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Abstract

This paper presents a new person tracking and identification framework based on solely a monocular camera. In
this framework, we first track persons in the robot coordinate space using Unscented Kalman filter with the ground
plane information and human height estimation. Then, we identify the target person to be followed with the combi-
nation of Convolutional Channel Features (CCF) and online boosting. It allows us to take advantage of deep neural
network-based feature representation while adapting the person classifier to a specific target person depending on the
circumstances. The entire system can be run on a recent embedded computation board with a GPU (NVIDIA Jetson
TX2), and it can easily be reproduced and reused on a new mobile robot platform. Through evaluations, we validated
that the proposed method outperforms existing person identification methods for mobile robots. We applied the pro-
posed method to a real person following robot, and it has been shown that CCF-based person identification realizes
robust person following in both indoor and outdoor environments.
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1. Introduction

There is an increasing demand for service robots
which can follow a person. Such robots have been ex-
pected to be common in the next decade for supporting
people in daily tasks, to name a few: guiding, guarding,
and elderly care. To follow a person, robots have to be
able to robustly track the position of the target person.
While following a person, it often happens that the robot
cannot keep tracking the person since he/she moves out
from the robot’s sensor view, or is occluded by other
persons. In such cases, to resume the tracking and fol-
lowing, the robot has to re-identify the person using a
target person model learned before losing the track.

In the past, a number of works proposed person track-
ing and identification frameworks for person following
robots. Most of those works require a range sensor, such
as Laser Range Finder (LRF) [1, 2, 3], stereo camera
[4, 5], and infrared RGB-D camera [6]. However, LRFs
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and stereo cameras are typically unaffordable, and in-
frared RGB-D cameras cannot be used in outdoor envi-
ronments. We believe that the lack of a person tracking
and identification framework with an affordable monoc-
ular camera prevents service robots to be exploited for
daily tasks, and it triggered us to propose a complete
monocular vision-based framework for person follow-
ing robots.

In this paper, we propose a person tracking and iden-
tification framework for mobile robots which relies on
solely an affordable and common monocular camera
(see Fig. 1). In this framework, we first detect persons
with OpenPose, a deep neural network-based skeleton
detector [7]. Then, inspired by [8, 9], we estimate
the positions and heights of persons in the robot space
rather than in the image space based on the ground plane
information. It allows us to reliably track persons and
know their positions in the real space which is the most
fundamental information for person following. For in-
stance, with the estimated person position in the robot
space, we can easily make the robot keep the distance
to the person constant to follow him/her. Then, a per-
son identification method based on the combination of
Convolutional Channel Features [10] and online boost-
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Figure 1: The proposed person tracking and identification framework with a monocular camera.

ing [11] runs on the top of the tracking module. It atten-
tively learns the appearance of a specific target person
based on the deep neural network-based discriminative
features. If the robot loses the track of the target per-
son, it re-identifies the target person among surround-
ing persons with the online learned appearance model.
The entire system is designed such that it can run on an
affordable embedded computer with a GPU (NVIDIA
Jetson TX2) in real-time. The use of this common com-
puting board allows us to easily reproduce and reuse the
system on a new mobile robot platform.

The contributions of this paper are three-fold. First,
we propose a robust vision-based people tracking
method which employs the ground plane information
and human height estimation to estimate the people po-
sitions in the robot space. It allows us to reliably track
persons and control the robot with respect to a person
easily. Second, we present a comprehensive evaluation
of the CCF-based online person identification method,
which was originally proposed in [12]. Through eval-
uations, it has been confirmed that the proposed sys-
tem achieves a state-of-the-art performance. Third, the
source code of the proposed framework is available
from a public repository 1. The system can easily be
reproduced and reused on a new mobile robot platform.

The rest of the paper is organized as follows. Sec.
2 describes related work. Sec. 3 and Sec. 4 describe
the proposed vision-based people tracking method and
the CCF-based online person identification method, re-
spectively. Sec. 5 presents evaluations of the person

1https://github.com/koide3/monocular_person_

following

tracking method and the person identification method.
Sec. 6 shows a person following experiment conducted
to demonstrate that the proposed method can be applied
to real person following robots. Sec. 7 concludes the
paper.

