

Fig. 10: An example image taken by the mobile camera. The

green circle indicates the ankle position to be projected onto

the floor plane.

START

GOAL

Fig. 11: The tracked person trajectory.

frame, we conducted a person tracking experiment. Fig. 9

(a) shows the experimental environment, in which we placed

three separated RGB-D cameras. Here, a subject walks over

separated camera views while an observer holding a mobile

camera follows the subject and captures them with the mobile

camera. The static cameras track the subject as long as they

are in their views, while the mobile camera complementary

tracks them once they move out from the static camera views.

By integrating the tracking results of the static and dynamic

cameras, we can keep tracking the identity of the subject

over the entire large room with a limited number of static

cameras.

To track the mobile camera pose, we use the pose graph

constructed for camera network calibration. We fix all the

static camera and tag vertices in the pose graph and then



add new dynamic camera vertices to the graph in the same

way as the online calibration step. By performing graph

optimization, the new dynamic camera vertices are aligned

with respect to the static cameras, allowing us to obtain the

current mobile camera pose from the optimization result.

We use the point cloud-based people tracking framework

[1] to track the subject with static cameras. To track with

dynamic camera, we first run OpenPose [26], a deep con-

volutional neural network-based person skeleton detection

framework, and then project the detected ankle position onto

the floor plane (Z = 0) using the estimated camera pose (see

Fig. 10). To obtain a smooth trajectory, we apply a moving

average filter to the tracked trajectory. Note that the skeleton

detection process was performed offline because it requires

more computational power than that for the laptop PC used in

this experiment. However, the mobile camera pose estimation

itself was running at real-time.

Fig. 11 shows the person trajectories tracked by the static

and mobile cameras. When in the static camera views, the

subject was tracked by the static cameras correctly. Even

when they moved out from the static camera views, the

system could keep tracking them with the mobile camera.

We can see that the trajectories obtained by the static and

mobile cameras are well aligned. This implies that the mobile

camera frame is accurately aligned with respect to the camera

network coordinates.

V. CONCLUSIONS

We proposed a calibration method for a camera network

consisting of non-overlapping static cameras and a dynamic

camera. In the proposed method, the dynamic camera, in

which ego-motion is tracked by visual odometry, bridges

non-overlapping cameras by observing fiducial tags seen by

the static cameras. The depth image-based ICP and floor

plane constraints are introduced to compensate for visual

odometry errors. Through evaluations, it was confirmed that

the proposed method shows a good calibration accuracy in

both simulated and real environments.

We plan to apply the proposed method to a camera

mounted on a mobile robot to keep tracking the robot

position with respect to the camera network. It allows us

to build a new human-robot interaction system based on the

collaboration of camera network and mobile robotic systems.

ACKNOWLEDGMENT

This work was partially supported by a project com-

missioned by the New Energy and Industrial Technology

Development Organization (NEDO).

REFERENCES

[1] M. Munaro, F. Basso, and E. Menegatti, “Openptrack: Open source
multi-camera calibration and people tracking for rgb-d camera net-
works,” Robotics and Autonomous Systems, vol. 75, pp. 525–538,
2016.

[2] M. Carraro, M. Munaro, and E. Menegatti, “Skeleton estimation and
tracking by means of depth data fusion from depth camera networks,”
Robotics and Autonomous Systems, vol. 110, pp. 151–159, 2018.

[3] K. Koide, E. Menegatti, M. Carraro, M. Munaro, and J. Miura, “People
tracking and re-identification by face recognition for rgb-d camera
networks,” in European Conference on Mobile Robots. IEEE, 2017,
pp. 1–7.

[4] M. Warren, D. McKinnon, and B. Upcroft, “Online calibration of
stereo rigs for long-term autonomy,” in IEEE International Conference

on Robotics and Automation. IEEE, 2013.
[5] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)

solution to the pnp problem,” International Journal of Computer

Vision, vol. 81, no. 2, pp. 155–166, 2009.
[6] R. Xia, M. Hu, J. Zhao, S. Chen, Y. Chen, and S. Fu, “Global

calibration of non-overlapping cameras: State of the art,” Optik, vol.
158, pp. 951–961, 2018.

[7] D. Makris, T. Ellis, and J. Black, “Bridging the gaps between cameras,”
in IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2004.

[8] A. Rahimi, B. Dunagan, and T. Darrell, “Simultaneous calibration
and tracking with a network of non-overlapping sensors,” in IEEE

Conference on Computer Vision and Pattern Recognition. IEEE,
2004.

[9] N. Anjum, “Camera localization in distributed networks using trajec-
tory estimation,” Journal of Electrical and Computer Engineering, vol.
2011, pp. 1–13, 2011.

[10] H. Huang, N. Li, H. Guo, Y.-L. Chen, and X. Wu, “Calibration of
non-overlapping cameras based on a mobile robot,” in International

Conference on Information Science and Technology. IEEE, 2015.
[11] F. Zhao, T. Tamaki, T. Kurita, B. Raytchev, and K. Kaneda, “Marker

based simple non-overlapping camera calibration,” in IEEE Interna-

tional Conference on Image Processing. IEEE, 2016.
[12] E. Ataer-Cansizoglu, Y. Taguchi, S. Ramalingam, and Y. Miki, “Cali-

bration of non-overlapping cameras using an external SLAM system,”
in IEEE International Conference on 3D Vision. IEEE, 2014.

[13] T. Pollok and E. Monari, “A visual SLAM-based approach for
calibration of distributed camera networks,” in IEEE International

Conference on Advanced Video and Signal Based Surveillance. IEEE,
2016.

[14] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial
detection,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems. IEEE, 2016.
[15] K. Levenberg, “A method for the solution of certain non-linear

problems in least squares,” Quarterly of Applied Mathematics, vol. 2,
no. 2, pp. 164–168, 1944.

[16] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G: A general framework for graph optimization,” in IEEE Interna-

tional Conference on Robotics and Automation. IEEE, 2011, pp.
3607–3613.

[17] P. J. Huber, “Robust estimation of a location parameter,” in Springer

Series in Statistics. Springer, 1992, pp. 492–518.
[18] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 611–625, 2018.

[19] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated
extended kalman filter based visual-inertial odometry using direct
photometric feedback,” International Journal of Robotics Research,
vol. 36, no. 10, pp. 1053–1072, 2017.

[20] K. Koide, J. Miura, and E. Menegatti, “A portable 3d lidar-based
system for long-term and wide-area people behavior measurement,”
International Journal of Advanced Robotic Systems, 2019.

[21] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[22] L. Ma, C. Kerl, J. Stuckler, and D. Cremers, “CPA-SLAM: Consistent
plane-model alignment for direct RGB-d SLAM,” in IEEE Interna-

tional Conference on Robotics and Automation. IEEE, 2016.
[23] K.-L. Low, “Linear least-squares optimization for point-to-plane icp

surface registration,” Chapel Hill, University of North Carolina, vol. 4,
no. 10, 2004.

[24] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems. IEEE, 2004.
[25] A. Rasouli and J. K. Tsotsos, “The effect of color space selection on

detectability and discriminability of colored objects,” arXiv preprint

arXiv:1702.05421, 2017.
[26] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person

2d pose estimation using part affinity fields,” in IEEE Conference on

Computer Vision and Pattern Recognition, 2017.


