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Abstract— This paper describes a person identification
method using a smartphone and laser range finders (LRFs)
for a mobile service robot. The robot is equipped with LRFs
and the target person holds a smartphone. The method first
detects the foot strike timings of the target person using the
smartphone and those of all people by using the LRFs. By
finding the person whose foot strike timings captured by the
LRFs are similar to those obtained by the smartphone, the robot
can identify the target person. Person identification experiments
and person following experiments are conducted in order to
validate the method. Since the method only requires a person
to simply hold a smartphone, it can be easily applied to daily
situations.

I. INTRODUCTION

Person identification is one of the fundamental functions of
mobile service robots which work in everyday environments.
Such robots should be able to follow the target person and
provide appropriate services. Since environments in daily life
are sometimes heavily populated, the robot may lose the
track of the target person. In that case, the robot has to be
able to re-identify the target person in order to continue to
provide services.

Many previous works use a combination of laser range
finders (LRFs) and cameras for person tracking and iden-
tification by mobile robots [1], [2], [3]. In these works, a
robot learns the appearance of the target person from cameras
and uses them for identifying the person. However, if the
appearance of the target person changes drastically while
the person is occluded by other persons or obstacles, it is
difficult for the robot to find the correct person again using
only the image. If we use a device for identification and
the target person holds the device, we can realize a person
identification which does not suffer from any environmental
changes and persistent occlusions of the target person.

Some works propose person identification methods using
environment sensors and an IMU (Inertial Measurement
Unit) [4], [5]. They place multiple static environment sen-
sors, such as a camera and an LRF, in an environment and
attach an IMU to the target person. These methods measure
the walking pattern of the target person using the IMU and
those of all persons in the environment using the environment
sensors. Shiomi et al. [4] use depth cameras as environment
sensors. They calculate a persons’ acceleration using the
depth cameras and the IMU, and classify the persons’ states
into moving or stopping. By matching the states obtained
by the depth cameras and the IMU, they can identify the
target person. Ikeda et al. [5] put LRFs in an environment,
and tracked the legs of all the persons in the environment.

They estimate the acceleration of the legs and compare them
with the acceleration obtained by the IMU. By calculating
the signal correlation between the accelerations, they find the
person holding the IMU among others. However, we cannot
apply these methods to mobile robots directly since multiple
static sensors are not available.

We proposed a person identification method based on the
matching of foot strike timings for mobile robots [6]. In the
method, an IMU is put on a foot of the target person and
the robot is equipped with two LRFs. The proposed method
estimates the foot strike timings of the target person using the
IMU and those of all persons using the LRF. By matching
these data, the robot can reliably identify the target person
in the LRF data. However, since the IMU is put on a foot,
the method can detect and use only the strike timings of one
foot. In addition to that, the method requires the person to
hold the unusual device.

In this paper, we extend our previous method to being able
to use a smartphone in a pocket. By use of the smartphone,
the method becomes applicable in daily situations. Moreover,
the method can detect the strike timings of both legs, and
classification performance is improved compared with the
previous method.

The remainder of this paper is organized as follows. Sec.
II explains an overview of the proposed person identifi-
cation system. Sec. III and Sec. IV describe the methods
for measurement of foot strike timings and stopping states
of a person using LRFs and a smartphone, respectively.
Sec. V describes a method of integrating both sets of foot
strike timing data for person identification. Sec. VI shows
experimental results and the comparison with our previous
method. Sec. VII concludes the paper and discusses future
work.

II. SYSTEM OVERVIEW

Fig.1 shows an overview of the proposed system. The
robot is equipped with two LRFs, and the target person puts
a smartphone in their pocket. The smartphone is connected
to the robot via wifi. The system first detects and tracks
all persons around the robot using the top LRF, and then
estimates foot strike timings for each person using the bottom
LRF. It also estimates the timings from the acceleration of the
smartphone, and compares it with the timings of all tracked
persons to identify the target person. When the target person
is stopping, however, the foot strike timing is not available.
We therefore judge if a person is stopping by using the
LRFs and the smartphone, and the stopping states are also
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Fig. 1. System overview.
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Fig. 2. Accumulated range data of the legs of a walking person.

compared to estimate the target person. Note that the top
LRF is used just to simplify the data association for people
tracking. Therefore, this method essentially requires only one
LRF placed at a leg height.