2. Related work

2.1. People tracking for mobile robots

A number of people tracking methods for mobile
robots have been proposed in the past. Most of these
works exploit range sensors such as, laser range find-
ers (LRFs) [1, 13], infrared RGB-D cameras [6, 14],
and stereo cameras [5, 4, 15], to make the person de-
tection easy. Such range sensors provide persons’ posi-
tions accurately as long as they are visible from the sen-
sors and promise reliable person tracking capabilities.
However, such range sensors are typically unaffordable
(LRFs and stereo cameras) or not available in outdoor
environments (RGB-D cameras).

Several works tackled monocular vision-based peo-
ple tracking for mobile robots. Zhang et al. proposed
a method which tracks people in the image space, and
controls the robot using a visual servo technique [16].
However, from the view point of robot control, it is
desirable to estimate a person’s position in the robot
space rather than the image space. The challenge here
is that, with a monocular camera, it is impossible to
estimate the distance to the person without any prior
knowledge. Choi and Savarese [8] proposed a method
to track and estimate object positions, ground plane fea-
tures, and camera intrinsic parameters simultaneously.
The ground plane features help to estimate the camera
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parameters and person trajectories in the real space ro-
bustly. Ardiyanto and Miura [9] proposed a method
which tracks people in the real space with Unscented
Kalman filter based on the human height information.
Such people tracking in the real space could be more
robust than tracking in the image space, because we can
take advantage of assumptions on the people motion in
the space where they are actually moving on [8]. How-
ever, they lack the capability of person identification.
In daily situations, there are sometimes several persons
around the robot, and the robot may loose the track of
the target person due to occlusion, or it tracks a wrong
person when the target is close to another one. In such
cases, the robot has to re-identify the person based on
a target person model learned before the occlusion to
resume tracking and following the target person.

To our knowledge, only a few works proposed
monocular camera-based person following robots with
person identification capabilities. Bakar and Saad pro-
posed a specific person detection method for mobile
robots [17]. However, since this method requires to
put several markers on the target person, it cannot be
applied to non-cooperative scenarios. Yao et al., pro-
posed a face detection-based person tracking system for
a miniature robotic blimp [18]. They estimate a person’s
position based on the detected face pose. Thus, the face
of the person has to be always visible to the robot in this
system.]

2.2. Person re-identification

Person re-identification has been widely investigated
for camera networks for surveillance and monitoring,
and several features, such as gait [19], height [20], and
skeletal information [21], have been proposed. In cases
of mobile robots, the most standard feature for per-
son re-identification is the appearance, such as color
and texture of clothes, since it can easily be obtained
from a mobile robot. It has been proven that the com-
bination of appearance features and an online learning
method works very well for the person following task
[5, 14, 22]. Online learning methods allow us to adapt
the person model to a specific target person. For in-
stance, when there are persons wearing similar shirts
and dissimilar trousers, online learning methods can
focus on the discriminative part, trousers in this case,
to re-identify the target person robustly. However, the
most of existing methods for mobile robots use naive
hand-crafted appearance features, such as Haar-like fea-
tures [14], Local Binary Patterns (LBP) [5], edge fea-
tures [22] on color and depth images. They are not dedi-
cated features for person re-identification, and they may

not be discriminative when persons are wearing similar
clothes.

Recently, deep neural networks have been success-
fully applied to various vision applications. Person re-
identification is one of such applications, and Convo-
lutional Neural Network (CNN) based methods outper-
form traditional systems [23, 24]. However, a few works
[15] applied such CNN-based methods to mobile robots
due to the limitation of computation resource on mo-
bile robots. On a mobile robot, it is not always feasi-
ble to use a high performance GPU, and thus, it is hard
to directly apply such CNN-based methods to person
following robots. Moreover, in person following tasks,
it is important to adapt the person model to the target
person online. Without an online learning approach, it
is sometimes hard to distinguish persons wearing simi-
lar clothes even with a deep neural network. Although
there are methods to update neural networks online [25],
those methods are very costly, and it is not feasible to
run it on a mobile robot.

Yang et al. proposed Convolutional Channel Features
(CCF) [10]. In this technique, they take the first a few
convolution layers from a trained deep CNN, and use
the set of convolution layers as a feature extractor. By
training light-weight models, such as SVM and boost-
ing, with the deep feature representation, they adapt the
framework to several tasks without expensive tuning of
the network. Following their work, in this paper, we in-
troduce CCF to person identification for mobile robots
to take advantage of deep representation while keeping
the processing cost low.

