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General Hand-Eye Calibration
Based on Reprojection Error Minimization

Kenji Koide! and Emanuele Menegatti'

Abstract—This paper describes a novel hand-eye calibration
technique based on reprojection error minimization. In contrast
to traditional hand-eye calibration methods, the proposed method
directly takes images of the calibration pattern and does not
require to explicitly estimate the camera pose for each input
image. The proposed method is implemented as a pose graph
optimization problem, so that it can solve the estimation problem
efficiently and robustly, and it can be easily extended for different
projection models. It can deal with different camera models
(e.g, X-ray cameras with a source-detector projection model)
by changing the projection model. Through simulations, we
validated that the proposed method shows a good estimation
accuracy, and it can be applied to hand-eye calibration with
a source-detector camera model. The experimental results with
real robots show that the proposed method is applicable to real
environments, and it improves the quality of a task which requires
accurate hand-eye estimation, like 3D reconstruction.

Index Terms—Calibration and Identification, Industrial Robots

I. INTRODUCTION

AND-EYE calibration is the task of estimating the

spatial transformation between the end effector frame of
a robot hand and the optical frame of a camera mounted on the
end effector. It is essential for tasks where the robot moves the
camera to a specific position and maps visual measurements
into the robot frame (e.g., product inspection [1] and object
picking [2]). It has been widely studied in the robotics and
the computer vision communities, and a number of hand-eye
calibration methods for RGB and depth cameras have been
proposed.

In the context of SPIRIT?, an industrial inspection robot
project, an accurate and “general” hand-eye calibration method
is required. This project aims to develop an automatic and
general visual inspection robot framework, in which the
camera for inspection can be easily replaced with any kind
of imaging sensor suitable for any new inspection task, to
name a few: RGB-D, thermographic, and X-ray cameras. The
challenge here is to deal with those cameras with different
characteristics in a unified framework. For instance, industrial
thermographic cameras have sometimes a very narrow field
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of view, while the working distance of structured-light depth
cameras is very limited. In particular, the optics of X-ray
cameras (source-detector projection model) is totally different
from usual cameras, and the classical pinhole model is not a
good description for these cameras. Thus, it is hard to apply
typical hand-eye calibration methods to such cameras with
different projection models.

In this paper, we propose a novel approach for hand-
eye calibration based on reprojection error minimization. It
simultaneously estimates the hand-eye transformation as well
as the calibration pattern pose such that the reprojection error
of the pattern is minimized. In contrast to traditional methods,
it directly takes calibration pattern images, but not camera
poses with respect to the pattern. This approach brings several
benefits to us. First, it does not require the camera pose
for each image explicitly, and thus, it does not rely on PnP
(Perspective-n-Points) algorithms which could be unreliable
and unavailable for unusual cameras. Second, this method
can be applied to various camera models by changing the
projection model. The proposed method is implemented as
a pose graph optimization problem so that it can be easily
extended for new projection models and can estimate the
transforms efficiently and robustly. The implementation is
available as open source software, from a public repository?.

The rest of this paper is organized as follows. Sec. II
reviews related work on hand-eye calibration. Sec. III de-
scribes the proposed hand-eye calibration method and its
extension to a source-detector projection model. In Sec. IV, the
proposed method is evaluated in simulations with pinhole and
source-detector camera models. Sec. V presents evaluations
on datasets acquired with real systems. Sec. VI concludes the

paper.

II. RELATED WORK

In the past, a number of methods for hand-eye calibration
have been proposed. Shiu and Ahmad proposed a homo-
geneous equation to estimate hand-eye transformation from
the camera and reference frame motions [3]. Tsai and Lenz
proposed another method which first estimates the translation
and then the rotation of the hand-eye transformation [4], and
it has been widely used in a lot of systems [5]. A method
proposed by Chou and Kamel solves the problem in the
same way with quaternion representation which simplifies
the estimation problem [6]. Daniilidis proposed a method to
simultaneously estimate translation and rotation using dual

3https://github.com/koide3/st_handeye_graph.git
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quaternions parameterization and singular value decomposi-
tion [7]. Strobl and Hirzinger introduced a new metric for
automatic optimal weighting of the translation and the rotation
error metrics [8]. Several works proposed automatic hand-eye
calibration frameworks [9], [10], in which a robot automati-
cally collects images of the calibration pattern and performs
hand-eye calibration, and they have been successfully applied
to real systems [11].

