
MegaParticles: Range-based 6-DoF Monte Carlo Localization
with GPU-Accelerated Stein Particle Filter

Kenji Koide1, Shuji Oishi1, Masashi Yokozuka1, and Atsuhiko Banno1

Abstract— This paper presents a 6-DoF range-based Monte
Carlo localization method with a GPU-accelerated Stein particle
filter. To update a massive amount of particles, we propose a
Gauss-Newton-based Stein variational gradient descent (SVGD)
with iterative neighbor particle search. This method uses SVGD
to collectively update particle states with gradient and neighbor-
hood information, which provides efficient particle sampling.
For an efficient neighbor particle search, it uses locality sensitive
hashing and iteratively updates the neighbor list of each particle
over time. The neighbor list is then used to propagate the
posterior probabilities of particles over the neighbor particle
graph. The proposed method is capable of evaluating one
million particles in real-time on a single GPU and enables
robust pose initialization and re-localization without an initial
pose estimate. In experiments, the proposed method showed
an extreme robustness to complete sensor occlusion (i.e., kid-
napping), and enabled pinpoint sensor localization without any
prior information.

I. INTRODUCTION

Reliable sensor localization is crucial for autonomous
systems such as service robots and autonomous driving
vehicles. In particular, point-cloud-based localization has
been widely used in many applications as a result of the
emergence of precise and affordable range sensors. Although
the recent development of scan-matching-based localization
techniques (e.g., sliding window optimization [1] and the
tight coupling of LiDAR and IMU constraints [2]) has signif-
icantly improved the pose tracking accuracy and reliability,
it is still challenging to deal with cases where no prior
knowledge of the sensor position is available (e.g., initial
position estimation without GNSS and re-localization after
kidnapping).

Monte Carlo localization (MCL) is a category of local-
ization methods that estimate the sensor pose using random-
sampling-based probabilistic inference [3]. In particular, a
particle filter is the most common approach used for 2D
LiDAR localization and mapping [4], [5], [6]. Owing to
its non-linear, non-Gaussian nature, a particle filter enables
reliable localization even in cases where single hypothesis
algorithms suffer from observational ambiguity and repeated
environmental structures. However, because the number of
particles required to fill the state space grows exponentially
as the dimension increases, it has generally been considered
to be difficult to apply the Monte Carlo approach to 6-DoF
pose estimation in 3D environments.

*This work was supported in part by JSPS KAKENHI Grant Number
23K16979 and a project commissioned by the New Energy and Industrial
Technology Development Organization (NEDO).

1All the authors are with the Department of Information Technology and
Human Factors, the National Institute of Advanced Industrial Science and
Technology, Tsukuba, Ibaraki, Japan, k.koide@aist.go.jp

(a)

(b) (d)

(c)

Fig. 1: (a) Proposed method performs 6-DoF sensor localiza-
tion with one million particles. All the particles are evaluated
and updated in real-time on a single GPU. Point clouds
acquired by a MS Azure Kinect are used (No IMU input).
(b) Posterior probability distribution. (c) A close look at the
maximum posterior particle (zoom in to see RGB-colored
pose particles), and (d) the same view with particles colored
based on the posterior probabilities.

Several studies have tackled 6-DoF MCL with carefully
designed sampling techniques (e.g., RBPF with rotation
translation decoupling [7]). While these methods enable real-
time 6-DoF pose estimation with fewer particles, it is still dif-
ficult to deal with situations where strong ambiguity causes
state distributions with many modes. The recently proposed
Stein particle filter [8] combines a particle filter with Stein
variational gradient descent (SVGD) [9]. SVGD updates the
particle states collectively to improve the sampling efficiency
with gradient information while retaining the diversity of the
particles. Although a Stein particle filter has been shown to
enable 6-DoF pose estimation in a 3D environment with only
50 particles, it requires a costly kernel-based computation
that prevents increasing the number of particles.