3. People tracking

As the starting point of the people tracking process,
we use OpenPose, a deep convolutional neural network-
based human detector [7]. It provides the position of
each joint of persons in the image space. We utilize
an implementation of OpenPose which is sped up with
mobilenet architecture [26] with depth-wise separable
convolution filters 2. Then, inspired by [8] and [9], we
track persons in the robot coordinate space based on the
detected joint positions. Tracking persons in the real
space could be more robust than tracking in the image
space, since we can take advantage of motion assump-
tions on where the persons are actually moving on [8].
In addition to that, person positions in the robot space
are very useful for service robots to interact with them.
For instance, with the estimated position in the robot

2https://github.com/ildoonet/tf-pose-estimation
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Figure 2: The proposed tracking method takes advantage of the
ground plane information.

space, we can easily control the robot so that it keeps
the distance to the person constant while avoiding other
persons.

Fig. 2 illustrates the proposed tracking method. We
assume that the camera pose with respect to the ground
plane is calibrated beforehand. By projecting a detected
ankle position onto the ground plane, we can estimate
the person position in the robot space. However, while
a person is walking, the ankle position varies due to the
walking motion, and it would affect the position esti-
mation. We, thus, simultaneously estimate the height
of the person in addition to the position based on neck
and ankle detections using Unscented Kalman Filter
(UKF) [27] to make the estimation robust. Once the
real height of the person is estimated, by comparing it
with the height in the image space, we can estimate the
distance to the person. It would contribute to the esti-
mation accuracy when the ankle position varies largely
(i.e., when the person is walking). Furthermore, when
the real height is available, we can update the UKF with
only a neck detection when the ankle is not visible to
the camera.

3.1. State estimation

We define a state space to be estimated as xt =

[pt, vt, ht]T consisting of the position, velocity, and
height of a person. To compensate for the robot motion,
we estimate the state in the world frame and transform
it in the robot frame using odometry. With UKF, we

estimate the state from observations of neck and ankle
positions in the image space ẑt = [pneck

t , pankle
t ]T .

Assuming the constant velocity model, the system
function f to update the state is defined by:

f (xt) = xt+1 = [pt + ∆t · vt, vt, ht]T , (1)

where ∆t is the duration between t + 1 and t. The obser-
vation function h is defined by:

h(xt) = zt = [Proj(pt + [0, 0, ht]T ),Proj(pt)]T , (2)

where the function Proj is the pinhole camera projection
function. When only a neck position is observed, we use
the observation function without the ankle observation
term to update the state:

h′(xt) = z′t = [Proj(pt + [0, 0, ht]T )]T . (3)

3.2. Data association

To associate track instances and joint detections at a
frame, we first calculate the expected observation dis-
tribution (neck and ankle positions distribution) of each
track using Unscented Transform [27]:

µz
t , σ

z
t = UT (µxt

t , σ
xt
t , h). (4)

µz
t and σz

t are the expected observation distribution, µxt
t

and σxt
t are the distribution of the state xt, h is the obser-

vation function, and the function UT is the Unscented
Transform function.

Then, we define the distance between a track and an
observation as:

Dist(tracki, obs j) ={
∞, if DM(µz

t , σ
z
t , ẑt) > thgate

−N(µz
t , σ

z
t , ẑt), otherwise (5)

, where DM is the Mahalanobis distance function, and
thgate is the threshold for gating. Based on this distance
function, we associate tracks and detections using the
global nearest neighbor association [28]. Note that in
the data association algorithm, a constant is added to
the calculated distances to make them positive.

Fig. 3 shows a tracking result. The blue sphere in
Fig. 3 (a) shows the estimated person position in the
robot space, and the green ellipses in Fig. 3 (b) indi-
cate the neck and ankle positions distribution calculated
from the person state in the robot space.
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Figure 3: A tracking result. The ellipses on the right image show
the expected neck and ankle positions distribution calculated from the
person position in the robot space. Note that the laser is used for only
validation.

4. Person identification

4.1. Convolutional channel features

The tracking module outputs the neck and the ankle
positions of the tracked persons, and the following iden-
tification module uses them to calculate the ROIs for
extracting appearance features for identification.

In this work, we use a convolutional filter-based per-
son identification method proposed in [12]. To take
advantage of deep CNN-based feature representation,
this method employs Convolutional Channel Features
(CCF) [10] instead of traditional appearance features
which have been used for mobile robots, such as color
histograms [3], haar-like [1], and edge features [22].
CCF consists of a few convolutional layers taken from
a trained deep CNN. It takes an input image and yields
a set of response maps (i.e. feature maps) which are op-
timized for a specific task, such as person detection and
classification.

