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Abstract— This paper presents an open source LiDAR-
camera calibration toolbox that is general to LiDAR and cam-
era projection models, requires only one pairing of LiDAR and
camera data without a calibration target, and is fully automatic.
For automatic initial guess estimation, we employ the Super-
Glue image matching pipeline to find 2D-3D correspondences
between LiDAR and camera data and estimate the LiDAR-
camera transformation via RANSAC. Given the initial guess, we
refine the transformation estimate with direct LiDAR-camera
registration based on the normalized information distance, a
mutual information-based cross-modal distance metric. For a
handy calibration process, we also present several assistance
capabilities (e.g., dynamic LiDAR data integration and user
interface for making 2D-3D correspondence manually). The
experimental results show that the proposed toolbox enables
calibration of any combination of spinning and non-repetitive
scan LiDARs and pinhole and omnidirectional cameras, and
shows better calibration accuracy and robustness than those of
the state-of-the-art edge-alignment-based calibration method.

I. INTRODUCTION

LiDAR-camera extrinsic calibration is the task of estimat-
ing the transformation between the coordinate frames of a
LiDAR and a camera. It is necessary for LiDAR-camera
sensor fusion and is required for many applications, including
autonomous vehicle localization, environmental mapping,
and surrounding-object recognition.

Although LiDAR-camera calibration has been actively
studied over the last decade, the robotics community still
lacks a handy and complete LiDAR-camera calibration tool-
box. The existing LiDAR-camera calibration frameworks re-
quire preparing a calibration target that is sometimes difficult
to create [1], taking many shots of LiDAR-camera data
that results in a large amount of effort [2], or choosing a
geometry-rich environment carefully [3]. Furthermore, they
rarely support various LiDAR and camera projection models,
such as spinning and non-repetitive scan LiDARs and ultra-
wide FoV and omnidirectional cameras. We believe that the
lack of an easy-to-use LiDAR-camera calibration method has
been a long-standing barrier to the development of LiDAR-
camera sensor fusion systems.

As a benefit to the robotics community, herein we present
a new complete LiDAR-camera calibration toolbox that has
the following features:

• Generalizable: The proposed toolbox is sensor-model-
independent and can handle various LiDAR and cam-
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Fig. 1: We present a complete LiDAR-camera calibration
framework that can handle various LiDAR and camera
models and calibrate the transformation between them from
only a single pairing of a LiDAR point cloud and a camera
image. The pixel-level direct alignment algorithm enables
high-quality LiDAR-camera data fusion.

era projection models, including spinning and non-
repetitive scan LiDARs, and pinhole, fisheye, and om-
nidirectional projection cameras, as shown in Fig. 1 (a).

• Target-less: The proposed calibration algorithm does
not require a calibration target but uses the environment
structure and texture for calibration.

• Single-shot: At a minimum, only one pairing of a
LiDAR point cloud and a camera image is required
for calibration. Optionally, multiple LiDAR-camera data
pairs can be used to further improve the calibration
accuracy.

• Automatic: To make the calibration process fully au-
tomatic, the system includes an initial guess estima-
tion algorithm with cross-modal 2D-3D correspondence
matching based on SuperGlue [4].

• Accurate and robust: A pixel-level direct LiDAR-
camera registration algorithm is employed to robustly
and accurately perform LiDAR-camera calibration in
environments without rich geometrical features, where
existing edge alignment-based algorithms [3] would fail,



as long as there exists mutual information between
LiDAR and camera data.

To our knowledge, there is no open implementation that has
all the above features, and we believe the release of this
toolbox will be beneficial to the robotics community.

The main contributions of this paper are as follows:
• We present a robust initial guess estimation algorithm

based 2D-3D correspondence estimation. To take advan-
tage of the recent graph neural network-based image
matching [4], we generate a LiDAR intensity image
with a virtual camera and find correspondences between
the LiDAR intensity image and the camera image. An
estimate of the LiDAR-camera transformation is then
given by RANSAC and reprojection error minimization.