We define a dissimilarity measure for the timings and
the stopping states from the LRFs and the smartphone, and
calculate the likelihood that each person is the target. This
information is integrated over time using a Bayesian infer-
ence, and the person with the highest posterior probability
is judged as the target. When the LRF-based tracker loses
the target person due to, for example, occlusion, it stops the
estimation and starts reacquiring the target person among all
persons.

III. ESTIMATION OF FOOT STRIKE TIMINGS AND
STOPPING STATE USING LRFS

For mobile robots, we developed a method for estimating
foot strike timings using LRFs [6]. The method first detects
the positions of the supporting legs of a walking person from
LRF data and then estimates the strike timing from a time
period where a foot is near each supporting leg position.

Fig. 2 shows an example of accumulated range data of
a walking person obtained from the LRF placed at a leg
height. The supporting legs of the person appear as high-
density regions of range data. According to Nakamura et al.
[7], we extract the supporting legs by spotting high-density
regions using Mean Shift [8]. We then estimate the actual
positions of the supporting legs using a maximum likelihood
estimation which takes the self-occlusions of the supporting
legs into account.

Let X = [x1, y1, · · · , xn, yn] be the positions of the
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We minimize the following objective function J .
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Assuming a steady gait (the step length is constant), we
obtain the following constraint function:

(xi+1 − xi)
2 + (yi+1 − yi)

2 = const.
i = (1, 2, · · · , n− 1, n)

(3)

From this equation, we obtain:

(xi − xi−1)
2 + (yi − yi−1)

2−
(xi+1 − xi)

2 − (yi+1 − yi)
2 = 0

i = (2, 3, · · · , n− 2, n− 1)

(4)

We minimize eq. (2) subject to eq. (4) using the method of
Lagrange multiplier to obtain the estimation of supporting
leg positions.

We use five steps for the estimation of supporting leg
positions. We assume that the walking speed is constant
throughout the duration.

When the robot observes a walking person from the side,
a leg on the robot side is always visible while the other is
sometimes occluded. We thus give the observation of the
supporting leg on the robot side a small variance (i.e., high
reliability) and that of the other leg a large variance (low
reliability).

To estimate foot strike timings from the positions of the
supporting legs, we count the number of the range data
around a supporting leg at each frame, and examine how
the number changes over those frames. Fig. 3 (a)(b) show
the change of the numbers of range data for both legs. Each
cluster corresponds to a foot strike. We treat the number as a
weight and consider the weighted mean of times as a strike
timing. Fig. 3 (c) shows the estimated foot strike timings.

The stopping state of a person is determined by the
walking speed measured by the LRF-based tracking. If the
speed of a person is less than a specified threshold (currently,
0.3 [m/sec]) the person is considered to be stopping.



(a) Change of the number of range data for one leg.

(b) Change of the number of range data for the other leg.

(c) Estimated foot strike timings.

Fig. 3. Estimating foot strike timings using LRFs.

IV. ESTIMATION OF FOOT STRIKE TIMINGS AND
STOPPING STATE USING A SMARTPHONE

While a person is walking, the body of the person moves
up and down periodically. By detecting the peak of the
acceleration of the body, we can detect the foot strike
timings. We use a method proposed by Li et al. [9]. They
first apply an FIR low-pass filter to the acceleration data
obtained by a smartphone, and then detect the peak of the
filtered acceleration using two threshold values ∆t and ∆a
(see Fig. 4(b)). Since their method does not depend on the
position of the sensor, the smartphone can be held at any
location on a person; the person can put a smartphone in a
pocket or hold it in the hand. Fig. 4 shows an example of the
acceleration of a smartphone placed in the chest pocket and
the estimated foot strike timings from it. We set the cutoff
frequency of the low-pass filter 3 [Hz], ∆t = 0.2 [sec], and
∆a = 1.5 [m/s2].