In this work, we propose a 6-DoF Monte Carlo localization
method that combines GPU parallel processing and SVGD-
based particle state optimization 1. The proposed method
was designed to fully leverage the GPU acceleration, and
it is capable of evaluating and updating a million particles
(10242 particles) in real-time, as shown in Fig. 1. Inspired

1See the project page for supplementary videos: https://staff.
aist.go.jp/k.koide/projects/icra2024_mp/



by [8], we use SVGD [9] to update the particle states
for efficient sampling. To efficiently perform the SVGD-
based collective particle state optimization, we propose an
approximated Gauss-Newton SVGD with locality sensitive
hashing (LSH)-based neighbor particle search in the SE3
pose space. Furthermore, to quickly estimate and propagate
the particle posterior probabilities, we developed a Bayesian
filter on a dynamic neighbor particle graph.

To demonstrate the robustness and re-localization ability
of the proposed method, we conducted experiments in an
indoor environment with repeated and symmetric structures
and in a large outdoor environment with dynamic objects
and vegetation changes. The experimental results showed
that the proposed method could robustly estimate the sensor
pose starting from a particle set initialized with a uni-
form 6-DoF pose distribution. It was also robust to the
complete blockage of sensor data (i.e., kidnapping), which
is difficult, if not impossible, to overcome with existing
scan-matching-based localization methods. Furthermore, the
neighbor-particle-graph-based posterior probability estima-
tion enabled pinpoint localization once the sensor moved and
the pose ambiguity was resolved.

II. RELATED WORK

A. Iterative Scan Matching-based Localization

The most common approach to 3D map localization is
to iteratively apply point cloud scan matching (e.g., ICP
[10] and NDT [11]) between LiDAR scan and map points.
Because these scan matching methods require a precise
initial guess for convergence and are error-prone in feature-
less environments, they are often integrated with other data
sources (e.g., wheel odometry [12] and IMU measurements
[2]) using an extended Kalman filter or a factor graph
for robust estimation. This approach enables efficient and
precise sensor localization owing to the high-definition point
cloud data provided by recent range sensors. However, these
single hypothesis methods heavily rely on the continuity of
the point cloud data. They easily fail to continue tracking
the sensor pose when the point cloud data are interrupted.
Even a momentary data drop (e.g., 1 s) can cause a critical
estimation failure, and it is almost impossible to deal with
a longer interruption (i.e., kidnapping) using iterative-scan-
matching-based methods.

B. Monte Carlo Localization

MCL is one of the most popular approaches to the 2D
localization problem. It represents and estimates a state
distribution with a finite set of state samples. In particular,
a particle filter is the most representative non-parametric
Monte Carlo Bayes filter used to estimate the state distribu-
tion through particle importance weighting and resampling
[3]. Because of its non-linear and non-Gaussian nature, it
is robust to ambiguity in the observations and environment.
With a sufficient number of samples, it can even enable
pinpoint sensor localization without any prior knowledge
(i.e., global localization).

Despite its success in 2D localization, the MCL approach
has not been commonly used in 3D scenarios because of the
curse of dimensionality. Because the number of samples to
fill a unit space grows exponentially with the dimensionality,
a massive number of particles is needed, with a large
computation cost, to retain the robust properties of the 2D
MLC approaches in 3D scenarios. Most of the existing 3D
MCL methods perform state estimation in 3 or 4 DoF ([13],
[14]).

Recently, several studies have proposed 6-DoF MCL meth-
ods that smartly sample and evaluate particles. Akai et al.
used a 3D distance field for accelerated likelihood evaluation
and performed 6-DoF sensor pose estimation with a vehicle
motion model [15]. Maggio et al., used a NeRF(Neural radi-
ance field)-based map representation and VIO(visual inertial
odometry)-based precise motion prediction [16]. Deng et
al. decoupled the rotation and translation components and
estimated a 6-DoF object pose using a Rao-Blackwellized
particle filter [7]. Maken et al. proposed a Stein particle filter
that introduced SVGD to improve the sampling efficiency
and demonstrated 4-DoF global localization and 6-DoF pose
tracking on a 3D map [8]. Although these methods enabled
6-DoF state estimation with only 50-1,000 particles using
smart sampling schemes, this number of samples made it
difficult to represent a multi-modal distribution in a 6-DoF
space. Thus, re-localization and ambiguity handling abilities
were limited.