• For robust and accurate calibration, we combined a di-
rect LiDAR-camera fine registration algorithm based on
the normalized information distance (NID), a mutual-
information (MI)-based cross-modal distance metric,
with a view-based hidden points removal algorithm that
filters out points that are occluded and should not be
visible from the viewpoint of the camera.

• The entire system was carefully designed to be general
to LiDAR and camera projection models so that it can
be applied to various sensor models.

• We released the code of the developed method as open
source to benefit the community 1.

II. RELATED WORK

LiDAR-camera extrinsic calibration methods are catego-
rized into three approaches: 1) target-based, 2) motion-based,
and 3) scene-based.

A. Target-based calibration

As in the well-known camera intrinsic calibration pro-
cess, the target-based approach is the most natural way for
LiDAR-camera extrinsic calibration. Once we obtain the
3D coordinates of points on a calibration target and their
corresponding 2D coordinates projected in the image, we can
easily estimate the LiDAR-camera transformation by solving
the perspective-n-point problem. The challenge here is that
it is often difficult to design and create a calibration target
that can robustly and accurately be detected by both the
LiDAR and the camera. Several studies used a 3D structured
calibration target that is not as easy to create as the well-
known chessboard pattern [5], [6]. Although several other
works used a planar pattern that is easy to create, they
required manual annotation of LiDAR data [7] and multiple
data acquisitions, resulting in a large amount of effort [8].

B. Motion-based calibration

As in the hand-eye calibration problem, we can estimate
the transformation between two frames on a rigid body
based on their motions [9]. This approach can easily handle
heterogeneous sensors and does not need an overlap between

1The code is available at https://github.com/koide3/
direct_visual_lidar_calibration

sensors [10]. However, it requires careful time synchroniza-
tion, which is not always possible when, for example, we use
an affordable web camera. Furthermore, we need to estimate
the per-sensor motion as accurately as possible for better
calibration results.

C. Scene-based calibration

Scene-based methods estimate the LiDAR-camera trans-
formation by considering the consistency between pairs of
LiDAR point clouds and camera images. LiDAR points are
projected in the image space, and then their consistency is
measured with pixel values based on some metrics.

Similar to the visual odometry estimation problem, there
are two major approaches for LiDAR-camera data consis-
tency evaluation: indirect and direct.

The indirect approach first extracts feature points (e.g.,
edge points) from both the camera and LiDAR data, and
computes the reprojection error between 2D-3D correspond-
ing points [3], [11], [12]. While it exhibits good convergence
due to the discriminative features and robust correspondence
creation, it requires the environment to be geometry-rich to
extract sufficient feature points. Because a majority of texture
information for surfaces in the environment is discarded in
this approach, it is less accurate compared with the direct
approach.

The latter approach compares the pixel and point inten-
sities directly. Because LiDAR and cameras usually exhibit
very different intensity distributions, simply taking the differ-
ence between them does not work in practice. To overcome
the difference in modalities, MI-based metrics have been
used for LiDAR-camera data comparison [13], [14]. Because
they do not use the difference between LiDAR and image
intensities but instead consider their co-occurrence, they
can robustly measure the consistency between LiDAR and
camera intensity values. Following [15], [16], we used the
NID metric derived from MI such that it satisfies the metric
space axioms and becomes more robust than MI [15].

III. METHODOLOGY

A. Overview

Fig. 2 shows an overview of the proposed LiDAR-camera
calibration toolbox.

To handle various LiDAR models with a unified process-
ing pipeline, we first create a dense point cloud by merging
multiple LiDAR frames. For non-repetitive scan LiDARs
(e.g., Livox Avia), we simply accumulate points to densify
the point cloud. For spinning LiDARs (e.g., Velodyne and
Ouster LiDARs), we use a dynamic LiDAR point integration
technique based on continuous-time ICP [17].