We train Ahmed’s network for person re-
identification [23] as the base of CCF, and use the
first two convolution filters of the network to extract
appearance features for online person identification
(see Fig.4). Ahmed’s network takes a pair of person
images and then applies convolution filters to extract
feature maps for each input image. The extracted
feature maps are compared together by taking the
difference between each pixel in a feature map and the
neighbor pixels of the corresponding pixel in the other
map. Then, it applies convolution filters again to the
difference map, and through a linear layer, the network
judges whether the input images are the same person or
not. The numbers of filters in the first and the second
convolution layers are 20 and 25, and thus, they yield
25 feature maps. Since it may be costly for mobile
systems to directly use this network, we also trained

a tiny version of the network, where the numbers of
convolution filters in both the first and the second layers
are 10. We trained both the networks with a dataset
consisting of CUHK01 [29] and CUHK03 [30]. The
total number of identities in the dataset is about 2300,
and the number of images is about 17000. We used
nine tenths of the dataset for training and the rest for
testing and confirmed that both the networks show over
98% of identification accuracy on the test set. In the
rest of this paper, the CCFs taken from the original and
the tiny version networks are denoted as CCF25 and
CCF10, respectively.

Fig. 5 shows example feature maps extracted by
CCF10. We can see that each filter shows strong re-
sponses for different color properties. For instance, fil-
ter 2 shows higher values on darker and blue regions,
while filter 8 strongly responds orange regions. We can
obtain diverse feature representation using CCF with-
out hand-crafting, and such features would contribute
to identification performances.

4.2. Online boosting-based person classifier

With the offline trained CCF, we extract feature maps
from person images, and then train a target person clas-
sifier online. Following Luber’s work [14], we employ
online boosting [11] to construct the classifier. Online
boosting constructs an ensemble of weak classifiers and
uses it as a strong classifier. In this work, each weak
classifier takes the sum of pixel values in a random rect-
angle region on a feature map and classifies images into
the target and other persons using a naive Bayes classi-
fier. Since online boosting selects the weak classifiers
with the best classification accuracy, discriminative re-
gions are automatically chosen for identification. In this
work, we use online boosting with 10 weak classifier se-
lectors, and each selector contains 15 weak classifiers.
Thus, the total number of weak classifiers is 150, and
10 out of them are selected to construct an ensemble.
Fig. 6 shows an example of the features selected by on-
line boosting. We can see that online boosting automat-
ically selects the discriminative regions, the upper body
regions in this case, to construct a classifier ensemble.

5. Evaluation

5.1. Tracking accuracy evaluation

To evaluate the accuracy of the proposed tracking
method, we recorded three image sequences with the
robot shown in Fig. 7. A Jetson TX2 development
board with an embedded monocular camera module is
mounted on the robot. The height of the camera from
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Figure 5: Feature maps extracted by CCF10. Each filter shows strong
responses for different color properties.

the ground is 0.6 [m], and the horizontal field of view
is about 70 [deg]. The camera pose with respect to the
ground plane is calibrated by observing a chessboard
pattern put on the ground. For validation, a laser range
finder is also mounted on the robot, and we estimate
the person position with the proposed method and a
laser-based people tracking method [3]. We consider

Target

Other

(a) A snapshot of the environ-
ment.
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(b) Features selected by online boosting. The
selected regions are superimposed on the
feature maps.

Figure 6: An example of features selected by online boosting. The
discriminative regions, the upper body regions in this case, are auto-
matically selected.

the laser-based result as the ground truth in this evalua-
tion.

We define the error between trajectories as follows:

p′i = arg min
pl

j∈L

∥∥∥pv
i .t − pl

j.t − ∆t
∥∥∥ , (6)

E =
∑
pv

i ∈V

∥∥∥transform(pv
i ,∆x,∆y,∆θ) − p′i

∥∥∥ , (7)

where, V = [pv
0, pv

1, · · · , pv
N],L = [pl

0, pl
1, · · · , pl

M] are
the trajectories measured by the vision and the laser-
based methods, pi = [x, y, t] is a point with timestamp,
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Figure 7: A mobile robot equipped with a Nvidia Jetson TX2 develop-
ment board. An embedded camera module is bundled with the devel-
opment board. An LRF is also mounted on the robot for the validation
of the tracking system.
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Figure 8: The tracking accuracy evaluation result.

and ∆x,∆y,∆θ,∆t are the offset between the vision and
the laser sensors. p′i ∈ L is the point with the timestamp
closest to the timestamp of a point in V. To align the
vision-based trajectory with the laser-based one, we fist
estimate the offset such that eq. 7 is minimized. Then,
we calculate the error between the trajectories with the
estimated offset.