C. GPU-Accelerated Localization

Several studies have used GPU acceleration to achieve fast
and robust localization. However, most of them used the GPU
for only a portion of the system (e.g., nearest neighbor search
[17] or occupancy gridmap generation [18]).

Our work was inspired by the work of Peng and Weik-
ersdorfer, who proposed 2D localization with a histogram
filter that used a belief tensor representing all the possible
states [19]. The entire system was designed to leverage
the GPU computation power, and they showed that a non-
parametric filter accelerated with the GPU exhibited an
excellent pinpoint global localization ability without any
initial state assumption. Inspired by their work, we fully
utilized GPU acceleration to achieve 6-DoF localization with
a global re-localization ability.

III. METHODOLOGY

A. Problem Setting

Our objective is to estimate SE3 sensor pose Tt on 3D
point cloud map M =

{
pMk ∈ R3 |k=1,...,NM

}
from sensor

point cloud measurements Pt =
{
pSk ∈ R3 |k=1,...,NS

}
.

As with a conventional particle filter, we estimate the
state distribution using a set of samples (i.e., particles)
Xt = {xi

t |i=1,...,NP } and update the particle states through
prediction and correction steps. In our case, each particle xi

t

represents a hypothesis of the sensor pose: xi
t := T

i
t . Inspired

by [8], we employ SVGD-based particle optimization in
the correction step for efficient and robust state sampling.
After the correction step, we explicitly estimate the posterior



probability of each particle through a Bayesian filter over a
neighbor particle graph.

B. Prediction Step

To update the particle states in the prediction step, we first
perform GICP scan matching [20] between consecutive scan
point clouds Pt−1 and Pt to obtain an estimate of the sensor
motion ∆Tt ∼ T−1

t−1Tt. We also estimate the covariance
matrix Σ∆T ∈ R6×6 based on the Hessian matrix of the
scan matching optimization result.

Then, the states of particles are updated as follows:

T i
t = T i

t−1∆Tt exp
(
δi
)
, (1)

where δi ∼ N (0,Σ∆T ) is a random noise in the tangent
space of ∆Tt.

C. Correction Step

Likelihood evaluation: We employ the GICP distribution-
to-distribution distance [20] for the log likelihood func-
tion log p(Pt|xi

t). In GICP, each point p∗k is modeled as
a Gaussian distribution N (µ∗

k,Σ
∗
k) representing the local

geometrical shape. For each scan point pSk , we find the
nearest map point pMk and compute the log likelihood as
follows:

log p(Pt|xi
t) = −

∑
k

e⊤k Ωkek, (2)

ek = µM
k − T i

tµ
S
k , Ωk =

(
ΣM

k + T i
tΣ

S
k (T

i
t )

⊤)−1
. (3)

For an efficient nearest map point search, we precompute
a nearest neighbor field mnnf that voxelizes the map space
at a specific resolution (e.g., 0.1 m for indoors, 0.2 m for
outdoors) and stores the index of the nearest map point for
each voxel. When computing the log likelihood, we look up
mnnf to find the nearest map point of each scan point.

Particle state update: We propose Gauss-Newton-based
approximate SVGD particle optimization to update particle
states with the likelihood function.

Because log p(Pt|xi
t) is in the least squares form, as

in Gauss-Newton optimization, we can obtain an optimal
particle displacement vector ψi = H−1b to maximize the
log likelihood through quadratic approximation, where

H =
∑
k

J⊤
k ΩkJk, b =

∑
k

J⊤
k Ωkek, Jk =

∂ek
∂T i

t

. (4)

Then, we update the states of particles based on modified
SVGD:

T i
t+1 = T i

t exp
(
ϕ
(
T i
t ,Pt

))
, (5)

ϕ(T i
t ,Pt) =

∑
xj

t∈X̃ i
t

(
k(T i

t ,T
j
t )ψ

j +∇T j
t
k(T i

t ,T
j
t )
)

∑
xj

t∈X̃ i
t
k(T i

t ,T
j
t )