From a paired densified point cloud and camera image,
we then obtain a rough estimate of the LiDAR-camera trans-
formation based on 2D-3D correspondences estimated with
SuperGlue [4]. We also provide an intuitive user interface
for creating manual correspondence for fail-safe. Given the
2D-3D correspondences, we perform RANSAC and repro-
jection error minimization to obtain an initial estimate of the
LiDAR-camera transformation.
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Fig. 2: Overview of proposed LiDAR-camera calibration
process. Input point clouds are merged to create dense point
clouds using static and dynamic LiDAR point integrators.
Given the densified point cloud and camera image, we find
2D-3D correspondences using the SuperGlue pipeline. We
also provide an easy-to-use manual correspondence esti-
mation tool. Given the 2D-3D correspondences, a rough
estimate of the LiDAR-camera transformation is obtained
via RANSAC and reprojection error minimization. Finally,
we perform fine LiDAR-camera registration based on NID
minimization.

Given the initial estimate of the LiDAR-camera trans-
formation, we apply view-based hidden points removal to
remove LiDAR points that should not be visible from the
viewpoint of the camera. We then refine the LiDAR-camera
transformation estimate via fine LiDAR-camera registration
based on NID minimization.

B. Notation

Our goal is to estimate the transformation between LiDAR
and camera coordinate frames CTL from pairings of LiDAR
point clouds Pi = [Lp1, · · · , LpN ] with point intensities
Li = [l1, · · · , lN ] and camera images Ii(xj) = yj , where
xj ∈ R2 are the pixel coordinates and yj is the pixel
intensity. A point in the LiDAR frame Lpj is transformed
into the camera coordinate frame as Cpj = CTL

Lpj and
projected into the image space using a projection function π;
xj = π

(
Cpj

)
. In this paper, we mainly use the conventional

pinhole camera model with plumb-bob lens distortion and the
omnidirectional equirectangular camera model [18] as the
projection function. Note that other major camera models,
including ATAN [19], fisheye [20], and unified omnidirec-
tional camera models [21], have been implemented and are
supported in the developed toolbox.

(a) Single-scan point cloud

(b) Densified point cloud

Fig. 3: Point cloud densification for spinning LiDARs. Li-
DAR integration enables the creation of a dense point cloud
from a few seconds of dynamic LiDAR data. The densified
point cloud exhibits rich geometrical and surface texture
information.

C. Preprocessing
Spinning LiDARs (e.g., Ouster OS1-64) exhibit a sparse

and repetitive scan pattern, and it is difficult to extract
meaningful geometrical and texture information from only a
single scan (see Fig. 3 (a)). For such a LiDAR, we move the
LiDAR in the up-down direction for a few seconds and accu-
mulate points while compensating for the viewpoint change
and point cloud distortion. To estimate the LiDAR motion,
we use the CT-ICP algorithm, which jointly optimizes the
LiDAR poses at the scan beginning and end by minimizing
the distance between the current LiDAR scan and a model
point cloud with the interpolated LiDAR pose. To efficiently
create the target point cloud from past observations, we use
the linear iVox [22] structure, which simply keeps points
in a linear container for each voxel. Based on the estimated
LiDAR scan beginning and end poses, we correct the motion
distortion on the input point cloud and create a dense point
cloud by accumulating all points in the coordinate frame
of the first scan. Fig. 3 (b) shows a densified point cloud
after application of this dynamic LiDAR point integration
process. We can see that the densified point cloud exhibits
rich geometrical and texture information that was difficult to
see in the single-scan point cloud.

For LiDARs with a non-repetitive scan mechanism (e.g.,
Livox Avia), we simply accumulate all scans into one frame,
resulting in a dense point cloud, as shown in Fig. 1 (b).

For the densified point cloud and the camera image, we
apply histogram equalization because the NID metric used
in the fine registration step works best with uniform intensity
distributions.

D. Initial Guess Estimation
To obtain a rough estimate of the LiDAR-camera transfor-

mation, we first obtain 2D-3D correspondences between the
input images and point clouds and then estimate the LiDAR-
camera transformation via RANSAC and reprojection error
minimization.