Fig. 8 (a) shows an example of the estimated trajecto-
ries. To show the effect of the UKF-based tracking, the
result without the UKF (projecting the ankle position

onto the ground plane directly) is also shown in the fig-
ure. We can see that, without the UKF, the estimated po-
sition fluctuates due to the varying ankle positions dur-
ing walking. We can also notice that the result without
the UKF suffers from the “quantization effect” as the
distance to the person gets larger. Although the image
itself is quite large (1920 × 1080 [pix]), when the person
is 20 [m] away from the camera, the person region in the
image is only 100 [pix] in height. Furthermore, the im-
age is down-scaled (1/3 scaling) in the detection process
of OpenPose. With this image size, the method cannot
preciously detect ankle positions, and thus it does not
work well for distant persons.

With the UKF, the estimated trajectory is greatly im-
proved thanks to the height information and the motion
assumption. The UKF gets rid of the quantization effect
and makes the trajectory smooth. Although the system
tends to overestimate the distance to the person when
the distance is larger than 20 [m], the trajectory within
this distance matches with the ground truth well. Dur-
ing the trials, we confirmed that the minimum detection
range of the system is about 2 [m] in this setting.

Fig. 8 (b) shows the plot of the localization error ver-
sus the distance between the camera and the person cal-
culated from all the recorded sequences. We can see
that, with the UKF, the position estimation accuracy is
significantly improved. The error is smaller than 0.5
[m] in the range between 2 ∼ 20 [m], although it gets
worse when the distance is larger than 20 [m]. Since the
distance between a robot and a target person does not
get larger than 10 [m] in usual service robot scenarios,
we consider that these detection range and estimation
accuracy are suitable for service robot systems.

5.2. Person identification evaluation

To evaluate the proposed person identification frame-
work, we created a dataset consisting of a set of RGB
image sequences taken from a mobile robot (shown in
Fig. 1). For validation, we also recorded LRF data in
addition to the images in this dataset. Fig. 9 shows snap-
shots of the dataset. We controlled the robot manually
and made it follow a target person in indoor and outdoor
environments. We collected six sequences, and two of
them are recorded in indoor, and the rest are recorded in
outdoor environments. In each sequence, a target per-
son to be followed stands in front of the robot for the
first seconds so that the robot can learn the appearance
of the person, and then he/she starts walking. During the
recording, the target person is often occluded by other
persons so he/she becomes invisible from the robot, and
the robot loses track of him/her.
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(a) Sequence 1 (53 [sec]) (b) Sequence 2 (60 [sec]) (c) Sequence 3 (133 [sec])

(d) Sequence 4 (175 [sec]) (e) Sequence 5 (122 [sec]) (f) Sequence 6 (58 [sec])

Figure 9: Snapshots of the dataset for person identification evaluation in person following tasks. The dataset consists of RGB images and LRF data
recorded from a mobile robot. The robot was manually controlled and following a person in indoor and outdoor environments.

Figure 10: The scene where the proposed system failed to detect the
target person. The distance to the person is about 10 [m].

We evaluate the proposed monocular person identifi-
cation framework with CCF10 on this dataset. To com-
pare the proposed system with a laser-based system, we
also run our previous system [12]. This system first
detects people using the combination of a range data
clustering technique and an SVM-based torso classifier
[1], then it identifies the target person based on CCF10
and CCF25 extracted from the human regions calculated
from the detected people positions. The main difference
between this system and the proposed one is the detec-
tion part. The laser-based people detector used in this
system allows to reliably detect distant people with a
high recall rate.

For comparison, we also run a variation of [14] on
the dataset. This method extracts Haar-like features and
Lab color histograms from color and depth images ac-
quired from an RGB-D camera, and constructs a person
classifier using online boosting. Since we use a monoc-
ular camera only in this evaluation, we construct the
classifier without depth images.

Table 1 shows a summary of identification results.
To assess the identification performance, we catego-
rize identification results in four states. CT (Correctly
Tracked) means that the target was visible from the
robot and correctly identified. CL (Correctly Lost)
means that the target was invisible from the robot due to
occlusion, and the system correctly judged that he/she is
not in the view. WT (Wrongly Tracked) means the robot
identified a wrong person as the target while the target
was invisible, and WL (Wrongly Lost) means the robot
judged that the target is not visible, although he/she was
actually visible from the robot.