Those methods take a set of pairs of robot hand and camera
pose and optimize the hand-eye transformation estimate in
the pose space. On the one hand, they can be applied to
any sensor which can observe the sensor pose with respect
to a reference frame, such as LiDAR and IMU. On the other
hand, in the case with a camera, we need to explicitly estimate
the camera pose for each input image using, for instance, a
PnP (Perspective-n-Points) algorithm [12]. Therefore, typical
hand-eye calibration flow with a camera is to first collect a
set of pairs of hand pose and calibration pattern image (like
chessboard), then estimate the camera pose for each image
using a PnP algorithm, and finally input the hand poses and
the estimated camera poses to a calibration algorithm (see Fig.
1 (a)). The accuracy of those calibration methods, thus, rely
on the camera pose estimation accuracy. Although Strobls and
Hirzinger discussed that the main source of perturbation is the
hand pose error [8], the camera pose estimation error would
be another error source. Indeed, similar tasks which require
accurate visual information, like visual odometry, suffer from
imaging conditions [13]. In our case, for instance, industrial
thermographic cameras often have a very narrow field view,
and we observed the difficulty to perform PnP algorithms with
such cameras in Thermobot®*, a thermography-based inspection
robot project. Furthermore, the optics of X-ray cameras is
totally different from usual cameras, and the existing methods
cannot be applied to such cameras.

The concept of the proposed method is similar to the one
proposed by Tabb and Yousef [14]. Their method also esti-
mates the hand-eye transformation such that the reprojection
error is minimized. However, their method does not take hand
pose errors into account and would suffer from such errors. On
contrary, our method properly models hand pose errors, and
robust estimation allows us to deal with outliers of the visual
and hand pose observations. In addition to that, we propose
an extension for hand-eye calibration with an X-ray camera in
this work.

X-ray cameras have a projection mechanism so-called
source-detector projection. In this projection model, a ray
emitted from a source point passes on a 3D point and then
arrives at a detector plane (see Fig. 3). In medical X-ray
systems, the source and detector are mounted on the endpoints
of a C-shaped rigid frame (so-called C-arm) so that their
relative pose is fixed. In this setting, the X-ray cameras can be
modeled as a pinhole camera by introducing a virtual detector
plane [15], and usual hand-eye calibration techniques can be
applied to them [16], [17]. However, in industrial situations,
the source and detector are mounted on separated robot arms

“http://thermobot.eu
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Fig. 1: While the typical flow requires to estimate the camera
pose for each input image, the proposed flow directly takes the
input images and minimizes the reprojection error to estimate
the hand-eye (HE) transformation.

so that the X-ray camera can observe a large object, and the
existing methods cannot deal with such systems.

III. METHODOLOGY

A. Hand-Eye Calibration based on Reprojection Error Mini-
mization

For general and accurate hand-eye calibration, we propose
a reprojection error minimization-based calibration method.
Reprojection error minimization itself is a well-known tech-
nique. It has been applied to various tasks, such as structure
from motion [18] and object pose estimation [12]. It has been
proven that it outperforms traditional methods in terms of
accuracy and robustness. However, only a few works applied
this approach to the context of hand-eye calibration [14].

The proposed method directly takes robot hand poses and
calibration pattern images and optimizes the hand-eye trans-
formation and the pattern pose such that the reprojection error
of the pattern is minimized (see Fig. 1 (b)). It is implemented
as a pose graph optimization problem. Pose graph optimization
is one of the most successful approaches for pose sequence
estimation, such as 2D and 3D SLAM [19], visual SLAM
[20], and sensor network calibration [21]. It is able to solve a
large non-linear optimization problem efficiently and robustly
by utilizing the sparsity of the graph structure.