(a) Ouster OS1-64 (estimated FoV: 178.6°)

(b) Livox Avia (estimated FoV: 76.2°)

Fig. 4: LiDAR intensity images rendered with virtual cam-
eras (images are cropped due to space limitations). Either
the pinhole or equirectangular projection model is selected
depending on the FoV of the LiDAR.

Fig. 5: SuperGlue can find correspondences between LiDAR
and camera images in different modalities with a very low
sensitive matching threshold setting. The result, however,
contains many false correspondences that need to be filtered
out before pose estimation (green: inliers, red: outliers).

To take advantage of the graph neural network-based
image matching pipeline [4], we generate LiDAR intensity
images from dense point clouds with a virtual camera model.
To select the best projection model for rendering the entire
point cloud, we first estimate the FoV of the LiDAR. We
extract the convex hull of the input point cloud using the
quickhull algorithm [23] and then find the point pair with
the maximum angle distance in the convex hull using a
brute-force search. If the estimated FoV of the LiDAR is
smaller than 150°, we create a virtual camera with the
pinhole projection model. Otherwise, we create a virtual
camera with the equirectangular projection model. With the
virtual camera, we render the point cloud with intensity
values to obtain LiDAR intensity images, as shown in Fig.
4. Along with the intensity images, we also generate point
index maps to efficiently look up pixel-wise 3D coordinates
in the subsequent pose estimation step. Note that while
we simply render each point without interpolation and gap
filling, rendering results exhibit good appearance quality
thanks to the densely accumulated point clouds.

To find correspondences between the LiDAR and camera
intensity images, we use the SuperGlue pipeline [4]. It first
detects keypoints on images using SuperPoint [24] and then

Algorithm 1 Rotation-only RANSAC

Input: 2D keypoints K = [xK
1 , · · · ,xK

M ] and corresponding
3D coordinates D = [LpK

1 , · · · , LpK
M ]

1: function ESTIMATEROTATIONRANSAC(K,D)
2: Cdj ←

π−1(xK
j )

∥π−1(xK
j )∥

▷ Bearing vectors of xK
j

3: Ldj ←
LpK

j

∥LpK
j ∥ ▷ Bearing vectors of LpK

j

4: for i ∈ [1, · · · , N iteration] do
5: Randomly sample two correspondences j0 and j1
6: CRL ← FINDROTATIONLSQ(j0, j1)
7: N ← count of xi

j s.t. |π
(
CRL

LpK
j

)
−xK

j | < α
8: if i = 1 or N > N∗ then
9: N∗ ← N

10: CR∗
L ← CRL

11: return CR∗
L

12: function ESTIMATEROTATIONLSQ(j0, j1) [25]
13: A← [Cdj0

Cdj1 ], B ← [Ldj0
Ldj1 ]

14: UΣV ∗ = AB ▷ SVD
15: s← 1 if |U ||V | >= 0 else −1
16: return Udiag([1, 1, s])V ∗

finds correspondences between the keypoints using a graph
neural network. The weights pretrained on the MegaDepth
dataset is used in this work. While SuperGlue can find
correspondences between images in different modalities, we
found that the matching threshold needs to be set to a very
small value (e.g., 0.05) to obtain a sufficient number of
correspondences. However, with this setting, we observed
that many false correspondences are created, as shown in
Fig. 5.

Given 2D keypoint coordinates K = [xK
1 , · · · ,xK

M ]
and corresponding 3D coordinates in the LiDAR frame
D = [LpK

1 , · · · , LpK
M ], we first perform the rotation-only

RANSAC described in Alg. 1 to robustly deal with outlier
correspondences. Given the estimated rotation as an initial
guess, we then obtain the 6 DoF LiDAR-camera transfor-
mation C T̃L by minimizing the reprojection errors of all
keypoints using the Levenberg-Marquardt optimizer:

C T̃L = arg min
CTL

M∑
j=1

ρ
(
∥π

(
CTL

LpK
j

)
− xK

j ∥2
)
, (1)

where ρ is the Cauchy robust kernel.

