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Abstract— With the aim of contributing to the development
of a robotic attendant system, this study proposes the concept
of assessing the risk of collision using awareness estimation.
The proposed approach enables an attendant robot to assess a
person’s risk of colliding with an obstacle by estimating whether
he/she is aware of it based on behavior, and to take the requisite
preventative action. To implement the proposed concept, we
design a model that can simultaneously estimate a person’s
awareness of obstacles and predict his/her trajectory based on
a convolutional neural network. When trained on a dataset
of collision-related behaviors generated from people trajectory
datasets, the model can detect objects of which the person is not
aware and with which he/she at risk of colliding. The proposed
method was evaluated in an empirical environment, and the
results verified its effectiveness.

I. INTRODUCTION

Dementia is a category of diseases that affect the health
and the quality of life (QOL) of a large number of elderly
people worldwide. A telling symptoms of dementia is a lack
of attention to objects in one’s environment [1]. Even though
elderly people with early-stage dementia often retain normal
bodily functions, their lack of attention puts them at risk of
injury by, for example, bumping into obstacles and falling
off stairs.

Fig. 1 shows an example of the risk of accident to an
elderly person suffering from dementia and the preventative
action taken by a professional caregiver to avoid it. In this
case, the elderly person was not aware of an obstacle (a traffic
cone) because he was distracted by something else (Fig. 1
(a)). The caregiver noticed that the patient was going to bump
into the obstacle and alerted him accordingly. Although the
elderly person still slightly stumbled over the obstacle (Fig.
1 (b)), he was able to avoid injury because of the alert
(Fig. 1 (c)). If he had been walking alone, he might have
been injured. This example illustrates the need for caregivers
to attend to elderly persons. Developed countries, however,
suffer from a chronic shortage of caregivers that makes it
difficult to provide adequate care to elderly persons, which
in turn affects their QOL.

Our motivation here is to improve the QOL of elderly
people by developing a robotic attendant system that imitates
the behavior of a professional caregiver and enables elderly
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Fig. 1: Example of a risky situation, in which an elderly
person with dementia is not aware of a traffic cone and is
alerted by an attending professional caregiver.

people to walk freely while protecting them from accidents.
As mentioned above, patients with early-stage dementia
often retain normal bodily functions. We thus think that if
appropriately alerted of situations that put them at risk of
injury, they can avoid accidents by themselves, as shown in
the example above. If they are informed of the presence of
every obstacle in the environment, however, this might be
annoying or overwhelming for them. It is therefore desirable
to assess the risk of an accident and alert them only when
necessary.

To strike a balance between safety and comfort, we con-
sider assessing the risk of collision via awareness estimation.
Fig. 2 illustrates the proposed robotic attendant system. The
robot estimates whether the person is aware of an obstacle
in his/her path and takes preventative action (e.g., informing
the person or physically intervening) only when he/she is
not aware of it. Such an attendant robot would be suitable
not only for the elderly, but also for caring for children in
private and public environments.

In this paper, we propose the concept of simultaneous
awareness estimation and trajectory prediction and imple-
ment it using a convolutional neural network (CNN). Fig. 3
shows the proposed network. The network takes as input a
sequence of local environmental maps in which the target
person is located at the center. It outputs a collision risk
map that represents the positions of obstacles in the area of
which the person is not aware as well as a trajectory map that
predicts their movement. To train this network on datasets
on the behavior of people that do not contain sequences
where a person actually bumps into an obstacle, we propose
a method to generate unawareness-related behavioral data.
An empirical assessment showed that the proposed method
can identify obstacles in a person’s path of which he/she is
not aware.
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Fig. 2: Collision risk assessment via awareness estimation
for a robotic attendant system.

