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Abstract— In this work, to facilitate the real-time processing
of multi-scan registration error minimization on factor graphs,
we devise a point cloud downsampling algorithm based on
coreset extraction. This algorithm extracts a subset of the
residuals of input points such that the subset yields exactly the
same quadratic error function as that of the original set for a
given pose. This enables a significant reduction in the number
of residuals to be evaluated without approximation errors at
the sampling point. Using this algorithm, we devise a com-
plete SLAM framework that consists of odometry estimation
based on sliding window optimization and global trajectory
optimization based on registration error minimization over
the entire map, both of which can run in real time on a
standard CPU. The experimental results demonstrate that the
proposed framework outperforms state-of-the-art CPU-based
SLAM frameworks without the use of GPU acceleration.

I. INTRODUCTION

Point cloud SLAM algorithms that directly compute and
minimize point cloud registration errors on factor graphs
have been gaining attention due to their precision and ro-
bustness. Methods such as odometry estimation with sliding
window optimization [1], global trajectory optimization via
global registration error minimization [2], and LiDAR-bundle
adjustment [3] excel in optimizing sensor poses to maximize
the consistency between multiple point clouds. They offer
more accurate and reliable estimations compared to those
obtained using traditional approaches such as filtering-based
odometry estimation [4] and global trajectory optimization
using relative pose constraints [5]. However, those methods
are computationally intensive, as they simultaneously opti-
mize multiple sensor poses with registration error factors
involving a vast number of points. This makes real-time
processing challenging without extensive approximations or
hardware accelerators such as GPUs [1], [2], [6].

In our previous work, we introduced GLIM, a SLAM
framework that utilizes GPU-accelerated registration error
factors [7]. Its odometry estimation and global trajectory
optimization rely on factor graphs that directly minimize
point cloud registration errors across multiple frames, elim-
inating the need for conventional relative pose factors
(i.e., gtsam::BetweenFactor<Pose3>). These registration-
error-minimization-based algorithms demonstrated signifi-
cant advantages, including extreme robustness against point
cloud degeneration and interruptions as well as the ability to
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Fig. 1: Factor graphs for odometry estimation and global
trajectory optimization. The proposed framework extensively
uses registration error factors to directly minimize registra-
tion errors across multiple point clouds. The exact downsam-
pling algorithm drastically reduces the linearization cost of
registration error factors and enables the real-time processing
of these dense factor graphs on standard CPUs.

close loops even with minimal frame overlap. However, the
reliance on GPU acceleration limits their broad applicability.

In the present work, we aim to enable the real-time
optimization of registration error minimization factor graphs
using only a standard CPU1. To this end, we leverage
a point cloud downsampling algorithm based on efficient
coreset extraction [8]. This method extracts a subset of
the residuals of input points, ensuring that the resulting
subset preserves the exact quadratic error function of the
original set for a given pose. This approach significantly
reduces the number of residuals to be evaluated without
introducing approximation errors at the sampling point. We
also introduce a strategy to mitigate the computational cost of
the downsampling by deferring the coreset extraction until
it is required. By integrating this sampling algorithm, we
develop a complete SLAM framework with registration error
minimization factor graphs that can operate in real time on
standard CPUs.

The contributions of this work are as follows:

• We extend the exact point cloud downsampling algo-
rithm [8] by incorporating point correspondence up-

1See the project page for supplementary videos: https://staff.
aist.go.jp/k.koide/projects/icra2025_es/.



dating to better capture the nonlinearity of the reg-
istration error function. We also introduce a factor
linearization strategy that defers the execution of exact
downsampling to reduce the computational overhead of
the linearization process.

• Leveraging exact point cloud downsampling, we de-
velop a complete SLAM framework that extensively
uses registration error factors for both odometry esti-
mation and global trajectory optimization, as shown in
Fig. 1. Although the graph structures were originally
designed for GPU processing [7], the exact downsam-
pling algorithm enables them to operate in real time on
a standard CPU.