E. NID-based Direct LiDAR-Camera Registration

Some points in the LiDAR point cloud can be occluded
and not visible from the camera due to the viewpoint differ-
ence. If we simply project all the LiDAR points, such points
can cause false correspondences and affect the calibration
result, as discussed in [3]. To avoid this problem, we apply
efficient view-based hidden point removal to filter out LiDAR
points that should not be visible from the viewpoint of the
camera. With the current estimate of the LiDAR-camera
transformation, we project the LiDAR points in the image
and keep only the point with the minimum distance for each
pixel (i.e., depth buffer testing). From the projected image



(a) Ouster OS1-64 (b) Livox Avia

Fig. 6: Sensor configurations for LiDAR-camera calibration
experiments.

Fig. 7: Reference LiDAR-camera transformations were mea-
sured using high-reflectivity sphere targets; 2D and 3D
positions of the targets were manually annotated and the
transformation was estimated by minimizing their reprojec-
tion errors.

that retains only points visible from the camera, we obtain
a 3D point cloud and use it for fine registration.

We then perform direct LiDAR-camera registration based
on the NID metric [15]. To compute the NID, we transform
LiDAR points Lpj ∈ Pi in the camera frame and project
them into the image space xj = π

(
CTL

Lpj

)
. From the

LiDAR point intensities lj and corresponding pixel intensi-
ties Ii (xj), we create P(Li), P(Ii), and P(Li, Ii), which are
marginal and joint histograms of LiDAR and pixel intensities,
and calculate their entropies H(Li), H(Ii), and H(Li, Ii) as
follows:

H (X) = −
∑
x∈X

p(x) log p(x), (2)

where x is each bin in the histogram. The NID between Li

and Ii is then defined as follows:

NID (Li, Ii) =
H (Li, Ii)−MI (Li; Ii)

H (Li, Ii)
, (3)

MI (Li; Ii) = H (Li) + H (Ii)− H (Li, Ii) , (4)

where MI (Li; Ii) is the mutual information between Li and
Ii. By using the Nelder-Mead optimizer, we find the LiDAR-
camera transformation that minimizes Eq. 3.

Because LiDAR points visible from the camera can change
as the LiDAR-camera transformation is updated, we iter-
ate the view-based hidden points removal and NID-based
LiDAR-camera registration until the displacement of the
transformation update converges.

IV. EXPERIMENT

We evaluated the proposed calibration toolbox with all
four combinations of the spinning and non-repetitive scan
LiDARs (Ouster OS1-64 and Livox Avia) and pinhole and

TABLE I: Calibration errors for Ouster OS1-64 and pinhole
camera

Proposed Edge-based [3]
Data Init. guess Trans. [m] Rot. [°] Trans. [m] Rot. [°]

00 ✓ 0.019 0.688 0.043 0.135
01 ✗ 0.028 0.348 0.029 0.685
02 ✗ 0.014 0.180 0.035 0.490
03 ✓ 0.006 0.663 0.056 0.377
04 ✗ 0.029 0.400 0.158 1.499
05 ✓ 0.023 0.450 0.170 2.334
06 ✓ 0.033 0.613 0.136 1.034
07 ✓ 0.017 0.392 0.033 0.154
08 ✓ 0.048 0.386 0.520 1.458
09 ✓ 0.007 0.251 0.317 1.254
10 ✓ 0.064 0.210 0.191 1.463
11 ✓ 0.011 0.146 0.384 0.768
12 ✓ 0.325 0.530 0.226 0.524
13 ✓ 0.010 0.137 1.211 7.344
14 ✓ 0.015 0.217 0.034 0.421

Avg. 12 / 15 0.043 0.374 0.236 1.329

✓and ✗respectively represent the success and failure of the initial guess.

