MODELLING OF BRAIN TISSUE MECHANICAL PROPERTIES:
BI-PHASIC VERSUS SINGLE-PHASE APPROACH
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1. ABSTRACT

Recent developments in Robot- Aided Surgery % in particular, the emergence of
automatic surgical tools and robots % aswell as advances in Virtual Reality techniques,
call for closer examination of the mechanical properties of brain tissue. The ultimate
goal of our research is development of corresponding, realistic mathematical models.
The paper discusses two candidates for tissue models: standard, non- linear, biphasic
and single- phase, non- linear, viscoelastic.

The mechanica behavior of brain tissue is highly non-linear. The stress- strain curves
are concave upward containing no linear portion from which a meaningful elastic
modulus might be determined. The tissue response stiffens as the loading speed
Increases, indicating a strong stress- strain rate dependence.

The standard methods of modeling tissue as a biphasic continuum face serious
problems: strong stress — strain-rate dependence can not be easily explained. According
to our experiments, for brain tissue the stresses under fast loading can be six times
higher than those under slow loading. Therefore, the use of the single- phase model is
recommended. The non-inear, viscoelastic model, based on strain energy function with
time dependent coefficients has been developed. The material constants for the brain
tissue have been evaluated. Agreement between the proposed theoretical model and
experiment is good for compression levels reaching 30% and for loading velocities
varying over five orders of magnitude. One advantage of the proposed constitutive
model is that it is not difficult to be employed in largere scale finite element
computations.

2. INTRODUCTION

Mechanical properties of living tissues form a central subject in Biomechanics.
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In parti?:[flrar, the properties of the musculo-skeletal system, skin, lungs, blood and blood
vessels have attracted much attention, for example, see [1, 2, 3, 4] and references cited
therein. The properties of “very” soft tissues, which do not bear mechanical loads (such
as brain, liver, kidney, etc.), have not been so thoroughly investigated.However, recent
developments in robotics technology, in particular the emergence of automatic surgical
tools and robots [5] as well as advances in virtual reality techniques [6], call for closer
examination of the mechanical properties of these tissues. State of the art intra-
operative imaging techniques can supply rich information of tissue deformation.
Unfortunately, most medical imaging methods need tens of seconds to even tens of
minutes to obtain a set of 3D images. Thus, by thinking of using an image measurement
in the robot control system, one also has to consider a delay. The possible solution to
this challenge is the prediction of the deformation based on the model [7, 8]. To
improve the capabilities of surgical operation planning and surgeon training systems
based on the virtual reality techniques ([6] and references cited therein), force feedback
is needed. To achieve the above goals, the appropriate “very” soft tissue models are

required.
Knowledge of the mechanical properties of soft tissues and ultimately of their

mathematical modelsis also required for registration. It encompasses matching images
of different moddity, such asMRI and Single Photon Emission Computed Tomography
(SPECT), defining relations between coordinate systems (e.g., between a coordinate
system associated with imaging equipment and those of robotic toolsin an operating
room), segmentation of reference features and defining disparity or similarity functions

between extracted features [9]. Registration is a key technique for the computer-
integrated surgery.

Registration procedures involving rigid tissues are now well- established. If rigidity is
assumed, it is sufficient to find several points such that their mappings between two
coordinate systems are known. Registration of soft tissues is much more difficult
because it requires a knowledge about local deformations. Here comes the place for
accurate models of tissue deformation behavior.

The reported experimental data on the mechanical properties of brain tissue are limited.
Ommaya in [10] described mammalian brain as a “soft, yielding structure, not as stiff as
a gel nor as plastic as a paste”. Autors of [11] and [12] tried to establish elastic
parameters of brain tissues by measuring induced changes in intra- cranial pressure. The
experimental data, which might be used to determine constitutive relations for brain
tissue, was reported in [13] and [14]. From the cited papers, it is difficult to extract
precise information about the conditions under which the experiments were performed,
especially concerning sample sizes and prevention of the adhesion between platens and
sample surfaces.

Based on these experimental results, nonlinear constitutive relations for human brain
tissue were proposed [15, 16]. However both the experimental results and theoretical
investigations concentrated on rapid loading conditions resulting in large strain-rates,
typical for accidents and injury modelling, and can not find the direct application in
surgical procedure simulations.
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: 'd)to perform unconfined uniaxial compression experiments. An alternative
was a confined compression experiment, used for example by Mow and coworkers [3]
to validate biphasic models of soft cartilage tissues.

The more detailed description of the in-vitro unconfined compression of fresh swine
brain can be found in [17, 18]. Here we would like to summarise the results only.
Cylindrical samples of diameter ~30 mm and height ~13 mm were cut. Four samples
were taken from the frontal and posterial portions of the Sylvian fissure of each
hemisphere for each swine brain. The ventricle surface and the arachnoid membrane
formed the top and bottom faces of the sample cylinder. Thus the arachnoid membrane
and the structure of the sulci remained as parts of each specimen.