II. RELATED WORK

A. Odometry Estimation

Many existing LiDAR odometry algorithms rely on state
filtering, which optimizes only the current sensor state while
marginalizing past states as new observations arrive [4], [9].
The process is typically combined with scan-to-model match-
ing, where past point clouds are accumulated into a single
model point cloud (or local map), and the current sensor
scan is aligned with this model [10]. Although this causal
estimation approach is efficient and accurate in feature-rich
environments, it struggles to propagate the uncertainty of
past observations and sensor states, resulting in difficulties
in scenarios with point cloud degeneration and interruptions.

To enhance robustness, LiDAR odometry algorithms based
on sliding window optimization have been introduced [1],
[7], [11], [12]. Unlike filtering-based approaches, these al-
gorithms optimize both current and past sensor states within
a sliding window and allow the correction of estimation drift
by propagating uncertainties backward in time. This results
in robustness to point cloud degeneration and rapid motion.
However, the need to continuously optimize multiple sensor
states requires significant computational resources, making
real-time processing challenging [1]. Consequently, many
of these methods rely on extensive downsampling [12] or
feature extraction [11] to reduce the computational demands.

B. Global Trajectory Optimization

Pose graph optimization constructs a factor graph based on
relative pose constraints and optimizes the global trajectory
by minimizing errors in the pose space. This method has been
widely adopted due to its computational efficiency [1], [5].
However, its accuracy is often constrained by the challenge
of accurately representing the uncertainty of scan matching
results using a Gaussian distribution [2].

Integrating point cloud registration errors into global tra-
jectory optimization can improve the accuracy of trajec-
tory estimation [7], [13]. However, computing these errors
across an entire map is computationally expensive. Existing
approaches rely on significant downsampling [14] or GPU
computation [7] to manage the high computational load.
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Fig. 2: Odometry estimation module, which estimates sensor
ego-motion using sliding window factor graph optimization,
and global mapping module, which constructs factor graph
to directly minimize matching cost errors across entire map.
Both modules utilize the GICP scan matching factor accel-
erated with the exact point cloud downsampling algorithm.

III. METHODOLOGY

Fig. 2 shows an overview of the proposed framework,
which comprises odometry estimation and global trajectory
estimation modules. Both modules are built with two key
building blocks, namely the generalized iterative closest
point (GICP) registration error factor accelerated with exact
point cloud downsampling and voxel-based fast overlap
estimation with occupancy bit chunks. We introduce these
building blocks in Secs. III-A and III-B and then describe
the proposed SLAM framework in Secs. III-C and III-D.

A. Registration Error Factor Accelerated with Exact Point
Cloud Downsampling

Registration error function: To constrain the relative
pose between two point clouds Pi and Pj , we use the
distribution-to-distribution distance metric in GICP [15].
GICP models each point pk ∈ Pj as a Gaussian distribution
pk = (µk,Σk), which represents the local surface shape,
and computes the distance between point pk and its corre-
sponding nearest point p′

k = (µ′
k,Σ

′
k) in the other point

cloud as follows:

fGICP(Pi,Pj ,Tij) =
∑

pk∈Pj

∥fD2D(p′
k,pk,Tij)∥2, (1)

fD2D(p′
k,pk,Tij) = Φ⊤

k dk, (2)
dk = µ′

k − Tijµk, (3)

ΦkΦ
⊤
k = (Σ′

k + TijΣkT
⊤
ij )

−1, (4)

where Tij = T−1
i Tj is the relative pose between Pi and Pj .

The decomposition ΦkΦ
⊤
k of the information matrix can be

efficiently obtained using Cholesky decomposition.
In the Gauss-Newton optimization, the residual function

fGICP is linearized at the current estimate T̆ij to form a
quadratic error factor:

fGICP(Pi,Pj , T̆ij ⊞∆x) ≈ ∆x⊤H∆x+ 2b⊤∆x+ c,
(5)

where H = J⊤J , b = J⊤e, c = e⊤e, J = ∂e
∂T , and e is

a stack of residuals given by fD2D.
Exact point cloud downsampling: The linearization

of fGICP is computationally intensive because it requires
the evaluation of residuals for all points in Pj . A com-
mon approach to mitigate this computation burden is to
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Fig. 3: Flowchart of exact point cloud downsampling with
deferred sampling strategy.

decrease the number of points using random sampling [13] or
geometry-aware feature selection [16], [17], [18]. However,
the accuracy of these sampling methods largely depends on
the number of sampled points and typically requires sampling
several thousand points to maintain sufficient accuracy.