II. RELATED WORK

Awareness estimation has been widely studied in the field
of driver assistance. When a driver is unaware of a pedestrian
on the road, there is a high risk of an accident that can
be prevented by informing the driver accordingly. A hidden
Markov model proposed by Phan et al. estimates a driver’s
awareness of a pedestrian based on his/her driving operations
and states, such as steering, accelerating, and braking [2].
Tateiwa et al. estimated the driver’s awareness of pedestrians
based on the motion of the car and developed a system
to inform the driver of the risk of accident [3]. Bar et al.
estimated the driver’s awareness of pedestrians, other cars,
and traffic cones by constructing a decision tree containing
gaze and traffic obstacles as features [4]. Chutorian and
Trivedi used a driver’s head pose instead of gaze because
gaze estimation is sometimes inapplicable to driving-related
scenarios [5].

Awareness estimation has also been studied in human–
computer interaction. Stiefelhagen and Zhu [6] estimated
the focus of a person’s attention based on the head pose
to analyze discussion situations. Doshi and Trivedi [7] also
estimated people’s attention using head pose estimation to
identify distracting objects in a meeting room. Dini et al.
[8], [9] estimated people’s awareness of objects of interest
in a scene through 3D gaze analysis obtained from wearable
eye-tracking glasses to improve human–robot collaboration
in a manufacturing environment.

The above methods rely on features that directly reflect
a person’s awareness, such as gaze, head pose, and driving
operations. In case of a mobile robot that follows a person,
however, it is not feasible to observe these features without
special devices, like eye-tracking glasses. In this study, we
estimate a person’s awareness of his/her surroundings based
on his/her behavior because it is the most basic feature that
can be observed by a mobile robot. A person’s behavior
contains enough information to estimate his/her awareness
of the environment because a human observer can divine
a person’s intentions based on behavior without looking at
his/her face (i.e., without gaze and head pose).

Koide and Miura proposed a method to estimate a person’s
awareness of an obstacle based on his/her trajectory [10].
They exploited the hidden conditional random field to clas-

sify pedestrian trajectories into cases of awareness and a lack
of awareness. However, the target object and environment
were limited in their work (comprising a box in a narrow
corridor).

III. METHODOLOGY

We define the problem of awareness estimation as one
of finding a function F that takes as input a person’s
sequence of behaviors Pt0 = {p0, · · · , pt} and environmental
information E , including obstacle-related information, and
outputs a list of obstacles U = {u0, · · · , uM}, of which the
person is not aware, and a prediction of the person’s behavior
Pt+Nt :

U ,Pt+Nt = F(Pt0, E). (1)

To implement this problem formulation, we propose a
CNN-based model shown in Fig. 3 that takes a sequence of
local environmental maps, and outputs the risk of collision
to the person and maps of his/her predicted trajectory. Sec.
III-A explains our design choices for the model, and Sec. III-
B describes a method to generate data on people’s behaviors
when they lack awareness of their surroundings to train the
proposed model.

A. Awareness Estimation and Trajectory Prediction Model

Input (Pt0 and E): To estimate a person’s awareness, the
model needs to know his/her behavior, the positions of the
obstacles, and the structure of the environment. Although
[10] proposed hand-crafted features that describe a person’s
behavior with respect to an obstacle, this approach has two
major drawbacks. First, features that can describe arbitrary
behavior, objects, and environments are difficult to design.
Second, the approach is difficult to extend to the multi-
object case because we need to extract features for each

Fig. 3: Proposed awareness estimation model.
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Fig. 4: U-Net architecture [11]

target object. We choose here as input a sequence of local
environment maps, where the target person is located at the
center, because this representation can represent any behavior
and environmental structure.
Output (U ,Pt+Nt ): Awareness estimation and trajectory pre-
diction are a kind of chicken-and-egg problems. To estimate
a person’s awareness, we need to know how they will move,
whereas we need to determine if a person is aware of
objects in his/her surroundings to predict trajectory. We use
an approach whereby the model simultaneously outputs the
results of awareness estimation and trajectory prediction.
We output the results of estimation in the image form
because this can represent any distribution (e.g., multimodal
distribution to represent multiple objects). Moreover, image-
to-image translation has been successfully used in computer
vision in recent years [12], [13].
Estimator (F): As the backbone of the proposed model,
we use the U-Net architecture [11] shown in Fig. 4. The
convolutional layers were first applied to an input map to ex-
tract structured features, and deconvolution layers were then
applied to obtain an output map with the same dimensions
as the input. Skip connections transmit low-level data to the
deconvolution layers to help them capture fine details of the
input data. We extend U-Net to form a recurrent network
by adding an LSTM layer at the bottom. We feed local
environmental maps to the recurrent U-Net one by one, and
the network outputs maps of the estimated awareness and
the predicted trajectory at each time step.