The stopping state of a person is determined when the
smartphone is judged as being stationary for a certain period
of time. We use Jimenez’s method [10], which uses simple
thresholds of acceleration and angular velocity to judge if a
sensor is stationary or not. If the smartphone is judged as
stationary for 1.0[sec], we consider that the person who has
the smartphone has stopped.

Fig. 5 shows an example of foot strike timings and
stopping states when a person walks for several seconds and
then stops and walks again.

V. DATA INTEGRATION FOR PERSON IDENTIFICATION

Stopping states or foot strike timings are obtained by a
smartphone for the target person and by LRFs for all persons.
We compare each person’s data with those of the target
to find the best-matched person in the LRF data. For this

(a) Raw acceleration.

Δt

Δa

(b) Low-pass filtered acceleration.

(c) Estimated foot strike timings.

Fig. 4. Estimating foot strike timings using a smartphone.

TABLE I
DISSIMILARITY OF FOOT STRIKE TIMINGS AND STOPPING STATE

target person other persons
foot strike stopping foot strike stopping

# of data 381 472 1483 2486
mean 63.6 [msec] 0.0585 144.8 [msec] 0.3005

std. dev. 28.6 [msec] 0.0898 68.2 [msec] 0.2650

purpose, we define the dissimilarity of the stopping states or
the timings, which is then used for defining the likelihood
function. The likelihood function is used for applying the
Bayesian estimation to the target identification.

A. Dissimilarity Measure between LRF and Smartphone
Data

To compute a dissimilarity between foot strike timings, we
first associate the timings by LRF and those by a smartphone
by finding the closest LRF timing for each smartphone
timing. We calculate the mean of the time differences be-
tween the associated timings, and use it as the dissimilarity
measure.

The dissimilarity between stopping states by LRF and
smartphone is calculated by the difference between the
binary patterns of stopping. We set a time window and
measure the total time duration where the LRF and the
smartphone patterns are different. The duration is normalized
by the width of the time window and used as the dissimilarity
measure. We set the time window size to 5 [sec].

Table I gives statistics of dissimilarity values for foot strike
timings and stopping states. This is obtained from the real
experiments which were conducted under the same settings
used in Sec. VI. The dissimilarities of the target person is
much smaller than the dissimilarities of the others.
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Fig. 5. Foot strike timings and stopping states obtained by LRFs and a
smartphone.

B. Bayesian Estimation for Person Identification

The target person usually shows low dissimilarities and
the others high dissimilarities. The target person, however,
sometimes shows a high dissimilarity due to a lack of range
data or measurement errors. For a robust tracking, we use a
Bayesian estimation for determining the target person.

Let p(xi) be the prior probability that the ith person in
the LRF data is the target person. We define the likelihood
of person xi for an observed dissimilarity value y as:

p(y|xi) = exp (−cy) (5)

where c is a constant. We calculate the likelihood values
for the foot strike timing and the stopping state, and the
multiplication of the two likelihood values is used as the
likelihood p(y|xi). Then the posterior probability p(xi|y) is
given by:

p(xi|y) = αp(y|xi)p(xi), (6)

where α is the normalization constant. The probability is
updated every 100 [msec].

C. Re-detection of the Target Person

If the LRF-based tracking loses the target person, Bayesian
estimation stops temporarily and the system starts to re-
detect the person. This re-detection is done while the target
person is walking, by searching for a person whose foot
strike timings by LRF are close enough with those by a
smartphone to a high confidence.

We consider that a pair of foot strike timings matches if
their difference is less than a threshold thtm. Then, if the
foot strike timings of a person (by LRFs) and those of the
target person (by a smartphone) have at least nsim matched

Fig. 6. Matching rate.

frames in ntest consecutive frames, that person is considered
as the target. We determine these three parameters as follows.