,

(6)

where k is a positive definite kernel and X̃ i
t is a set of neigh-

bor particles, which includes xi
t itself. Kernel k measures the

distance between particles and controls how particles affect

Algorithm 1 IterativeNeighborParticleSearch

1: T LSH ← Random SE3 transformation
2: B ←

[
∅ |i=1,...,NB

]
▷ LSH buckets

3: for xi
t ∈ Xt do ▷ Distribute loop

4: h← fLSH(xi
t) mod NB

5: B[h]← B[h] ∪ xi
t ▷ Add particle to the bucket

6: for xi
t ∈ Xt do ▷ Gather loop

7: h← fLSH(xi
t) mod NB

8: for xj
t ∈ Bt[h] do

9: X̃ i
t ← X̃ i

t ∪ xj
t ▷ Add to the neighbor list

10: if |X̃ i
t | > K then

11: x̂← argminxk
t ∈X̃ i

t
k(xi

t,x
k
t ) ▷ Farthest particle

12: X̃ i
t ← X̃ i

t \ x̂ ▷ Remove x̂ from the neighbor list

each other. We use the following exponential kernel with di-
agonal weighting matrix WK = diag([σr, σr, σr, σt, σt, σt])
(e.g., σr = 5.0 rad−1 and σt = 2.5 m−1):

k
(
T i
t ,T

j
t

)
= exp

(
−d⊤ijWKdij

)
, (7)

dij = log
((
T i
t

)−1
T j
t

)
. (8)

Intuitively, the component
∑

k(T i
t ,T

j
t )ψ

j in Eq. 6 is a
weighted sum of the Gauss-Newton update vectors of neigh-
boring particles that pushes particle xi

t toward the modes of
the likelihood function. ∇T j

t
k(T i

t ,T
j
t ) is the gradient of the

kernel at the particle location that causes repulsive forces
between particles and helps maintain the diversity of the
particles in the state space.

The original SVGD computes the update direction of a
particle using all the other particles, resulting in a computa-
tional burden with a large number of particles. Considering
that only neighbor particles have large kernel values and
affect the update direction in SVGD, we only use up to K
neighbor particles X̃ i

t (e.g., 20 neighbors) to compute the
update vector in Eq. 6.

LSH-based iterative neighbor particle search: Because
we handle a massive amount of dynamically changing par-
ticles in the non-Euclidean SE3 space, conventional nearest
neighbor methods (e.g., linear search and spatial-partitioning)
cannot be applied to our problem.

To efficiently find neighbor particles, we use an iterative
neighbor particle search using locality sensitive hashing
(LSH) based on stable distributions [21]. Algorithm 1 de-
scribes the proposed neighbor particle search algorithm. We
first distribute particles into a hash table with NB buckets
using the following hash function (Line 3 – 5):

fLSH(T i
t ) = hash ([⌊ζ[i]⌋|i=1···6]) , (9)

ζ = αWK log
((
T LSH)−1

T i
t

)
+ δLSH

i , (10)

where hash is a function used to compute a hash value from
a tuple of integers [22], T LSH is a random transformation
that defines the tangent space to compute the hash value,
δLSH ∼ N (0,ΣLSH) is a random Gaussian noise, and α is a
constant.

As shown in Fig. 2, T LSH defines the grid to discretize
transformation T i

t , and noise δLSH causes a fluctuation in
the position of T i

t in the grid space. Because particles with



Hash value

Fig. 2: SE3 locality sensitive hashing based on a stable
distribution.

a small displacement tend to fall in the same cell of the grid,
fLSH assigns the same hash value to close particles with a
high probability. By using fLSH, we store all the particles
in the hash table and then find particles that fall in a same
bucket as neighbor particles. In this way, we can efficiently
find neighbor particle candidates for all the particles in time
linear to the number of particles (Line 6 – 9).

However, the neighbor particles found will contain false
positives and negatives because fLSH is a probabilistic func-
tion. We thus assume that the neighborhood relationship
of particles does not significantly change in a short time
interval, and we iteratively update the neighbor list X̃ i

t

of each particle over time by keeping only the K closest
particles (Line 9 – 12).