B. Hand-Eye Calibration with a Pinhole Camera Model

Fig. 2 shows the proposed graph structure for hand-eye
calibration with a pinhole camera model. Circles in the graph
are vertices which hold parameters to be estimated. In this
graph, the hand-eye transformation (H E, Hand-to-Eye), the
object pose (OW, Object-to-World), and the transformation
between the pattern and the camera (OE;, Object-to-Eye)
are estimated from observations of N hand poses (W H,,
World-to-Hand) and N images of the calibration pattern which
consists of M points (P/). Rectangles are edges which connect
multiple vertices and calculate the errors between them, and
octagons are fixed parameters. A is the camera matrix for



KOIDE et al.: GENERAL HAND-EYE CALIBRATION BASED ON REPROJECTION ERROR MINIMIZATION 3

Hand-eye [ yyp\— o ......
Transform £ N\
ho h hy Hand Pose
Error
Pattern oW _J( ________ .~ l .-
Pose
Pattern-eye
. OEy OE; OEy Transform
Camera A <
Intrinsics | [
‘ - - N
Points on a E Eﬁzrrmectlon

Pattern K
M
AR W

Fig. 2: A graph model for the reprojection error minimization-
based hand-eye calibration with a pinhole camera model.
Circles are vertices which hold parameters to be estimated.
Rectangles are edges which connect vertices and calculate the
errors between them, and octagons are fixed parameters.

projection, and P7 is the 3D coordinate of the j-th point on
the calibration pattern.

Edge h; defines the error between an estimated OE and
the corresponding hand pose observation WH :

WH,;, (1)
m(cfﬁf-@[l-fﬁ-ﬁffi), )

measurement(h;) =
error(h;) =

where, function m converts a transformation matrix to the
manifold representation, which consists of the translation
vector and the vector part of the quaternion without the scalar
part [z, y, z, g%, qy, qz], to prevent the corruption of the Gauss-
Newton optimization due to the over-parameterization of the
rotation [22]

Edge y] projects a 3D point P7 of the calibration pattern
into the i-th image space with the estimated OE and calcu-
lates the reprojection error between the projected point and
the observed 2D point Pj

measurement(yf) = f’g, 3)
[w,y,2]" = A-OF; - P/, “)
error(yl) = ﬁij - 1[;r,y]T. ®)

z

The result of the iterative estimation depends on the initial
guess of the hand-eye transformation. For pinhole cameras,
we first use Tsai’s method [4] to obtain an initial guess, and
then apply the graph optimization method.

C. HandEye Calibration with a Source-Detector Camera
Model

Here, we extend the graph model to deal with source-
detector projection models (see Fig. 3). In this projection
model, a ray is emitted from the source point s, and it passes
on a 3D point v and arrives at the detector plane d. Let us
assume that s and v are transformed into the detector frame.
The projected point (u,v) is given by:

Fig. 3: Source-Detector Projection Model.

8
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where f,, f, are the inverse of the sensor size of each pixel,
and c,, ¢, are the image principal point of the detector.

In this model, we have two robot hands. One is equipped
with the detector H%, and the source is mounted on the other
hand H?®. While the transformation between the detegodr and
its hand is represented as a 6DoF transformation HE , the
transformation between the source and its hand is represented
as a 3D translation vector HE  since the source is modeled
as a point source in this model.

With this projection model, the graph model is extended
as shown in Fig. 4. The parameters to be estimated and the
observations are summarized in Table I. While the pattern-

detector transformation part (vertices 5E’ and above) is
identical to the graph model for pinhole cameras, n new vertices
representing the hand-source transformation HE® and the
source position in the world frame S are added. Edge qz
calculates the e error between the estimated S and the source’s
hand pose WH

S

measurement(q;) = WH, (8)
error(q;) = (W’/\ﬁf)f

~

Y-HE)-S;. (9

Then, edge y/ minimizes the reprojection error:

measurement(y!) = Ej’ (10)
vl = OF; . P, (11)

s/ =0F; - oW -8, (12)

error(yl) = P! — ProjSP(s}, vf/), (13)

where ProjSP
by equation 7.

is the source-detector projection function given

The graph models are implemented by utilizing g2o0, a
general hyper graph optimization library [23]. To make the
estimation robust to hand pose and visual detection noises,
Huber robust kernel [24] is applied to each edge. The graph
optimization is performed by the Levenberg-Marquardt solver
[25].