TABLE II: Calibration errors for Livox Avia and pinhole
camera

Proposed Edge-based [3]
Data Init. guess Trans. [m] Rot. [°] Trans. [m] Rot. [°]

00 ✓ 0.047 0.478 1.054 6.964
01 ✓ 0.162 0.885 0.152 1.336
02 ✓ 0.028 0.356 1.587 14.278
03 ✓ 0.098 0.757 0.200 3.480
04 ✓ 0.124 1.430 0.065 0.933
05 ✓ 0.027 0.466 0.105 3.852
06 ✓ 0.032 0.410 0.128 1.577
07 ✓ 0.026 0.273 0.216 3.609
08 ✓ 0.031 0.270 0.358 4.450
09 ✓ 0.054 0.665 0.117 1.522
10 ✓ 0.071 0.887 0.214 1.590
11 ✓ 0.029 0.412 0.085 0.651
12 ✓ 0.046 0.297 0.181 2.133
13 ✓ 0.080 0.645 0.170 2.152
14 ✓ 0.032 0.452 0.210 3.934

Avg. 15 / 15 0.059 0.579 0.323 3.497

✓and ✗respectively represent the success and failure of the initial guess.

omnidirectional cameras (Omron Sentech STC-MBS202POE
and Kodak PixPro 4KVR360) shown in Fig. 6. For each
combination, we recorded 15 pairs of LiDAR point clouds
and camera images in indoor and outdoor environments, and
we ran the proposed calibration process for each pair (i.e.,
single-shot calibration).

As a reference, we estimated the LiDAR-camera transfor-
mation using survey-grade high-reflectivity sphere targets, as
shown in Fig.7. We manually annotated the 2D and 3D posi-
tions of the targets to find the LiDAR-camera transformations
that minimized the target reprojection errors. From visual
inspection, we confirmed that the estimated transformations
closely describe the projection of the cameras. We used the
estimated transformations as the “pseudo” ground truth.

Table I summarizes the calibration results for the combina-
tion of the Ouster LiDAR and pinhole camera. For the initial
guess estimation, if the translation and rotation errors are
smaller than 0.5 m and 1.0°, respectively, we consider the ini-
tial guess estimation as successful. As shown in Table I, the
proposed algorithm provided a reasonable initial guess for 12
out of 15 data correlations. Fig. 8 shows the correspondences
of a failure case (Dataset 02). We can see that the estimated



TABLE III: Calibration errors for Ouster OS1-64, Livox
Avia, and omnidirectional camera

Ouster OS1-64 & Omnidirectional Livox Avia & Omnidirectional
Data Init. Trans. [m] Rot. [°] Init. Trans. [m] Rot. [°]

00 ✓ 0.123 1.018 ✓ 0.029 0.515
01 ✓ 0.111 0.355 ✗ 0.059 0.902
02 ✓ 0.085 0.747 ✓ 0.071 0.518
03 ✓ 0.045 0.744 ✓ 0.037 0.958
04 ✓ 0.061 0.664 ✗ 0.067 1.265
05 ✓ 0.033 0.632 ✗ 0.113 1.447
06 ✓ 0.057 0.540 ✗ 0.070 0.312
07 ✓ 0.038 0.410 ✓ 0.056 1.466
08 ✓ 0.035 0.356 ✓ 0.079 0.635
09 ✓ 0.087 0.349 ✓ 0.407 1.164
10 ✓ 0.087 0.428 ✗ 0.161 0.753
11 ✓ 0.062 0.769 ✓ 0.098 0.681
12 ✓ 0.079 0.497 ✓ 0.212 0.936
13 ✓ 0.095 2.939 ✓ 0.033 0.409
14 ✓ 0.044 0.415 ✓ 0.028 0.149

Avg. 15 / 15 0.069 0.724 10 / 15 0.101 0.807

✓and ✗respectively represent the success and failure of the initial guess.