To drastically reduce the number of points (e.g., tens to
hundreds) while retaining accuracy, we adopt the exact point
cloud downsampling algorithm [8], which is based on the
concept of coresets in computational geometry [19].

An exact coreset X ′ is a subset of input data X selected
such that the result of an algorithm f on the coreset becomes
the same as that on the original set: f(X ′) = f(X ),
where X ′ ⊂ X . Our downsampling algorithm extracts an
exact coreset of the residuals of input points, ensuring that
the original quadratic error function is precisely recovered.
Specifically, given a relative pose (referred to as the sampling
point) T̃ij , it extracts a subset of residuals ẽ ⊂ e and
corresponding weights w̃ such that the weighted subset
yields exactly the same quadratic error function parameters
H̃ , b̃, and c̃ as those of the original set (H, b, and c) at T̃ij :
H̃ = J̃⊤W̃ J̃ = H, b̃ = J̃⊤W̃ ẽ = b, c̃ = ẽW̃ ẽ =
c, where J̃ = ∂ẽ

∂Tij
and W̃ = diag(w̃). Due to space

limitations, we refer the reader to [8], [19] for the detailed
process of finding such a coreset2.

When re-linearizing fGICP, we evaluate only the selected
subset ẽ and compose a quadratic error factor. Since the
subset ẽ yields the same quadratic error function parameters
as those for the original set e, no approximation errors are
introduced at the sampling point T̃ij . As the subset ẽ can
be much smaller than the original set (about 0.5% to 5%
of e), re-linearization is significantly faster compared to
the original set. Unlike prior work [8], where fGICP was
re-linearized without updating point correspondences, our
approach re-linearizes fGICP with the coreset and updates
point correspondences. While the coreset does not guarantee
approximation accuracy for nonlinearity, in practice, it en-
ables an accurate approximation of the nonlinear objective
function, as demonstrated in Sec. IV-A.

Deferred sampling strategy: Although the extracted
coreset provides good approximation accuracy around the
sampling point T̃ij , the approximation error grows as the
current estimate T̆ij deviates further from T̃ij . We thus
re-extract a new coreset when the translation or rotation

2The coreset extraction algorithm is available at https://github.
com/koide3/caratheodory2.

displacement between the current estimate T̆ij and the sam-
pling point T̃ij exceeds its threshold (e.g., 1.0 m or 1.0°,
respectively).

However, naively re-extracting the coreset every time
fGICP is linearized would introduce overhead, especially
during the initial optimization iterations when sensor pose
estimates tend to change significantly, causing the newly ex-
tracted coresets to be quickly discarded in the next lineariza-
tion. To mitigate this, we implement a deferred sampling
strategy, as shown in Fig. 3

In this strategy, the GICP factor is first linearized at the
current estimate T̆ 0

ij with all input points, and residuals
e0 and their Jacobians J0 are obtained. We store e0 and
J0 in cache memory and create a quadratic factor with
the full residuals e0. During the next linearization, if the
displacement between the current and previous linearization
points, (T̆ 0

ij)
−1T̆ 1

ij , is below its threshold (e.g., 0.25 m
or 0.25°), we perform exact downsampling on the cached
residuals e0 and Jacobians J0 to extract the coreset ẽ. This
coreset is then re-evaluated at the current linearization point
T̆ 1
ij to form a new quadratic factor. As long as the current

estimate T̆ t
ij remains close to the sampling point T̃ij = T̆ 0

ij ,
the coreset is reused to re-linearize the objective function
fGICP.

Since the displacements of sensor pose estimates tend to
converge as the optimization proceeds, this deferred evalua-
tion strategy significantly reduces unnecessary executions of
exact downsampling.