CCF-based methods outperform the traditional ap-
pearance feature-based method thanks to the robust
deep feature representation. Even in sequences where
clothes of the target and the others are similar, they cor-
rectly identified the target while the traditional one iden-
tified wrong persons as the target.

On the laser-based system, CCF10 and CCF25 show
comparable results. However, in a few sequences,
CCF25 failed to keep identifying the target person. For
instance, it identified a wrong person as the target in
sequence 3 and failed to re-identify the target after oc-
clusion in sequence 4. We consider that this is due to
the limitation of the feature selection of online boost-
ing. Online boosting selects the best classifiers among
a limited number of weak classifiers. When the feature
space is vast, the set of weak classifiers cannot cover
enough feature space, and thus, online boosting would
fail to select discriminative features. The performance
of CCF25 could be improved by increasing the number
of weak classifiers. However, it increases the process-
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Table 1: Person identification evaluation result. Bold indicates best results.

Duration [sec]
Sensors LRF + Camera Camera
Features Haar Lab [14] * CCF10 [12] CCF25 [12] CCF10 (Proposed)

Seq. 1

CT 38.78 (73.23%) 40.84 (77.11%) 37.96 (71.69%) 38.85 (73.36%)
CL 6.62 (12.49%) 6.78 (12.80%) 7.37 (13.92%) 6.21 (11.72%)
WT 3.91 (7.38%) 3.75 (7.08%) 3.16 (5.96%) 4.32 (8.17%)
WL 3.65 (6.90%) 1.59 (3.01%) 4.47 (8.44%) 3.58 (6.76%)

Seq. 2

CT 43.76 (73.78%) 43.86 (73.95%) 43.87 (73.97%) 35.83 (60.40%)
CL 11.28 (19.02%) 10.76 (18.14%) 10.90 (18.37%) 9.58 (16.15%)
WT 2.52 (4.24%) 3.04 (5.12%) 2.90 (4.89%) 4.22 (7.11%)
WL 1.76 (2.96%) 1.65 (2.79%) 1.64 (2.77%) 9.68 (16.33%)

Seq. 3

CT 48.08 (36.11%) 106.31 (79.84%) 88.60 (66.55%) 100.85 (75.75%)
CL 7.67 (5.76%) 20.18 (15.16%) 19.67 (14.77%) 19.60 (14.72%)
WT 46.45 (34.89%) 3.94 (2.96%) 6.47 (4.86%) 4.52 (3.40%)
WL 30.94 (23.24%) 2.71 (2.04%) 18.40 (13.82%) 8.17 (6.13%)

Seq. 4

CT 37.89 (21.56%) 141.19 (80.33%) 85.60 (48.70%) 143.45 (81.56%)
CL 24.83 (14.13%) 23.18 (13.19%) 21.57 (12.27%) 21.95 (12.48%)
WT 12.08 (6.88%) 5.83 (3.32%) 6.30 (3.58%) 7.06 (4.02%)
WL 100.95 (57.44%) 5.56 (3.16%) 62.29 (35.44%) 3.42 (1.95%)

Seq. 5

CT 98.33 (80.38%) 98.75 (80.73%) 98.89 (80.84%) 98.59 (80.59%)
CL 16.66 (13.62%) 18.39 (15.03%) 18.36 (15.00%) 16.19 (13.24%)
WT 5.12 (4.19%) 3.32 (2.71%) 3.38 (2.76%) 5.52 (4.51%)
WL 2.22 (1.81%) 1.88 (1.53%) 1.70 (1.39%) 2.04 (1.67%)

Seq. 6

CT 33.10 (59.67%) 41.90 (75.55%) 43.67 (78.74%) 41.66 (75.11%)
CL 2.68 (4.84%) 9.01 (16.24%) 9.01 (16.24%) 7.27 (13.11%)
WT 16.80 (30.28%) 0.06 (0.11%) 0.06 (0.11%) 1.80 (3.24%)
WL 2.88 (5.20%) 4.49 (8.10%) 2.73 (4.91%) 4.73 (8.53%)

Total

CT 299.94 (50.08%) 472.86 (78.94%) 398.60 (66.55%) 459.23 (76.65%)
CL 69.75 (11.64%) 88.29 (14.74%) 86.87 (14.50%) 80.80 (13.49%)
WT 86.89 (14.51%) 19.94 (3.33%) 22.26 (3.72%) 27.44 (4.58%)
WL 142.40 (23.77%) 17.89 (2.99%) 91.24 (15.23%) 31.62 (5.28%)

CT(Correctly Tracked), CL(Correctly Lost), WT(Wrongly Tracked), WL(Wrongly Lost)
* [14] without depth images.