TABLE IV: Multi-data calibration errors

Pinhole Omnidirectional
Trans [m] Rot [°] Trans [m] Rot [°]

Ouster 0.034 0.414 0.082 0.425
Livox 0.010 0.132 0.011 0.400

correspondences contain many false correspondences due
to the flat and repetitive environment structure. Note that
this kind of data pairing, where correct correspondences
are difficult to find, can automatically be filtered out by
RANSAC in multiple-data calibration and does not affect
the estimation result. For data that resulted in a failed initial
guess, we manually annotated 2D-3D correspondences and
re-estimated the transformation for evaluation of the fine
registration algorithm.

The proposed fine registration algorithm worked well for
all the data and achieved 0.043 m and 0.374° calibration
errors on average. As a baseline, we also applied the state-
of-the-art edge alignment-based calibration method [3]. For
this method, we used the reference LiDAR-camera transfor-
mation as the initial transformation, and thus it was evaluated
with an almost ideal initial guess. However, as can be seen
in Table I, it showed large calibration errors for several data

TABLE V: Processing time

LiDAR Camera Preprocessing Init. guess Calibration Total

Ouster Pinhole 56.6 s 10.3 s 28.8 s 95.7 s
Ouster Omnidir. 56.3 s 11.2 s 181.5 s 249.0 s
Livox Pinhole 9.3 s 10.6 s 54.5 s 74.4 s
Livox Omnidir. 9.2 s 9.7 s 84.3 s 103.2 s

Fig. 8: Failure case for initial guess estimation (Ouster 02).
(green: inliers, red: outliers)

correlations, resulting in worse average calibration errors
(0.236 m and 1.329°). This was because both image and
point cloud edge extraction in [3] were very sensitive to
environment changes and could not properly extract edge
points in several environments.

As shown in Table II, for the combination of the Livox
LiDAR and pinhole camera, the initial guess estimation suc-
cessfully provided good initial LiDAR-camera transforma-
tions for all data pairings, and the fine registration algorithm
achieved average calibration errors of 0.069 m and 0.724°,
which were better than those for the edge-based calibration
[3] (0.323 m and 3.497°).

Table III summarizes the calibration results for the om-
nidirectional camera. While it showed a good initial guess
success rate (15 / 15) and low calibration errors for the
Ouster LiDAR (0.069 m and 0.724°), both the initial guess
estimation and the fine LiDAR-camera registration tended
be degraded for the combination of the Livox LiDAR and
omnidirectional camera (10 / 15 success rate, 0.101 m
and 0.807°). This is because only a small portion of the
omnidirectional camera images was used for calibration due
to the very different FoVs of the LiDAR and camera, and the
resolution of the images was not sufficient to represent fine
environmental details with this limited FoV. We think that
the calibration accuracy can be improved by using higher-
resolution or multiple images.

Finally, we performed multi-data calibration with all data
pairings and evaluated the calibration errors for all the
LiDAR-camera combinations. Table IV summarizes the cali-
bration errors. We can see that good calibration results were
obtained even for the combination of the Livox and omnidi-
rectional camera (0.011 m and 0.400°). For the combination
of the Ouster LiDAR and pinhole camera, we observed
the best calibration accuracy (0.010 m and 0.132°). This is
because in this combination, the LiDAR and camera have
similar FoVs and most of input data were used for calibration
while some points and image regions are not used in other
combinations due to the difference of FoV.

Table V shows the processing times for each calibration
step. Depending on the combination of the LiDAR and cam-
era models, it took from 74 to 249 s to calibrate the LiDAR-
camera transformation from 15 data pairings. Although the
combination of the Ouster LiDAR and omnidirectional cam-
era took a longer time because both the sensors have 360°
FoVs and need projection of most of the points, we consider
it is in a reasonable level for offline calibration.

V. CONCLUSION

We developed a general LiDAR-camera calibration tool-
box. For a fully automatic calibration process, we used image
matching-based initial guess estimation. The initial estimate
was then refined by a NID-based direct LiDAR-camera reg-
istration algorithm. The experimental results showed that the
toolbox can accurately calibrate the transformation between
spinning and non-repetitive scan LiDARs and pinhole and
omnidirectional cameras.
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