B. Fast Overlap Estimation

We use a voxelmap-based overlap metric to manage the
localization and mapping processes. To enhance processing
speed, we employ a spatial voxel hashing algorithm [20] sim-
ilar to those in VoxelMap [14] and Faster-LIO [21]. Addition-
ally, we introduce a fast occupancy grid based on occupancy
bit chunks to further improve efficiency. Inspired by the VDB
structure in [22], we pack the binary occupancy states of
8×8×8 voxels into a 512-bit chunk and store the occupancy
chunks in a flat hash table. Hash collisions are resolved
by open addressing. Unlike implementations [14], [21] that
rely on closed addressing (e.g., with std::unordered set), our
implementation stores all voxel data in a compact contiguous
memory region, making it more cache-friendly. We compute
the overlap ratio by counting the number of source points
that fall within occupied target voxels. We observed that this
method yields up to a 2.5x processing speed improvement
compared to conventional implementations [14], [21]. Note
that we use this occupancy grid solely for overlap evaluation.
The nearest neighbor search in GICP factors is performed
using an exact nearest neighbor search, such as KdTree.

C. Odometry Estimation

Following [7], we employ keyframe-based odometry es-
timation with sliding window factor graph optimization, as
shown in Fig. 4. Let xt = [Tt,vt, bt] be the sensor state at
time t, where Tt ∈ SE(3) is the sensor pose, vt ∈ R3 is the
velocity, and bt ∈ R6 is the IMU bias.
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Fig. 4: Factor graph for odometry estimation3.

We optimize the sensor states within an optimization
window Xw that contains frames from the past 5 seconds. To
bound the computational cost, frames that leave the window
are marginalized from the graph. Every time a new sensor
frame is inserted, we create a preintegrated IMU factor [23]
between the current and previous frames. We also create
GICP factors between the new frame and the preceding N pre

frames (e.g., three frames) to improve robustness to rapid
sensor motion. To reduce estimation drift, GICP factors are
also created between the latest frame and keyframes X k,
which is a set of past frames selected such that they are
well distributed in space (i.e., with maximal distance between
them) while having sufficient overlap with the latest frame.

The objective function is summarized as follows:

gLIO(Xw) =
∑

xj∈Xw

∑
xi∈Xp

j ∪Xk

fGICP(Pi,Pj ,Ti,Tj) (6)

+
∑

xi∈Xw

f IMU(xi−1,xi) + fMG(Xw), (7)

where X p
j = {xj−N pre , . . . ,xj−1} is the preceding frames

of xj , X k is the keyframes, f IMU is the IMU error factor,
and fMG is the error term to compensate for marginalized
variables and factors. We use the iSAM2 optimizer [24]
implemented in GTSAM [25] for efficient optimization and
marginalization.

A key difference from [7] is that we use the GICP factor
with exact nearest neighbor search (i.e., KdTree) instead of
voxel-based nearest neighbor search. The use of exact nearest
neighbor search improves the convergence of the optimiza-
tion process. While this results in a high computational cost,
exact downsampling enables real-time processing on a CPU
and makes GPU computation unnecessary.

D. Global Trajectory Optimization

Frames marginalized from the odometry estimation graph
are concatenated into a single point cloud at a certain
interval (e.g., every 50 frames) to form a submap. The global
mapping module then constructs a factor graph to optimize
the submap poses to achieve a globally consistent sensor
trajectory. As in [7], we create a GICP factor between every
pair of submaps with an overlap that exceeds a threshold
(e.g., 15%), resulting in a highly dense factor graph, as shown
in Fig. 1 (b). The objective function is thus defined as

gGM(X g) =
∑

(T i,T j)∈Xo

fGICP(Si,Sj ,T i,T j), (8)

3Reprinted from [7] with permission from Elsevier.

Fig. 5: Registration error function approximation errors. Ex-
act downsampling showed zero errors at the sampling point
(when noise = 0) and consistently showed errors smaller than
those of the quadratic approximation (i.e., linear factor at
the sampling point). Note that most of the random sampling
results are not visible in this figure due to excessively large
errors. The numerical values in the legend refer to the
numbers of points sampled.

where X g is the set of all submap poses, X o is all pairs of
submaps with an overlap, and Si and T i are the point cloud
and the pose of submap i, respectively. The optimization is
incrementally performed with the iSAM2 optimizer [24].