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018

Hand-detector HE! ———c---------- .
transform N\ h

Detector hand
hy
pose error

ow

Pattern pose

OEI‘(, Pattern-detector
transform
w
I Reprojection
Error
M
YN
Source
So So So position
Hand-source o B . Source hand
transform HE 90 "1 90 "1 490 | pose error

Fig. 4: A graph model for reprojection error minimization-
based hand-eye calibration with a source-detector camera
model.

TABLE I: Parameters to be estimated and observations in the
graph model for source-detector cameras

Symbol Meaning

—d .

HE hand-detector transformation
w —_—
g HE® hand-source translation
QE) ow pattern-world transformation
g —d .
g OF pattern-detector transformation

Si source position in the i-th detector frame

——d
§ WH,; i-th detector hand pose (edge h;)

——35
2 W~H i i-th source hand pose (edge ¢; ) _
G P! j-th point observation in the i-th image (edge y?)

IV. EVALUATION

A. Simulation with a Pinhole Camera Model

We conducted simulations to evaluate the estimation accu-
racy of the proposed method under visual detection noise and
robot hand pose noise.

For each simulation, we randomly sample a hand-eye
transform from the pose distribution where the translation
It € N(p = 0,06 = 0.3)[m], and the rotation angle
6 € [0,90] [deg]. We generate nine camera stations at two
altitudes with respect to the calibration pattern consisting of
(7x5) points, and the camera takes an image at each station
while staring at the pattern (see Fig. 5 and 6). Thus, 18 images
are generated for each simulation.

The proposed method, Tsai’s method [4], the dual
quaternions-based method [7], and two nonlinear methods
proposed by Tabb and Yousef [14] (c2 and rpl) are applied to
estimate the hand-eye transformation. ¢2 in [14] estimates the
hand-eye transformation which describes the observed hand
poses and pattern poses well (so called AX = Z B equation),
while rpl is based on reprojection error minimization.

¢ B @

p= =4

Fig. 5: Simulation setting.
18 images are taken in total
for calibration.

Fig. 6: An example of the
simulated calibration pat-
tern images.

While the proposed method and rpl directly receive the
images, for the other methods, a PnP algorithm [12] is applied
to the images to estimate the camera pose with respect to the
pattern, and then the estimated camera poses are passed to
the methods. While changing the standard deviation of noises
on the projected 2D points and the robot hand poses, the
simulation is performed 100 times for each noise setting.

Fig. 7 shows the evaluation results. The proposed method
and rpl show comparable results under visual noise. However,
rpl shows lower estimation accuracy under hand pose noise,
since it does not take hand pose errors into account. c2
shows better results than Tsai’s and dual quaternions-based
methods thanks to the non-linear optimization. However, under
translation noise, ¢2 and Tsai’s methods show close accuracy
since the noise spans over the linear space, and the nonlinear
optimization does not make a difference in such a case. The
proposed method shows good estimation results under visual
noise and hand pose noise.

B. Simulation with a Source-Detector Camera Model

We conducted simulations with a source-detector camera
model as well. Similar to Sec. IV-A, nine camera stations are
generated for each of the source and the detector. Images of the
calibration pattern are taken while 1) either the source or the
detector moves, 2) both of them move to diagonally opposite
stations. Thus, the total number of images for each simulation
is 27. The detector focuses on the source at every station.

The hand-detector transformation is randomly sampled from
the pose distribution where the translation |[t?| € N(0,0.3)
[m], and the rotation angle §¢ € [0,15] [deg]. The hand-
source translation ¢* is sampled from A/(0.0,0.3) [m]. Since
we do not have any method to provide an initial guess for the
source-detector projection model, we set a smaller maximum
rotation angle to the hand-detector distribution to avoid that the
estimation converges to a local solution. However, in practical
applications, a rough initial guess is often available from
the design of the camera fixture. Thus, we consider that the
method can be applied to real tasks if it can work under initial
rotation errors in this range.