D. Posterior Propagation on Neighbor Particle Graph
Similar to [8], the SVGD-based correction step does

not perform resampling. Because the proposed algorithm
keeps all the particles alive, it does not suffer from the
sample impoverishment problem [23]. Meanwhile, a massive
number of particles is obtained with an extremely non-linear
distribution with many modes, and explicitly estimating the
posterior distribution and representative state of the estima-
tion result is not straight forward. We thus propose a method
to explicitly estimate the posterior probability of each particle
by propagating probabilities over a neighbor particle graph
that is a by-product of the iterative neighbor particle search.

Given prior probability p(xi
t) of particle xi

t, we first obtain
initial posterior probability p(xi

t|Pt) ∝ p(xi
t)p(Pt|xi

t) with
likelihood p(Pt|xi

t) in Eq. 2. We then compute the weighted
average of the neighbor particles:

p′(xi
t|Pt) =

∑
xj

t∈X̃ i
t
k(T i

t ,T
j
t )p(x

j
t |Pt)∑

xj
t∈X̃ i

t
k(T i

t ,T
j
t )

. (11)

We iteratively apply Eq. 11 several times (e.g., 10 times).
This process can be interpreted as locally distributing and
smoothing the posterior probabilities over the neighbor par-
ticle graph under the random walk assumption. The proposed
Bayesian filtering approach can also be interpreted as a
histogram filter with sparse and dynamic state bins updated
with SVGD. After the posterior probability update, we obtain
the state of the particle with the highest posterior probability
as the representative state.

IV. EXPERIMENT

A. Indoor Experiment
Experimental setting: To demonstrate the robust initial-

ization and re-localization ability of the proposed method,
we conducted experiments in an indoor environment with
repeated and symmetric structures. We used an Azure Kinect
to acquire point clouds at 10 Hz. We recorded two sequences
(Easy01 and Easy02) while walking in a corridor without
aggressive motion and data interruption, and two other
sequences (Kidnap01 and Kidnap02) with thee long data
interruptions (10-20 s) in each by completely blocking the
sensor view. Furthermore, the sensor was moved through
room after room during the data interruptions, and we
believe that none of the existing methods could deal with
these severe kidnapping situations. The sequences (Easy01,
Easy02, Kidnap01, Kidnap02) had durations of 139, 136,
147, and 109 s, respectively 2.

To run the proposed algorithm, we initialized 10242 parti-
cles with a uniform distribution covering the entire map (50
m × 35 m × 4 m and full SO3 rotation). All the particles
were evaluated and updated in real-time on a single GPU
(NVIDIA A100).

As a baseline, we ran two localization algorithms based
on iterative scan matching, FAST LIO LOCALIZATION 3

and hdl localization [24]. FAST LIO LOCALIZATION uses
FAST LIO2, which is a tightly coupled LiDAR-IMU odome-
try estimation method [2], to estimate the sensor ego-motion
and periodically performs scan-to-map registration to correct
estimation drift. For comparison, we also ran FAST LIO2
[2] without map-based pose correction. hdl localization [24]
performs NDT-based scan-to-map registration and unscented
Kalman filter-based IMU fusion. Note that we used IMU data
and initial poses only for these existing methods, whereas
the proposed method performed localization using only point
cloud data without initial guess.

To obtain reference sensor trajectories, we manually
aligned scan point clouds with the map point cloud and
performed batch optimization of the scan-to-map registration
errors and IMU motion errors. We evaluated the estimated
trajectories using the absolute trajectory error (ATE) metric
[25] using the evo toolkit 4. Because we initialized the
proposed method with a uniform distribution (no initial
guess), we excluded the beginning of each sequence until
the posterior probability distribution converged to a single
pose hypothesis (10-30 s).