IV. EXPERIMENTS

A. Approximation Accuracy of Exact Downsampling

Experimental setting: We evaluated the approximation
accuracy of exact point cloud downsampling on the KITTI
dataset [26]. We created pairs of consecutive frames from
the first 500 frames of the KITTI 00 sequence and extracted
an exact coreset for each pair. We then compared the
linearization results of the registration error on the coreset
and those on the original points under pose perturbation.
The approximation error was measured using two metrics:
1) KL divergence (KLD) between the covariance matrices
(i.e., KLD(H−1, H̃−1) ), 2) translation and rotation errors
between the mean vectors (i.e., µ = H−1b and µ̃ = H̃−1b̃).
For each frame pair, we repeated the evaluation 100 times,
varying the magnitude of the displacement from the sampling
point. As baselines, we also evaluated random sampling
and quadratic approximation (i.e., linearized factor at the
sampling point). The number of sampled points varied from
32 to 256. Note that random sampling often yields corrupted
linearized factors with such a small number of sampled
points.

Experimental results: Fig. 5 shows the evaluation re-
sults. Exact downsampling demonstrated zero approxima-
tion error for both metrics when the displacement from
the sampling point was zero. This result confirms that the
coresets precisely recovered the original quadratic function
at the sampling point. Although quadratic approximation
also showed zero error at the sampling point, its accuracy
quickly deteriorated as the evaluation point moved away
from the sampling point. This deterioration suggests that
the registration error factor is highly nonlinear and cannot
be adequately captured by linear approximations. Random
sampling exhibited large approximation errors with this very
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Fig. 6: Setup for flat wall experiment [7]. The LiDAR was
moved between pillars, which induced severe point cloud
degeneration for a few seconds.

TABLE I: Point Cloud Degeneration Test Results (ATEs [m])

Seq. FLIO [4] VoxelMap [14] SLICT [1] GLIM [7] Proposed

01 0.815 0.577 0.947 0.118 0.424
02 0.822 0.146 0.331 0.299 0.092
03 0.873 0.950 1.088 0.040 0.114
04 1.137 0.586 0.729 0.389 0.448
05 1.048 0.786 0.747 0.228 0.311
06 15.551 0.807 0.311 0.056 0.068
07 0.635 0.366 0.659 0.017 0.014
08 0.297 0.279 0.983 0.146 0.045

Average 2.647 0.562 0.724 0.162 0.190

small number of sampled points. For example, random
sampling with 256 points resulted in mean errors of 0.698
m and 0.132°and KLD errors of 2.7× 103 and 4.1× 103 on
average. These results indicate that random sampling requires
a significantly larger number of points (e.g., more than 1000)
to reasonably approximate the original error function.

B. Robustness to Point Cloud Degeneration

Experimental setting: We evaluated the proposed odom-
etry estimation method on the flatwall dataset4 to demon-
strate its robustness to point cloud degeneration. This dataset
consists of eight sequences recorded with a Livox Avia. In
each sequence, the LiDAR was moved between two pillars in
a corridor while facing a flat wall, which induced severe point
cloud degeneration for a few seconds. While the durations of
the sequences are relatively short (8.8 to 18.5 s), this dataset
poses a significant challenge for existing methods, as point
cloud degeneration makes accurate odometry estimation dif-
ficult.

We compared the proposed method with four state-of-the-
art tightly coupled LiDAR-IMU odometry methods, namely
FAST-LIO2 (FLIO) [4], based on the iterated Kalman filter,
VoxelMap [14], based on a voxel-based efficient plane rep-
resentation, SLICT [1], which uses continuous-time sliding
window optimization, and GLIM [7], which uses GPU-
accelerated sliding window optimization.