Uniaxial unconfined compression of swine brain tissue was performed in a testing
stand, shown in Fig. 1.

Load
Impermeable platen

b)

Fig. 1: Experiment setup
a) general view with components:
1 - specimen and the loading platens,
2 - load cell to measure axial force,
3 - micrometer to measure axial displacement ,
4 - |aser to measure radial displacement.

b) layout with coordinate axes

The main testing apparatus was a UTM-10T (Orientec Co.) tensile stress machine. The
vertitéledjddlaCementi(al ongdz|axig in fRigalib)l was) enbésutedrbyad Rricoenttes :with
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tp@. The experiment was documented by automatically taking CCD camera

In the paper we will discuss the results obtained during the loading phase, for three
loading velocities:
fast: 500 mm min™" ¥ the fastest loading speed possible with our equipment),
corresponding to the strain rate of about 0.64 s™,
medium: 5 mm min™*, corresponding to the strain rate of about 0.64" 102 s™ and
slow: 0.005 mm min™, corresponding to the strain rate of about 0.64" 10 s™.
We performed 12 fast, 13 medium speed and 6 slow tests. The number of slow tests
was limited because after each tissue delivery (usually 2 brains) we could perform only
one overnight test.
Figure 2 shows the Lagrange stress® versus true strain (e=Inl, , where , is a stretch in
vertical direction, Fig. 1b) curves for three loading velocities. The standard deviation of
the measurements and the theoretical predictions are indicated. The stress- strain curves
are concave upward for all compression rates containing no linear portion from which a
meaningful elastic modulus might be determined. The tissue response stiffened when
the loading speed increased, indicating a strong stress- strain rate dependence. The
results shown in Fig. 2 are in general agreement with those published in (Estes and
McElhaney, 1970).

®To calculate Cauchy (true) stresses, the precise measurement of the cross- section area
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Fig. 2. Lagrange stress - true strain relations for swine brain tissue, experimental and
theoretical results. Error bars indicate standard deviation. Loading speeds:
a) 500 mm min™, corresponding to the stretch rate of about 0.64 s,
b) 5 mm min™, corresponding to the stretch rate of about 0.64” 1025,
¢) 0.005 mm min™, corresponding to the stretch rate of about 0.64” 107 s™.

3. CANDIDATES FOR BRAIN TISSUE CONSTITUTIVE MODELS

3.1. Brain as a Biphasic Continuum

The concept that the soft tissues can be treated as biphasic continua consisting of solid
deformable porous matrix and penetrating fluid is widespread. It has been particularly
useful in cartilage biomechanics, see for example [3]. The linear biphasic model of
brain was proposed, for example, in [19, 20].
The governing equations of biphasic continuum are:
Continuity:  R(f Sv° +f fVhy=o Q)
Equilibrium: Ns? +P? =0 )
twhédétler, K. Chinzei, "Modelling of Brain Tissue Mechanical Properties:
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! :} phase content (f - fluid phase, s - solid phase),
- velocity of a phase.

s? - a phase Cauchy stress tensor,

P2 - diffusive momentum exchange between phases.
When writing the equilibrium equation we neglected inertial body forces.
If we make the additional assumption that the fluid is inviscid and that the diffusive
momentum exchange is proportional to the relative velocity between phases, the
constitutive equations are as follows:

s*=-fpl+s ¢’ ©)

s'=-f'pl (4)

Ps=-P"=-pNff +K(v'-v*) (5)
where:

p - apparent pressure,
K - diffusive drag coefficient function,
s - Cauchy stress tensor of the solid phase.

| - identity tensor (rank three),
In general, the diffusive drag coefficient K is not constant. It is usually considered to be
dependent (exponentially) on strain.
The accepted way to relate the stresses to the deformation (in a solid matrix) is by
means of the Helmholtz free energy:
w
S = E (6)
where:
S - Second Piola- Kirchoff stress of the solid phase (measured with respect to the
original configuration)
W - the Helmholtz free energy (per unit volume) function of the solid phase. This
function depends on the current deformation only.
E - Green’s strain tensor (relative to original configuration) of the solid phase.

This approach is based on the assumption that the solid phase stress depends only on the
current deformation. Therefore, there is no energy dissipation in the solid, but the
dissipation comes from interactions between phases only.

It was shown analytically [21] for the linear biphasic model and confirmed numerically
for the non-linear case [7, 8] that the ratio of the instantaneous stress (after sudden
movement of the upper platen) to the equilibrium stress (after sufficiently long time
following load application), as predicted by the biphasic theory, cannot be larger than

21 1) | al 151, where n is the Poisson’s ratio of the solid phase. This poses a

severe limit on the stress dependence on loading velocity. The biphasic theory in its
present form cannot be accepted for very soft tissues (e.g. brain), for which the stresses
for the largest loading velocity in our experiments are about six times higher than for
the smallest one (Fig. 2).