Initialization: Fig. 3 shows how the posterior probabil-
ity distribution of the proposed method converged from a
uniform distribution in the Easy01 sequence. We applied
weighted kernel density estimation to the 2D particle posi-
tions for visualization. Although the particles were uniformly
initialized without any prior information (Fig. 3 (a)), the
posterior probability quickly converged around the correct
position as the sensor moved (Fig. 3 (b)(c)). Although there
was still orientation ambiguity (upright and flipped) due to
the symmetric environment structure (Fig. 3 (d)), when the

2The dataset is available at : https://staff.aist.go.jp/k.
koide/projects/icra2024_mp/

3https://github.com/HViktorTsoi/FAST_LIO_
LOCALIZATION

4https://github.com/MichaelGrupp/evo



(a) (b) (c)

(d) (e) (f)

Fig. 3: Estimation result for Easy01 sequence. Particles
were initialized with a uniform distribution without any
prior information (a). The positional ambiguity was quickly
resolved as the sensor moved (b, c). Although there were still
two major hypotheses for the sensor orientation (upright and
flipped) (d, e), it was resolved when the sensor entered a
room (f).

Blocked and moved

(a) (b) (c)

(d) (e) (f)

Fig. 4: Kidnapping experiment result (Kidnap02). The sensor
view was completely occluded, and the uncertainty grew
because of the lack of observations (a, b). When the oc-
clusion was removed and the sensor began to see the world,
the posterior probability distribution quickly converged to a
few positions (c, d, e). Eventually, the posterior distribution
successfully converged to the correct position (f).

sensor made a turn and entered a room (Fig. 3 (e)), the
ambiguity was eventually resolved (Fig. 3 (f)).

Dealing with kidnapping: Fig. 4 shows how the pro-
posed method recovered from kidnapping in the Kidnap02
sequence. During the data interruption, the particles were
spread around, and the posterior distribution diverged (Fig.
4 (b)). Meanwhile, the sensor was moved to another room
while the sensor view was kept completely blocked. Once
the point cloud data became available, the particles spread
over the map (Fig. 4 (c)) and then quickly converged to a
few possible locations with structures similar to those in the
observed scan points (Fig. 4 (d) (e)). Eventually, it converged
around the correct pose (Fig. 4 (f)) and recovered from
the kidnapping. In these experiments, the proposed method
successfully recovered the tracking of the sensor pose after
every kidnapping.

As expected, both FAST LIO LOCALIZATION and
hdl localization failed to continue tracking the sensor pose in

START

END

Fig. 5: Estimated trajectories for the Easy02 sequence.

TABLE I: Absolute trajectory errors for indoor sequences

ATE [m]
Method Easy01 Easy02 Kidnap01 Kidnap02

FAST LIO (odom) 1.86 ± 0.85 6.16 ± 3.02 ✗ ✗
FAST LIO LOC 0.07 ± 0.05 0.14 ± 0.10 ✗ ✗
hdl localization 0.14 ± 0.10 16.8 ± 10.3 ✗ ✗
Proposed 0.25 ± 0.24 0.13 ± 0.12 5.64 ± 4.86 5.94 ± 5.00

✗indicates that the estimation became corrupted.

the Kidnap01 and Kidnap02 sequences because of the severe
data interruptions, and their estimations eventually became
corrupted. These results showed the superior re-localization
ability of the proposed method. The non-Gaussian state
estimation combined with a massive amount of particles
made it possible to search for candidate sensor locations over
the entire map, and the SVGD-based particle update made
the particles quickly converge to the correct location.

Estimation accuracy: Fig. 5 shows the estimated trajecto-
ries for the Easy02 sequence. Once the posterior distribution
converged around the correct pose, the proposed method
robustly kept tracking the sensor pose until the end of the
sequence. Although the estimation result showed momentary
pose jitters because we simply chose the particle with the
highest posterior probability as the representative state, these
jitters could be filtered out using simple trajectory smoothing.

Table I summarizes the ATE results for the evaluated
methods. We can see that although FAST LIO without map-
based correction showed large errors (1.86 m and 6.16 m)
for Easy01 and Easy02, the errors were significantly reduced
to 0.07 and 0.14 m with map-based correction, respectively.
While hdl localization showed good accuracy for Easy01
(0.14 m), it showed a worse result for Easy02 (16.8 m)
as a result of the tracking failure caused by the feature-
less environment. Although the proposed method showed a
slightly worse estimation result for the Easy01 sequence due
to pose jitters, these results were generally comparable to
those of the existing methods (0.25 m and 0.13 m).