Table 2: Processing time for each person image

method time [msec]
Haar & Lab 1.2

feature extraction CCF10 4.2
CCF25 6.0

classifier update all 0.1

ing cost, and it may lead to over-fitting. Although the
feature space of CCF10 is smaller than CCF25, the “av-
erage effectiveness” of CCF10 features could be better
than CCF25 since it was optimized to identify persons
with fewer filters. As a result, CCF10 shows a better

result than CCF25 in this case.
The result of the monocular vision-based system with

CCF10 is comparable but a bit worse than the result of
the laser-based system because the vision-based system
failed to detect the target person when he was distant
from the robot (see Fig. 10). The distance to the person
was about 10 [m] in this scene. Since we used a wide
angle camera in this experiment, the maximum detec-
tion range was smaller compared to the evaluation in
Sec. 5.1. This result suggests that the laser-based sys-
tem has the advantage of detecting and tracking persons
in a long distance. However, once the robot got close to
the target person, it correctly detected and re-identified
him, and the tracking was resumed properly. As shown
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in Sec. 5.1, the vision-based method can track persons
up to 10 or 20 [m] depending on the camera characteris-
tics, and we consider that, the distance between the tar-
get person and the robot would not get so long during a
following task. Furthermore, a target person search ap-
proach like [31] could be helpful to search for the target
when the robot loses the track of him/her and compen-
sate for the drawback of the vision-based person detec-
tion.

Note that, we also tested the original Ahmed’s net-
work on this dataset, however, the results were very
poor. In each sequence, we compared every person im-
age with the target person images of the first ten seconds
using the network, and classified the image into the tar-
get and others by majority-voting. However, it worked
well on only easy situations (Sequence 1 and 2), and in
the rest of sequences, it classified all similar persons as
the target (Sequence 3, 4, and 6) or classified the tar-
get as other persons (Sequence 5). The result suggests
that, even with the deep feature representation, we can-
not obtain a good identification result without the online
learning approach. In addition to that, it takes about 1
[sec] for each frame and is far from real-time perfor-
mance.

Table 2 shows the average processing time of the fea-
ture extraction and the person classifier update on a
computer with Core i7-6700K (without GPU). While
the traditional feature extraction method takes 1.2
[msec] for each person image, CCF10 and CCF25 take
4.2 [msec], and 6.0 [msec], respectively. Although the
CCFs are more costly than the traditional one, they
are still able to run in real-time. Since the processing
time of updating the person classifier depends on only
the number of weak classifiers, every method takes the
same time for updating (0.1 [msec] per person image).

5.3. Person identification evaluation on a public
dataset

We evaluated the proposed monocular vision-based
framework on a public dataset for person following
robots [15]. This dataset consists of 11 sequences ac-
quired with a stereo camera mounted on a mobile robot.
At the beginning of each sequence, a person is stand-
ing in front of the robot, and the system to be evaluated
learns the appearance of the person and keeps tracking
him. The dataset contains hard situations for person
identification (e.g., clothes and illumination changes),
and the system has to deal with such situations. Since
our proposed method is designed for monocular cam-
eras, we use only the left images of the stereo image
sequences to test the proposed method.

In this dataset, person identification methods are eval-
uated in terms of the target localization accuracy. If the
distance between the center positions of the estimated
and the ground truth person regions is smaller than a
threshold, we judge that the system succeeded to iden-
tify the person at that frame.

We compare the proposed method with other meth-
ods reported in [15]. OAB [32] and ASE [33] are ob-
ject tracking algorithms for monocular cameras, while
SOAB [5], DS-KCF [34] are tracking algorithms for
stereo cameras. There is also a convolutional neural
network-based tracking algorithm for stereo images and
its variations [15]. CNN v1 directly receives RGB-D
images while CNN v2 has two streams for each of RGB
and depth images and fuse them later. CNN v3 is a net-
work for regular RGB images. All the networks output
the similarity of an input image region to the target per-
son.