The image-based input and representation of the output
allows the model to capture arbitrary behavior, objects,
environmental structures, and the relationship among them,
in contrast with traditional behavioral models that are based
simply on the distance between a person and an object, and
their relative positions [14], [15].

B. Generating Unawareness-based Behavioral Data

An important issue when training the proposed network is
that it is difficult to collect unawareness-related behavioral
data on people for ethical and technical reasons. There is a
risk of the subject being injured if he/she is not aware of
an obstacle. Such experiments thus need to be very carefully
controlled. Additionally, it is impossible to enable a person
to intentionally become unaware of an object. It was thus not
feasible to collect the large amount of unawareness-related

t t+mt0

person virtual obstacle
(a) Placing a virtual obstacle along a
person’s trajectory.

t-Nt0

person obstacle
(b) Generated a virtual trajectory
where the person bumps into the
obstacle.

Fig. 5: Generating an unawareness-based behavioral data for
people by introducing a virtual obstacle.

behavioral data required to train the CNN model.
To avoid this problem, we propose generating data by

introducing a simple assumption: “If a person is not aware of
an object in his/her surroundings, he/she acts as if the object
does not exist.” For example, if a person is walking in a
corridor and aware of an obstacle, he/she changes trajectory
to avoid it. Conversely, if he/she is not aware of it, he/she
moves as if there were no obstacle. The existence of the
object does not influence the person’s behavior if he/she is
not aware of it.

This assumption allows us to generate the behaviors of
people when unaware of obstacles from their usual behaviors,
which are available in popular people tracking datasets [16],
[17], [18], [19]. Because the above assumption implies
that a person’s behavior when unaware of an obstacle is
independent of its properties, by placing a virtual obstacle
along the person’s position at time t, we can imitate an
unawareness-based trajectory until t, when the person bumps
into the virtual obstacle (see Fig. 5).

We first generated sequences of local environmental maps
from the people tracking datasets and placed virtual obstacles
along a person’s path using random offsets. Maps of the
estimated risk of collision and the predicted trajectory were
then generated from positions of the virtual obstacles obsj
and the trajectory of the person pt. The map of risk of
collision yU is defined as follows:

wj = exp

(−min
t
‖obsj − pt‖

Cα

)
, (2)

yU =
∑
j

wj · exp
(
−‖obsj − xi‖

Cd

)
, (3)

where xi is the position of pixel i in the frame of the map,
Cα and Cd are constants, and wj is the weight of the obstacle
j, given by the minimum distance between the trajectory pt
and the obstacle obsj . We assign larger weights to obstacles
that the person approaches because the risk of collision with
them is higher.

The trajectory map yP is defined as follows:

yP = exp

(−min
t
‖pt − xi‖

Ct

)
, (4)

where Ct is a constant.
Fig. 6 shows examples of local input maps as well as

the corresponding maps of the risk of collision and the
predicted trajectory. In addition to virtual obstacles, we



(a) Input local map (b) Collision risk map (c) Trajectory map

Fig. 6: The generated local environmental map used as input,
and the corresponding maps of the risk of collision and
predicted trajectory. Black and gray pixels in the local map
respectively represent surrounding obstacles and people.

(a) PETS2009 [17]. (b) 3DPES [18].

(c) Towncenter [16]. (d) ATC shopping center [19].

Fig. 7: Datasets used to generate the dataset of unawareness-
based behaviors.