While the existing methods became corrupted in the
Kidnap01 and Kidnap02 sequences, the proposed method
successfully kept tracking the sensor pose through these
sequences. Fig. 6 shows a plot of the ATE results for the
proposed method during the Kidnap02 sequence. We can
see that, at the beginning, the proposed method quickly
converged to the correct location, and the ATE decreased.



AT
E 

[m
]

t [s]

Initialization Kidnap Kidnap Kidnap

ATE

Fig. 6: ATE of the proposed method for Kidnap02 sequence.

TABLE II: Processing time for indoor environments

Process Time [ms]

Neighbor list update 26.67 ± 0.35
Likelihood evaluation 55.17 ± 3.84
Particle state update 1.59 ± 0.03
Posterior probability update 7.30 ± 1.02

Total 90.8 ± 4.20

Although the ATE increased during kidnapping, once the
point cloud data became available, the estimation converged
to the correct sensor locations and showed small ATE values.

Processing time: Table II summarizes the processing time
of each step in the proposed method. The entire process was
highly parallelized and performed on a single GPU in real-
time, and it took approximately 91 ms for each scan frame
on average.

B. Outdoor Experiment

Experimental setting: We conducted an experiment in the
outdoor environment (280 × 200 × 30 m3) shown in Fig. 7.
We used a Livox MID360 to acquire point clouds at 10 Hz.
Similar to the indoor experiment, we completely occluded
the sensor view eight times during the experiment. As in
the indoor experiment, the reference trajectory was obtained
through the batch optimization of the registration errors and
IMU errors. Note that the scan data were acquired one month
after the recording of the map data, and thus there were
changes in the dynamic objects (vehicles and pedestrians)
and vegetation. The proposed method ran in real-time and
took approximately 88.5 ms for each input point cloud.

Estimation result: Fig. 8 shows how the posterior prob-
ability distribution changed during the experiment. Starting
with an initial uniform distribution (Fig. 8 (a)), the particles
quickly converged to the correct location in a few seconds

W=280 m

H
=

30
 m

D
=

20
0 

m

Blockage
No blockage

Fig. 7: Outdoor experimental environment. During the exper-
iment, complete blockages of the LiDAR (Livox MID-360)
made the point cloud feed unavailable for 10-30 s.

(a) (b)

(c) (d)

Fig. 8: Outdoor experiment results. Uniformly initialized
particles quickly converged to the correct position (a, b),
and successfully recovered from kidnapping (c, d) during
the experiment.

START
END

Fig. 9: Estimated trajectory for the outdoor experiment.
Although the sensor was completely occluded eight times,
the proposed method successfully recovered the estimation
during the experiment.

(Fig. 8 (b)). Although the posterior distribution diverged
during a data interruption (Fig. 8 (c)), it quickly converged
and recovered once point cloud data became available (Fig.
8 (d)). Fig. 9 shows the estimated trajectory. Although
the sensor data were interrupted many times, the proposed
method successfully recovered the estimation every time.
It required only a few seconds to converge to the correct
pose in most of cases. It took longer (15 and 32 s) at two
places where the map point cloud was cropped and there was
surrounding vegetation. We consider that these map defects
and changes prevented the likelihood function from being
minimized at the correct location and affected the global
localization.

V. CONCLUSION

This paper presented a particle filter for 6-DoF sensor
localization with GPU-accelerated SVGD optimization. A
massive number of particles updated in parallel using SVGD
on a GPU enabled robust initialization and re-localization
without any prior information.



REFERENCES

[1] K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Globally consistent
and tightly coupled 3d LiDAR inertial mapping,” in IEEE Interna-
tional Conference on Robotics and Automation. IEEE, May 2022.

[2] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-LIO2: Fast direct
LiDAR-inertial odometry,” IEEE Transactions on Robotics, vol. 38,
no. 4, pp. 2053–2073, Aug. 2022.

[3] D. F. Sebastian Thrun, Wolfram Burgard, Probabilistic Robotics. The
MIT Press, 2005.

[4] D. Fox, “Adapting the sample size in particle filters through KLD-
sampling,” The International Journal of Robotics Research, vol. 22,
no. 12, pp. 985–1003, Dec. 2003.