3.2. Brain as an Inelastic Single-Phase Continuum
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nﬁ)r standard biphasic theory’s inability to discribe strong stress-strain rate
e is the underlying assumtion of solid matrix hyperelasticity. In the case of
the confined compression experiment the relative velocity of the phases is almost equal
to the velocity of the solid phase. Therefore the dissipation may be accounted for by
choosing suitably large darg coefficient K, equation 5. In the unconfined experiment the
velocity of solid phase is much larger than the relative velocity between phases. The
results show that the solid phase is inherently dissipative. The dissipation in the system
cannot be accounted for by adjusting the drag coefficient.

The simple, phenomenological, modelling method introducing suitable dissipation into
the system at the expense of single-phase description, is discussed below.

3.2.1. Modeling of finite deformation non-linear tissue behavior

Let’s start with the modeling of non-linear stress strain dependence using the strain
energy function of the following form:

N
[¢] i .
W=a Cij(‘Jl -3'(J, - 3’ (7)
i+j=1
Where the strain invariants are:

J. - Trace[B?
: 2J[ ]; J,=JdetB=1, (8)
3

B is a left Cauchy-Green strain tensor. For infinitesimal strain conditions, the sum of

constants Cy and Cy; have a physical meaning of one half of the shear modulus:
m

7 = ClO + C01 . (9)

J, = Trace[B]; J,=

The energy dependence on strain invariants only comes from the assumption that brain
tissue is initially isotropic. The assumption of tissue incompressibility results in setting
the third strain invariant equal to one. The first two terms in (7) form a well known
Mooney-Rivlin energy function, originally developed for incompressible rubbers (for
discussion see [22]).

In our experiment the deformation was orthogonal, and the left Cauchy-Green strain
tensor had only diagonal components:

97 0 ou

— e -1 u
B= éo I 0 ] , Where |, isastretch in vertical direction (Fig. 1b)

€0 0 I.d

(10)
In such a situation, taking J,=1,2+2l,* and J, =1,2+21, , the only non-zero
Lagrange stress components can be computed from the simple formula:
T W

az = m (11)

3.2.2. Modeling of the loading velocity dependent tissue behavior.
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MELR-, _ _ _ .
{;_mo y t_@tlme dependent behavior of the tissue we propose to write the coefficients
in the farmula for energy function (7) in the form of a exponential series

t

Ci =G +ak Cie ", (12)
and the energy function in the form of convolution integral
t N
N o} d i i
W:da C.,-(t-t)a[(Jl' 3" (J, - 3)1]}dt (13)
0 i+j=1

From (11) we obtain:

oy _ .
T,=(a GCl(t- t);l—t[ﬂll ((J;- 3)' (J,- 3))]}at (14)

0 i+j=1
Equation (14) served as a basis for the comparison of the theory and experiment.

3.2.3. Determination of material constants for swine brain tissue

In the case of the compression with constant velocity, the integral (14) can be evaluated

analytically4. The result obtained with Mathematica [23] is long and is not presented
here.

It is clear from equation 14 that the expression for Lagrange stress is linear in material
parameters C;; . Therefore it was easy to find them using least square method. To model
accurately the tissue behavior for a wide range of loading velocities, we found it
necessary to use two time-dependent terms in the C; expansion (12) and to include
second oredr terms in energy function (N=2 in eg. 13).

A good agreement with experiment for all three loading velocities (Fig. 3) has been
obtained for the following values of the parameters:

time constants in eq. 12: t,=0.5 [s]; t,=50. [s];

equilibrium parameters: Cyg jns = Coyins =62.50 [Pa]; C1; = 0; Cyoins = 0.; Cogins = 0.;
parameters multiplying exponential with characteristic time t,: Cy9; = Cq11 = 39.66 [Pa];
Cyo1 = Cop1 = 869.82 [Pa];

parameters multiplying exponential with characteristic time t,: C,9, =Cy1, =366.86 [Pa];
Cp02 = Cop2 = 310.65 [Pa];

4. DISCUSSION AND CONCLUSIONS

This study discusses two distinct mathematical model of brain tissue mechanical
properties.

The strong stress- strain rate dependence prohibits the use of standard biphasic models
for brain tissue modeling. Therefore, the use of the single- phase, non- linear,
viscoelastic model based on the concept of the strain energy function, written in the
form of convolution integral with coefficient expressed in the form of exponential
series, is advocated.
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tg}e of the proposed model is that the constitutive equation developed here is
ailable in ABAQUS [24] and can be used immediately for larger scale FEM
computations.

How to use the in vitro experimental results in the more realistic in vivo environment
remains an open question. Further research is needed to determine brain tissue
constitutive models, which would incorporate the influence of the blood and
cerebrospinal fluid pressure and flow.
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