Fig. 8: Map of obstacle footprint created by hand.

rendered people on the local map so that the model could
capture indirect interactions between people. The black and
gray pixels in Fig. 6 (a) respectively represent the obstacles
and the people. In the maps of the risk of collision (Fig. 6
(b)), a strong response appeared on an obstacle into which
the person was going to bump, while weak responses were
observed on the other obstacles farther from him/her.

C. Training on Datasets of People’s Behaviors

We used the Towncenter [16], PETS2009 [17], 3DPES
[18], and ATC shopping center [19] datasets to generate a

(a) Projected map of obstacle foot-
print

(b) Environmental map

Fig. 9: Generation of environmental map.

(a) Trajectories in the camera space (b) Trajectories projected in the
bird’s eye view

Fig. 10: People’s trajectories in the Towncenter dataset.

dataset of unawareness-based behaviors (see Fig.7). The ATC
shopping center dataset provided 3D trajectories of people
in a shopping center. We created sequences of local maps by
directly using the 3D trajectories. Because the Towncenter,
PETS2009, and 3DPES datasets provided people’s trajecto-
ries as optical frames of a camera, we needed to transform
the trajectories into a bird’s eye view to generate sequences
of local maps. We first created a map of obstacle footprints
for each camera setting by hand (see Fig. 8) and projected it
into the bird’s eye view using the extrinsic parameters of the
camera to obtain a 2D environmental map (see Fig. 9). We
then projected people’s trajectories on the 2D map to create
local map sequences (see Fig. 10).

The number of sequences used for training was 2,000. We
used the L2 loss function to calculate the residuals of the
estimated risk of collision and the predicted trajectory maps.
We assigned a small weight to the residual of the trajectory
maps when calculating the L2 loss (w = 1 and 10−3 for
the risk of collision and the trajectory, respectively) because
maps of the risk of collision are more important for our
application (i.e., finding dangerous obstacles), and people’s
trajectories are sometimes not predictable.

For verification, we tested whether the model correctly
detected obstacles in which the person bumped using 100
randomly sampled sequences. We shifted the obstacles with
random offsets such that their positions were different from
those in the training set. We detected obstacles with high
responses on the map of the risk of collision by thresholding.
Fig. 11 shows a plot of the detection accuracy against the
distance to the obstacle. Although the accuracy is low when
the obstacle was far away from the subject (30% at 10 m),
it increased as the person approached the obstacle. At 4 m
from it, the detection accuracy was over 80 %. Assuming the
person was walking at 1 m/s, the time to collision was about
4 s at this distance, which we think is sufficient duration for
the robot to alert the person of the existence of the obstacle
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Fig. 11: Accuracy of collision prediction versus distance to
the obstacle.

Pedestrian

3D	LIDAR
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(a) Experimental environment (b) Half-blind glasses

Fig. 12: Experimental setting. The subjects wore half-blind
glasses so that they could not see the obstacle on the ground.
We predicted whether they bumped into the obstacles using
the trained model.

TABLE I: Accuracy of collision prediction

F1 precision recall TP TN FP FN
Far (10 m) 0.909 0.833 1.000 10 3 2 0
Middle (5 m) 0.909 0.833 1.000 10 3 2 0
Near (1 m) 0.952 0.909 1.000 10 4 1 0
Total 0.923 0.857 1.000 30 10 5 0

TP: True Positive, TN: True Negative,
FP: False Positive, FN: False Negative

and for them to alter their course.

IV. EXPERIMENTS

To validate the trained model in an empirical environment,
we collected a dataset of people’s behaviors (see Fig. 12 (a)).
In this experiment, the subjects wore half-blind glasses (Fig.
12 (b)) so that they could not see an obstacle on the ground.
The position of the obstacle was changed after every trial;
therefore, the subjects did not know where the obstacle was,
and bumped into it in some trials. We chose a light cardboard
box as the obstacle and controlled the experiment to prevent
serious accidents. We collected 15 sequences using four
subjects (university students) in total. The subjects bumped
into the obstacle in 10 out of the 15 sequences.