Experimental results: Table I summarizes the absolute
trajectory errors (ATEs) [27] for the evaluated methods.
FAST-LIO2, VoxelMap, and SLICT were greatly affected by
the severe degeneration of point clouds and thus exhibited
large average ATEs (2.647, 0.562, and 0.724 m, respectively).
The proposed method showed an average ATE of 0.190 m,
which is comparable to that of GLIM (0.162 m), even though
it does not rely on GPU acceleration. This performance is

4https://staff.aist.go.jp/k.koide/projects/
glimsupp/flatwall.html

TABLE II: ATEs [m] for Odometry Estimation Methods on
MCD VIRAL Dataset

Sequence FLIO [4] DLIO [9] SLICT [1] GLIM [7] Proposed

ntu day 01 1.510 1.925 1.890 1.054 0.918
ntu day 02 0.272 0.636 0.168 0.259 0.289
ntu day 10 2.084 3.052 1.429 1.099 1.361

ntu night 04 1.599 2.373 1.002 1.007 0.961
ntu night 08 1.425 2.056 0.822 1.558 1.846
ntu night 13 0.903 1.928 0.574 0.785 0.780
kth day 06 1.005 0.562 0.633 0.283 0.466
kth day 09 0.733 0.326 0.262 0.194 0.219
kth day 10 2.176 0.665 0.737 0.204 0.296

kth night 01 1.040 0.414 0.540 0.317 0.403
kth night 04 0.567 0.376 0.441 0.152 0.256
kth night 05 2.158 0.903 0.855 0.259 0.185
tuhh day 02 0.273 0.283 0.236 0.185 0.268
tuhh day 03 0.970 0.731 0.743 0.843 0.459
tuhh day 04 0.077 0.232 0.084 0.124 0.083

tuhh night 07 0.279 0.436 0.227 0.120 0.272
tuhh night 08 0.749 0.685 0.740 0.605 0.520
tuhh night 09 0.057 0.375 0.094 0.089 0.067

Average 0.993 0.998 0.638 0.508 0.536
Best values are shown in bold.

attributed to sliding window optimization, which effectively
corrects trajectory drift during point cloud degeneration by
propagating future observations to past states.

C. Quantitative Evaluation on MCD VIRAL dataset

Experimental setting: To quantitatively evaluate the
accuracy of the proposed method in practical scenarios, we
conducted experiments on the MCD VIRAL dataset [28].
This dataset consists of 18 sequences recorded with an Ouster
OS1-128 and a Livox Mid70. Six sequences (ntu sequences)
were recorded with an on-vehicle setup. The remaining
sequences (kth and tuhh sequences) were recorded with a
handheld sensor setup. The average and maximum durations
of the sequences are respectively 537 and 969 s.

Odometry estimation accuracy: We compared the pro-
posed odometry estimation with FAST-LIO2 [4], DLIO [9],
SLICT [1], and GLIM [7]. Loop closure was disabled for all
methods. Table II summarizes the ATEs for the evaluated
methods. The results for FAST-LIO2, DLIO, and SLICT
were taken from [28]. Note that our method used only point
clouds obtained using Ouster OS1-128.

FAST-LIO2 and DLIO, based on state filtering, were
greatly affected by the challenging setup, which involved
high-speed motion and dynamic environment changes, and
thus exhibited large average ATEs (0.993 and 0.998 m,
respectively). Although SLICT exhibited a better ATE (0.638
m), it was computationally intensive and failed to achieve
real-time processing. Among the compared methods, GLIM
showed the best average ATE (0.508 m) owing to its robust
sliding window optimization. However, it required GPU
acceleration for real-time processing. The proposed method
showed an average ATE (0.536 m) that was comparable to
that of GLIM owing to sliding window optimization.

Global mapping accuracy: We compared the proposed
SLAM framework including loop closure with three baseline
methods. SLICT [1] uses conventional scan-matching-based
loop detection and pose-graph-based trajectory optimization.
PGO is conventional pose-graph-based trajectory optimiza-
tion implemented in GLIM [7], similar to that of SLICT.