Fig. 8 shows the evaluation result. Under visual noise and
hand pose noise, the proposed method converges well, and the
maximum translation, and rotation errors are lower than 0.1
[m] and 2.0 [deg], respectively. While the rotation error was
kept very low through the evaluation, the translation error of
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Fig. 8: Hand-eye transformation estimation evaluation with a source-detector camera model. The error bar indicates the standard

deviation.

the hand-detector transformation got larger under large visual
and hand pose translation noises. In particular, visual noise has
a significant impact on the detector translation estimation. It is
worth to mention that, the accuracy of the detector translation
estimation can be improved by increasing the number of
camera stations and the camera station interval. In the case
we take two images at each station while slightly changing
the view direction (10 [deg]), the detector translation error
decreases from 83.4 [mm] to 71.7 [mm]. The error gets further
decreased to 51.8 [mm] by increasing the station interval from
0.5 [m] to 0.75[m].

V. EXPERIMENT

A. Hand-eye Calibration with a Pinhole Camera

We applied the proposed method to two datasets acquired
with real robot hands and sensors.

The first one is a public dataset provided by [14]. It consists
of a set of datasets, and we used four of them which contain
88, 28, 36, and 20 pairs of calibration pattern image and hand
pose, respectively. In this dataset, two metrics, RRMSE (Re-
projection Root Mean Square Error) and RAE (Reconstruction

Accuracy Error), are exploited to evaluate calibration methods.
RRMSE is defined by:

N M
_ 1 DI _ pi2
RRMSE = NI ;:1 JEZI |P/ — P2, (14)

where P/ is the j-th point reprojected onto the i-th image.

RAE is defined by:

M

RAE = %Znﬁif&ﬁpin?, (15)
J

where P7 is the 3D coordinate of each point on the calibration

pattern. In our case, we estimate P’ such that the reprojection

error is minimized with Nelder-Mead method [26].

Table II shows the evaluation results. As explained in Sec
IV-A, ¢2 and rpl [14] are based on AX = ZB equation
and reprojection error minimization, respectively. rp2 is a
variation of rpl, in which the camera intrinsic parameters are
also optimized by reprojection error minimization. rp2 shows
the lowest reprojection errors on all the datasets. However,
it often shows worse reconstruction accuracy. This result
suggests that it overfitted to the reprojection error term due
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TABLE II: Reprojection error and 3D reconstruction error evaluation on the dataset [14]

Dataset1 Dataset2 Dataset3 Dataset4
Method Time RRMSE RAE Time RRMSE RAE Time RRMSE RAE Time RRMSE RAE
c2 [14] 0.511 1.67244  5.82014 0.199 3.96036  0.08633 0.256 3.55362  1.92736 0.142 2.38787 1.71460
rpl [14] | 14.548 1.56905  0.23821 5.789 3.74123  0.02950 | 10.706  2.89018 1.45425 6.454 1.60321 1.43699
rp2 [14] | 63.688  1.36292  0.52353 | 66.702  3.18114  0.44990 | 46.056  2.67963  1.58750 | 18.414 1.50483  1.48145
ours 1.000 1.56160  0.21371 0.334 3.75133  0.03760 0.496 2.87851 1.33743 0.272 1.61900  1.37951

Time [sec], RRMSE [pix], RAE [mm?]

INSPECTION

Fig. 9: A snapshot of the experiment Fig. 10: The images for reconstruction Fig. 11: Reconstructed 3D point cloud. The

in a real environment.

to the intrinsic parameter optimization. The proposed method
and rpl show better reprojection accuracy than c2 thanks to
the reprojection error minimization approach. In terms of the
reconstruction accuracy, the proposed method shows the best
results except for the dataset 2. However, the reconstruction
error on this dataset is much smaller than the other datasets,
and the difference between the errors of our method and rp/
is very small (0.008 [mm?]). Although our method requires a
processing time which is almost double with respect to c2, it
takes only one second even on the dataset 1 (with 88 images),
and it is much faster than the other reprojection error-based
methods thanks to the efficient graph optimization. Note that
the processing time of our method includes Tsai’s method for
initial guess estimation.