[5] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based
SLAM with rao-blackwellized particle filters by adaptive propos-
als and selective resampling,” in IEEE International Conference on
Robotics and Automation. IEEE, 2005.

[6] H. Kuang, X. Chen, T. Guadagnino, N. Zimmerman, J. Behley,
and C. Stachniss, “Ir-mcl: Implicit representation-based online global
localization,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp.
1627–1634, Mar. 2023.

[7] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox,
“PoseRBPF: A rao–blackwellized particle filter for 6-d object pose
tracking,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1328–
1342, Oct. 2021.

[8] F. A. Maken, F. Ramos, and L. Ott, “Stein particle filter for nonlinear,
non-gaussian state estimation,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 5421–5428, Apr. 2022.

[9] Q. Liu and D. Wang, “Stein variational gradient descent: A general
purpose bayesian inference algorithm,” in Advances in Neural In-
formation Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates, Inc.,
2016.

[10] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed
iterative closest point algorithm,” in Object recognition supported by
user interaction for service robots. IEEE, 2002, pp. 545–548.

[11] M. Magnusson, “The three-dimensional normal-distributions trans-
form: an efficient representation for registration, surface analysis, and
loop detection,” Ph.D. dissertation, Örebro universitet, 2009.

[12] G. P. C. Junior, A. M. C. Rezende, V. R. F. Miranda, R. Fernandes,
H. Azpurua, A. A. Neto, G. Pessin, and G. M. Freitas, “EKF-LOAM:
An adaptive fusion of LiDAR SLAM with wheel odometry and
inertial data for confined spaces with few geometric features,” IEEE
Transactions on Automation Science and Engineering, vol. 19, no. 3,
pp. 1458–1471, July 2022.

[13] J. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal, “Nor-
mal distributions transform monte-carlo localization (NDT-MCL),” in

IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, Nov. 2013.

[14] F. J. Perez-Grau, F. Caballero, A. Viguria, and A. Ollero, “Multi-
sensor three-dimensional monte carlo localization for long-term aerial
robot navigation,” International Journal of Advanced Robotic Systems,
vol. 14, no. 5, Sept. 2017.

[15] N. Akai, T. Hirayama, and H. Murase, “3d monte carlo localization
with efficient distance field representation for automated driving in
dynamic environments,” in IEEE Intelligent Vehicles Symposium.
IEEE, Oct. 2020.

[16] D. Maggio, M. Abate, J. Shi, C. Mario, and L. Carlone, “Loc-
nerf: Monte carlo localization using neural radiance fields,” in IEEE
International Conference on Robotics and Automation. IEEE, May
2023.

[17] H. Sun, X. Liu, Q. Deng, W. Jiang, S. Luo, and Y. Ha, “Efficient FPGA
implementation of k-nearest-neighbor search algorithm for 3d LIDAR
localization and mapping in smart vehicles,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, no. 9, pp. 1644–1648,
Sept. 2020.

[18] K. Stepanas, J. Williams, E. Hernandez, F. Ruetz, and T. Hines,
“OHM: GPU based occupancy map generation,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 11 078–11 085, Oct. 2022.

[19] C. Peng and D. Weikersdorfer, “Map as the hidden sensor: Fast
odometry-based global localization,” in IEEE International Conference
on Robotics and Automation. IEEE, May 2020.

[20] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics:
science and systems, vol. 2, no. 4. Seattle, WA, 2009, p. 435.

[21] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in Proceed-
ings of the twentieth annual symposium on Computational geometry.
ACM, June 2004.

[22] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M. H.
Gross, “Optimized spatial hashing for collision detection of de-
formable objects.” in Vmv, vol. 3, 2003, pp. 47–54.

[23] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[24] K. Koide, J. Miura, and E. Menegatti, “A portable three-dimensional
LIDAR-based system for long-term and wide-area people behavior
measurement,” International Journal of Advanced Robotic Systems,
vol. 16, no. 2, Mar. 2019.

[25] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual(-inertial) odometry,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, Oct. 2018, pp.
7244–7251.