Fig. 11 shows the evaluation result. Following the
evaluation procedure in [15], we set the location er-
ror threshold to 50 pixels. The proposed method suc-
cessfully keeps tracking the target persons in all the se-
quences, and thanks to the good accuracy of the Open-
Pose skeleton detector, the proposed method outper-
forms the others in this evaluation. Although the pro-
posed method fails to detect the target person in two se-
quences (“lab and seminar” and “sidewalk” sequences)
when he gets too close to the camera (see Fig. 12), once
he moves away from the camera, the system correctly
detects and re-identifies the target, and the tracking gets
recovered. As a result, the proposed method keeps
tracking the target person in the entire sequences. Fig.
13 (a) shows the plot of the localization precision ver-
sus the localization error threshold. Thanks to the good
localization accuracy, the proposed method shows much
higher precision under lower error thresholds. However,
since it fails to track the target when he is too close
to the camera, the precision under large thresholds is
worse than the other state-of-the-art method (CNN v1).
Fig. 13 (b) shows the evaluation result where the two
sequences shown in Fig. 12 are excluded. Under this
setting, with the proposed method, the precision under
smaller thresholds outperforms the others, and the re-
sult under larger thresholds is also comparable with the
state-of-the-art method. It is worth mentioning that the
proposed method uses only monocular images, while
SOAB, SD-KCF, CNN v1, and CNN v2 use stereo im-
ages.
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Figure 11: Target person localization evaluation result on the dataset [15].

(a) “lab and seminar” (b) “sidewalk”

Figure 12: Failed scenes. The target person was too close to the cam-
era, and the system failed to detect him.

6. Person following experiment

To demonstrate that the proposed method can be ap-
plied to real robots, we conducted a person following
experiment. We implemented a simple robot controller
for person following; the robot moves toward the tar-
get person, and when the robot loses track of the tar-
get, it stops and waits until the person re-appears. This
controller receives the target person position from the
proposed person tracking and identification framework
and generates velocity commands to drive the robot. We
used the mobile robot shown in Fig. 7 with a Jetson
TX2. All the modules including the person detection,
tracking, identification, and robot controller run on the
Jetson TX2, thus, we did not use any other computers in
this experiment.

Fig. 14 shows snapshots of the experiment. At the
beginning of the experiment, the robot learned the ap-
pearance of the target person and started following him
(Fig. 14 (a)). During the experiment, the target person
was occluded by the other person several times, and the
robot lost the track of the target (Fig. 14 (b)(c)). How-
ever, once he re-appeared in the camera view, the robot
correctly re-identified him with the online learned ap-
pearance model, and kept following him (Fig. 14 (d)).
Although there was a significant illumination change
when the target moved out from the room (Fig. 14

(a) With all the sequences.

(b) Without the sequences shown in Fig. 12.

Figure 13: Target localization precision vs location error threshold.

(e)(f)), the appearance model was updated adeptly, and
as a result, the robot successfully followed the target
person. Fig. 15 shows the features selected by on-
line boosting during the experiment. We can see that
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(a) (b)

(c) (d)

(e) (f)

Figure 14: The person following experiment. The left images are the snapshots of the experiment, and the right images are the tracking identification
results. The red triangles in the right images indicate the person identified as the target.

Figure 15: Features selected by online boosting during the person following experiment.

(a) (b) (c) (d)

Figure 16: The outdoor person following experiment. The robot successfully kept tracking and following the target person even the target was
occluded by the other one several times.

the classifier focused on the trousers region to robustly
identify the target in this case.

We also run the proposed system in an outdoor envi-
ronment. Fig. 16 shows snapshots of the trial. The robot
successfully kept tracking and following the target per-
son even the target was occluded by the other one sev-
eral times. Although the ground is rough compared to
the indoor environment, it did not affect the position es-

timation so much, and the robot kept a certain distance
while following the person during this trial.

7. Conclusion

This paper has proposed a monocular camera-based
person tracking and identification framework with on-
line selection of deep features for person following
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robots. The proposed framework first detects persons
using OpenPose and then track them in the robot space
using Unscented Kalman Filter with the ground plane
prior information and human height estimation. A per-
son identification based on the combination of Convo-
lutional Channel Features and online boosting runs on
the top of the tracking module to keep tracking the tar-
get person robustly. Through evaluations, it has been
shown that the proposed framework outperforms other
state-of-the-art methods. The experiment demonstrated
that the proposed method can be applied to a real mobile
robot.

As a future work, we are planning to improve the de-
tection rate of close persons by replacing the camera
with one with a wide view angle, and incorporate the
proposed framework with an active person search strat-
egy to re-identify a distant target person.
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