Fig. 6 shows relationship between the matching threshold
thtm and the matching rate of timings for the actual target
person and other persons. We calculated the matching rate
from a real data sequence. The experimental setting is the
same as the one used in Sec. VI-A. In the experiments, we
placed a smartphone in two difference locations, a trousers
pocket and a chest pocket. As the threshold increases, the
rates increase, but that for the target person much more
rapidly increases. When we put the smartphone in the
trousers pocket, the matching rate of the target person is
less than the chest pocket case. It is strongly affected by
the attached leg and the foot strike of the opposite leg
becomes difficult to detect. Even in the case of the trousers
pocket, however, since the matching rate of the target person
is significantly larger than the others, it can be used for
identifying the target person.

According to binomial distribution, we can calculate the
probability that a person is identified as the target from the
matching rate and arbitrarily nsim and ntest as:

pident(p, nsim, ntest) =

ntest∑
i=nsim

(
ntest

i

)
pi(1−p)ntest−i (7)

where p is the matching rate of the foot strike timings of
the person. We calculate the probability where the correct
person is identified as the target (true positive rate) and where
another person is identified as the target (false positive rate).

In order to determine the appropriate parameters, we set
the target true positive rate as 80 % and the target false
positive rate as 5 %. Table II shows examples of the candidate
parameters which meet the criteria. As shown in Table II, if
we set nsim and ntest large enough (it means focusing on
the person for a longer number of seconds), we can obtain
better re-detection performance.

For mobile robots, however, there is a limitation on re-
detection time, because the target person may get far away
from the robot while the robot is trying to re-detect the
person. We, therefore, choose parameters nsim = 3 and



TABLE II
CANDIDATE PARAMETERS

threshold nsim ntest true positive false positive
70 [msec] 3 4 0.814 0.045
70 [msec] 4 5 0.831 0.027
90 [msec] 4 5 0.897 0.049
90 [msec] 5 6 0.857 0.019
90 [msec] 6 7 0.814 0.007
70 [msec] 6 9 0.910 0.008

TABLE III
RESULTS OF THE PERSON IDENTIFICATION EXPERIMENT

duration [sec] smartphone IMU
chest trousers foot

successfully tracked 135.5 128.2 121.8

lost track target appears 44.6 49.1 56.6
target not appears 28.3 24.5 27.7

tracked wrong person 0.0 6.6 2.3
average identification time 3.4 3.5 4.7

ntest = 4; then, the true positive rate and the false positive
rate are estimated to be 0.814 and 0.045 respectively, and
the minimum time for re-detection will be about 1.5 [sec].

D. Comparison with the previous method

We compare the identification performances of the pro-
posed method and our previous method [6]. We define the
identification performance as the harmonic mean of the true
positive rate and the inverse of the false positive rate:

performance =
2TP · (1− FP )

TP + (1− FP )
(8)

and we define the identification time as the average of
the minimum identification time (nsim) and the maximum
identification time (ntest):

identification time = Tstep
nsim + ntest

2
(9)

where Tstep is the cycle time of foot strike. Since the
proposed method uses the foot strike timings of both legs
and the previous method uses only one leg, we set Tstep of
the proposed method to 0.5 [s] and the previous method to
1.0 [s].

Fig. 7 shows the relationship between identification time
and identification performance. The identification perfor-
mance values shown in Fig. 7 are the best ones among those
with the same identification time. As shown in Fig. 7, if
we take a longer identification time, we can obtain better
performance. Since the proposed method can obtain more
foot strike timings than the previous method in a certain
period, it shows a better identification performance than the
previous method.