We also took a dataset in our environment to validate the
calibration methods in a practical situation. We used a robot
hand (Universal Robots, UR5) equipped with a monocular
camera (PointGrey, Flea3). For calibration, we took 18 images
of a standard asymmetric calibration pattern (4x11) in the same
way as described in Sec IV-A. The hand-eye transformation
was estimated from those images using the proposed method,
Tsai’s method [4], dual quaternions-based method [7], and ¢2
and rpl in [14].

Then, for 3D reconstruction, we took four images of a
pattern (the project logo) with random camera poses. We made
a set of keypoints on the pattern and corresponding points
on each image by hand (see Fig. 10). For each keypoint,
we estimate the 3D position such that the reprojection error
is minimized. Since the 3D coordinates of the keypoints are
unknown in this dataset, we calculate 3D geometrical flatness
error instead of RAE. The flatness error is defined as the mean
absolute error between the reconstructed points and the fitted
plane.

Fig. 11 shows the 3D point cloud reconstructed with the

and the keypoint correspondences.

color indicates the “X”-coordinate of each
point.

TABLE III: 3D reconstruction error evaluation

Error [ ours Tsai [4] DQ [7] c2[14] rpl [14]
RRMSE [pix] 7.118 11.901 11.488 7.229 11.245
3D flatness [m] | 0.0203 0.0216 0.0214  0.0208 0.0221

hand-eye transformation estimated by the proposed method.
The shape of the pattern is well captured, and the points
mostly lie on a flat plane correctly. Table III shows the
error metrics of the reconstructed points with the hand-eye
transformations estimated by the different calibration methods.
The reconstructed points with the proposed method have
smaller errors in both the metrics. Since the error sources
of the reconstruction other than the hand-eye transformation
(hand poses and camera parameters) were fixed for all the
calibration methods, this result suggests that the proposed
method provides a better hand-eye transform estimation than
the existing methods. rp/ shows worse results than ¢2 in this
case. We consider that this is caused by the hand pose error
due to oscillations.

B. Hand-eye Calibration with an X-ray Camera

We conducted a hand-eye calibration experiment using a
real X-ray imaging system. Fig. 12 (a) shows a snapshot of
the imaging system equipped with two arms with the X-ray
source and detector. We made a chessboard calibration pattern
with PCB (printed circuit board), and Fig. 12 (b) shows an
example X-ray image of the calibration pattern. This system
has been calibrated based on the CAD model, and it does
not provide the hand poses, but provides only the source and
detector poses. Since the hand-eye transformations and the
robot hand poses of this system were not available to us, we
assume virtual hand-eye transformations, and add the virtual
transformations to the provided source and detector poses.
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(a) X-ray imaging system

(b) X-ray image

Fig. 12: A snapshot of the X-ray imaging system and an
example X-ray image of the calibration pattern. Blue dots
indicate the corners of the checkerboard reprojected with the
estimated hand-eye transformations.

We set |[t*]] = 0.3m,|[t?] = 0.3[m],0? = 30[deg], and
the translation and rotation directions are randomly sampled.
Then, we estimate the virtual transformations from the x-ray
images and the generated virtual hand poses to validate the
proposed method. We took 34 images in total while moving
and rotating the source and the detector.

The graph optimization method successfully converged, and
the translation and rotation errors of the detector were 0.196
[mm] and 0.0143 [deg], the source translation error was 1.29
[mm]. Blue dots in Fig. 12 (b) indicate the corners of the
checkerboard reprojected with the estimated transforms. We
found that, in the X-ray system, there is no nuisance factor
which causes distortion (like lens of usual cameras), and
the optics is well described by the source-detector projection
model. This result shows the applicability of the proposed
method to real X-ray imaging systems.

VI. CONCLUSION AND FUTURE WORK

This paper presented a hand-eye calibration method based
on reprojection error minimization. It can deal with differ-
ent camera models by changing the projection model, and
the graph optimization scheme allows us to estimate the
hand-eye transformation efficiently and robustly. Through the
simulations and the experiments, it has been confirmed that
the proposed method provides better estimation than existing
methods, and it can be applied to real systems.

In addition to hand-eye calibration, hand-eye synchroniza-
tion also plays an important role in continuous scan tasks. To
realize a “general” hand-eye synchronization method, we plan
to extend the reprojection error minimization-based method to
the temporal space.
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