TABLE III: ATEs [m] for Global Trajectory Optimization
Methods with Loop Closure on MCD VIRAL Dataset

Sequence SLICT [1] PGO [7] GLIM [7] Proposed

ntu day 01 0.885 0.853 0.686 0.731
ntu day 02 0.179 0.390 0.185 0.255
ntu day 10 1.108 0.815 0.625 0.689

ntu night 04 1.312 0.956 0.983 0.881
ntu night 08 0.678 0.678 0.582 0.560
ntu night 13 0.717 0.667 0.668 0.619
kth day 06 0.330 0.364 0.144 0.227
kth day 09 0.122 0.169 0.109 0.098
kth day 10 0.250 0.327 0.220 0.174

kth night 01 0.340 0.318 0.277 0.248
kth night 04 0.200 0.292 0.128 0.095
kth night 05 0.329 0.185 0.241 0.203
tuhh day 02 0.190 0.215 0.125 0.119
tuhh day 03 0.472 0.360 0.718 0.593
tuhh day 04 0.069 0.111 0.069 0.063

tuhh night 07 0.199 0.165 0.129 0.134
tuhh night 08 0.403 0.512 0.552 0.500
tuhh night 09 0.103 0.075 0.055 0.058

Average 0.438 0.414 0.361 0.347
Best values are shown in bold.

(a) SLICT (b) PGO

Fig. 7: Global optimization graphs. Blue and green lines
respectively represent odometry and loop factors.

GLIM [7] uses the same global trajectory optimization factor
graph structure as that of the proposed method with GPU-
accelerated registration error factors.

Table III summarizes the ATEs of the compared methods
with loop closure. Although SLICT had a greatly improved
accuracy compared to that without loop closure, it showed
the largest ATE among the compared methods (0.438 m).
PGO showed the second largest average ATE (0.414 m).
In particular, SLICT and PGO exhibited large ATEs in
longer sequences (ntu sequences). Fig. 7 shows the pose
graphs generated by SLICT and PGO for the ntu day 01
sequence. Blue and green lines represent odometry and loop
constraints, respectively. The generated pose graphs are very
sparse, as pose-graph-based methods have difficulty closing
loops for frames with a small overlap. This result suggests
that it is difficult to accurately correct trajectories with large
loops using pose graph optimization.

GLIM and the proposed method showed better ATEs
compared to those of the pose-graph-based methods (0.361
and 0.347 m, respectively). Fig. 1 (b) and Fig. 8 show that the
proposed method constructed dense registration error mini-
mization factor graphs that enabled accurate correction of
trajectories with large loops. The proposed method exhibited
a slightly better average ATE compared to that of GLIM.
Although the difference is not significant, we consider that
the use of exact nearest neighbor search resulted in better
convergence compared to that for GLIM, which is based on

(a) kth day 06 (b) tuhh day 03

Fig. 8: Example of mapping results and global trajectory
optimization graphs.

Fig. 9: Processing time of global mapping for ntu day 01.

voxel-based approximate nearest neighbor search.
Processing time: We measured the processing times of

the odometry estimation and the global mapping modules on
the ntu day 01 sequence, one of the longest sequences in the
dataset. The timings were recorded on an Intel Core i7 8700K
with 32 GB of RAM. Note that the factor linearization and
the linear solver were made multi-threaded using Intel TBB.

The odometry estimation and the global mapping took
approximately 51.9 ms (for each frame) and 433.9 ms (for
each submap), respectively, both well within the real-time
requirements (100 ms per frame and an average submap
interval of 1.7 s). Fig. 9 shows how the processing time of the
global mapping module changed as the mapping progressed.
Thanks to the exact downsampling algorithm and incremental
optimization with iSAM2, the global optimization quickly
converged every time a new submap was inserted.

As an ablation study, we measured the processing times
with exact downsampling disabled. The average processing
times of odometry estimation and global trajectory opti-
mization deteriorated significantly, falling below the real-
time requirements (284.8 and 1831.8 ms, respectively). This
result confirms that exact downsampling greatly accelerates
the optimization process.

V. CONCLUSIONS

We proposed a range-inertial SLAM framework with
GICP factors accelerated with the exact downsampling algo-
rithm. We devised a deferred sampling strategy to mitigate
the processing cost of exact downsampling. The experimen-
tal results demonstrated that the proposed method enables
the real-time processing of registration error minimization
factor graphs on a standard CPU and exhibits an accuracy
comparable to those of GPU-based methods.
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