VI. EXPERIMENTAL RESULTS

A. Person Identification Experiment

We conducted a person identification experiment. In the
experiment, the target person had two smartphones (FREE-
TEL FTJ152B, MediaTek accelerometer is embedded), one
in his trousers pocket and one in his chest pocket and
attached an IMU (ZMP IMU-Z2) to his foot. We used two
LRFs (HOKUYO UST-20LX) to track people and estimate

Fig. 7. Relationship between the identification time and the identification
performance.
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Fig. 8. Person identification experiment. The person wearing the yellow
jacket is the target person; he placed two smartphones, one in his chest
pocket and one in his trousers pocket and an IMU on his foot. Circles
under persons indicate their positions obtained by LRF-based tracking, red
triangles indicate the target person and green, blue, and red bars indicate
the posterior probabilities of each person, the likelihood of the foot strike
timings, and the likelihood of the stopping state, respectively.

their foot strike timings. We apply the proposed method to
those smartphones and our previous method to the IMU.

Fig. 8 shows snapshots of the experiment with the smart-
phone in the chest pocket. The person wearing the yellow
jacket is the target person. Circles under persons indicate
their estimated positions obtained by the LRF-based tracking.
Green, blue, and red bars indicate the posterior probabilities
that a person is the actual target, the likelihood of the
foot strike timings, and the likelihood of the stopping state,
respectively. Red triangles on a person indicate that the
person is tracked as the target.

The target person and the other persons entered the field
and walked about (Fig. 8 (a)), and then the target person
was lost by the LRF-based tracking due to occlusions (Fig.
8 (b)(c)). Once the target person appeared again and walked
several steps, however, the target person was re-detected and
the tracking was resumed (Fig. 8 (d)). During the experiment,



the robot lost the track of the target a total of 12 times due
to occlusions. The target person was, however, successfully
re-detected in every case.

Table III shows the result of the experiment. The total
time of the experiment was 208.4 [sec]. In the case of the
smartphone in the trousers pocket, while the target person
is hidden by other persons, wrong persons are re-detected
as the target twice. However, the system realized that the
person is not the target by Bayesian inference and soon
tracked the target person again. Since we used parameters
which are optimized for a smartphone in a chest pocket,
the identification performance in the case of the trousers
pocket is a little worse than in the case of the chest pocket.
If we optimize the parameters for a smartphone in a trousers
pocket, we could improve identification performance.

Since the previous method takes longer identification time
than the proposed method, its duration of target loss is
longer than the others. It shows that the proposed method
has improved its responsiveness from the previous method.

During the experiment, the whole procedure except vi-
sualization took less than 1 [msec] per frame. Since the
processing cost is very low, the method can be extended to
track multiple targets by using a smartphone of every target
person.

B. Person Following Experiment

We applied the person identification method to a person
following task. While the robot is tracking the target person,
it moves toward the person. If the track of the person is lost,
the robot moves toward the target person position predicted
from the latest observed position and the velocity of the
person in order to keep the robot close to the person. We
used a path planning method by Ardiyanto and Miura [11]
to make the robot avoid obstacles while following the person.

Fig. 9 shows snapshots of a person following experiment.
During the experiment, the robot lost the target person sev-
eral times due to occlusion by others (Fig. 9 (b)). However,
once the target person appeared and walked by several steps,
the robot successfully re-detected him among the others and
continued following him (Fig. 9 (c)).

VII. CONCLUSIONS AND FUTURE WORK

This paper has described a method of identifying a specific
person using LRFs and a smartphone. In the method, the
robot is equipped with LRFs and the target person holds a
smartphone. Both sensors are independently used for classi-
fying the stopping states and for obtaining foot strike timings.
The obtained stopping states and timings are integrated using
a Bayesian inference to identify the target person. Since the
method requires the person to just hold a smartphone, it can
easily be applied to everyday situations. The method was
validated through the person identification experiments and
the person following experiments.

Smartphones provide plenty of sensor data which contains
IMU, GPS, illuminance, and wifi signal strength. We are
planning to extend the method to be able to utilize such
information for more robust person identification.

(a)

(b)

(c)

Fig. 9. Specific person following experiment: The left column shows
experiment scenes and the right column shows view of the camera on the
robot. The meanings of the markers (triangle, circle, bars) are the same as
in Fig. 8.
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