Fig. 13 shows a trial in which a person bumped into an
obstacle. The figures on the left show the input local maps,
and those at the center and on the right respectively show the
estimated risk of collision and the trajectory maps. At T = 0
s, the model correctly predicted that the person would move
along the corridor.

(a) Local map (b) Collision risk map (c) Trajectory map

T=0s

T=2.6s

T=3.6s

Fig. 13: A trial in which the person bumped into an obstacle.
The images to the left show the input local maps, and the
maps in the center and to the right show the estimated risk
of collision and the predicted trajectory, respectively.

(a) Local map (b) Collision risk map (c) Trajectory map

T=0s

T=2.3s

T=5.5s

Fig. 14: A trial in which the person did not bump into an
obstacle.

As the subject approached the obstacle, a strong response
appeared at its position in the collision risk map (T = 2.6
s), and he eventually bumped into the obstacle at T = 3.6
s . Fig. 14 shows another trial in which the subject did not
bump into the obstacle. In this trial, the collision risk map
showed a much weaker response at the obstacle’s position
until the subject had passed it by (T = 2.3 and 5.5 s).

To quantitatively evaluate the proposed model, we sam-
pled maps of collision risk at points where the distance
between the obstacle and the subject was 10, 5, and 1 m,



and determined whether the model had correctly predicted
whether the person would bump into the obstacle. We applied
thresholding to extract high-response pixels from the map of
collision risk. If the number of extracted pixels was larger
than a threshold, the model was considered to have correctly
predicted that the person would bump into the obstacle.

Table I shows the results of the evaluation. The positive
cases represent those where the subject bumped into the
obstacle while the negative cases represent the opposite. The
model correctly estimated the subjects’ awareness, and had a
good recall rate in the positive cases. In two negative cases,
where the person did not bump into the obstacle, the model
incorrectly predicted otherwise. However, in one of the false
positive cases, as the person approached the obstacle, the
response of position of the obstacle in the collision risk
map weakened, and the model correctly predicted that the
subject would not bump into the obstacle when the distance
to the obstacle was less than 5 m. In the other false positive
case, the model could not properly estimate the subject’s
awareness until they had passed by the obstacle. In practi-
cal situations, however, some false positives are acceptable
whereas false negatives are not. This is because they imply a
failure to prevent accidents while a few false positives merely
imply some unnecessary intervention.

V. CONCLUSION AND FUTURE WORK

This paper proposed the concept of assessing the risk
of collision via awareness estimation to strike a balance
between safety and comfort, in the context of a robot
attendant system to prevent elderly patients of dementia from
getting into accidents in everyday activities. The proposed
concept enables the attendant robot to estimate the risk of
collision from a person’s behavior and take preventative
action only when required. As an implementation of the
concept, we proposed a CNN-based simultaneous awareness
estimation and trajectory prediction model that takes as input
a sequence of local environmental maps, and outputs maps
of estimated awareness and predicted trajectory. We also
proposed a method to generate unawareness-based behavioral
data from datasets of normal behaviors by people to train the
proposed model. The model was evaluated in an empirical
environment, and the results show that it can detect objects
of which a person is not aware and with which he/she is
going to collide. The proposed scheme can be applied to a
more diverse population by using a larger and more varied
dataset.

The proposed model was shown to be able to estimate
a person’s awareness; however, there is room for improve-
ment to it. First, the input local environment maps can be
extended to a more informative representation by including,
for instance, distance and velocity maps such that the model
can capture a person’s behavior more easily. Second, a
sophisticated object detection method, like the SSD detector,
can be used instead of thresholding. That would allow us to
more robustly distinguish between objects in the environment
of which a person is aware and those of which he/she
is not. Furthermore, the manner of preventative action is
an important topic that needs to be investigated. It is not

always possible to prevent an accident by merely informing
the subject, such as the elderly suffering from dementia,
of the presence of obstacles, and physical intervention may
be required. In future work, we will develop hardware to
appropriately intervene to correct the subject’s movement to
enable him/her to avoid obstacles.
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