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MODELING OF ORGAN DEFORMATION

- WHY WE NEED IT FOR SURGICAL MANIPULATOR?

Surgical manipulator (or robot) has showed several successful
applications to bone and brain surgeries. However, after them, we
come to a barrier: most of other organs are globally translatable and
locally deformable. We consider that it is safe to assume that the
global transform is able to be suppressed by fixation of the organs
in most of cases. However, we think that the local deformation is
not negligible in number of cases. If the manipulator is full- or semi-
automatic, we must adapt its control according to the deformation
[2).

Nowadays several 3D spatial pointing devices are available. They
offer the coordinate of sampled points on the surface, or inside of
the organ if we allow invasion. However, it requires another
technique to utilize information of sparse sampling points to the
control of the robot.

The intraoperative imagings can supply the dense information.
However, most of medical imaging methods need tens of seconds
to even tens of minutes to obtain a set of 3D image. Thus, if we
think of using the image measurement, we also have to consider the
delay: an answer is the prediction of the deformation based on its
dynamic/kinetic model.

STANDARD BIPHASIC MODELS OF SOFT TISSUES

Presently it is widely accepted that soft tissues are biphasic
materials consisting of solid deformable porous matrix and
penetrating fluid. Based on this concept, in 80’s, the first biphasic
models of soft cartilage tissues were reported ([4] and references
cited therein).

Let’s assume, that the ‘very’ soft tissue is a biphasic mixture of
solid porous matrix and fluid. We also assume, that components
are chemically inert and the compressibility of the tissue is a result
of fluid flow through the pores only - the sofid and fluid themselves
are incompressible. This assumptions will allow as to use the special
arrangement of the theory of mixtures for incompressible
constituents. The governing equations of such biphasic continuum
are as follows:

Continuity: V(¢ + ¢plv/)=0 n
Equilibrium: Vo*+T1%=0 @)
where:

¢° - o phase content,

v - velocity of « phase,

o“ - o phase Cauchy stress tensor,

I1® - diffusive momentum exchange between phases.
When writing the equilibrium equation we neglected inertial body
forces.

If we assume additionally, that the fluid is inviscid and that the
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diffusive momentum exchange is proportional to the relative
velocity between phases, the constitutive equations are as follows:

o'=-¢'pl + o} 3)
of =—¢/pl 4)
M =—11'=— V¢'+ K/ —pf) (5)

where:

p - apparent pressure,

K - diffusive drag coefficient function,

0.~ Cauchy stress tensor of the solid phase.

I - the identity tensor,

The diffusive drag coefficient K is not in general constant. The
investigations summarized in [4] suggest that K is strongly
(exponentially) dependent on strain.

The accepted way to relate the stresses to the deformation is by
means of the Helmholtz free energy:
L oU ax,- dx,‘ s
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where:

U7 - the Helmholtz free energy function of the solid phase,

p - apparent density of the solid phase,

5—2 - deformation gradient of solid phase,

Em" Green'’s strain tensor (relative to original configuration) of

the solid phase.

This approach is based on the assumption, that the solid phase stress
depends only on the current deformation. Therefore there is no
energy dissipation in the solid, but the dissipation comes from
interactions between phases only. As it will be shown later, this
assumption is a very restrictive one and cannot be maintained, if
the intended purpose is that of accurate modeling of soft tissue
deformation behavior.

METHODS OF MODEL VALIDATION
fi mpression experimen

The confined compression experiment [4] (Fig.1) has become
one of the standards for biphasic models validation and material
constants determination. In this experiment, the tissue is confined
in a cylindrical container, and compressed unidirectional through
an ideally porous filter. The creep or stress relaxation phenomena
can be observed and compared to the model predictions.

The confined compression test has been performed on various
cartilage tissues and showed very good agreement with model
predictions [4]. Sofar we’ve surveyed, no this kind of experiment
conducted on ‘very’ soft tissues has been reported.

nconfin ression experimen
In unconfined compression experiment (Fig. 2) the cylindrical
sample of tissue is axially compressed between two impermeable



platens. Figure 3 shows an ex perimental measurement from
literature, which compressed cylindrical samples from human brain
13]. It showed a clear dependence of the stress values on the loading
velocity.

COLLAPSE OF ‘STANDARD’ BIPHASIC MODEL

However, we found out that this arises a crisis for the so-called
standard biphasic model that we've surveyed herein. It can be shown,
that the ratio of the instantaneous stress (after sudden movement of
the upper platen) to the equilibrium stress (after sufficiently long
time following load application), as predicted by the biphasic theory,
cannot be larger than 3/2(1+V) € <1, 1.5>, where vis the Poison’s
ralio of the solid phase. This poses a severe limit on the stress
dependence on loading velocity. Itis doubtful if the standard biphasic
model could be maintained in the case of cartilage tissue. Obviously
it cannot be accepted for very soft tissues, such as brain.

Why the described above the standard biphasic model describes
excellently the tissue behavior in the confined compression
experiment and simultaneously fails completely to account for the
behavior under the unconfined compression conditions? In the
confined compression test, the solid matrix moves through the
stationary (or almost stationary) fluid. The solid’s velocity is
therefore equal to the relative velocity of phases. The velocity
dependence of the solid matrix stresses can be overlooked, and
accommodated by the suitable choice of the drag coefficient f unction
K. In our opinion, the confined compression experiment is a ‘bad’
experiment [1].

Under the unconfined conditions, the relative velocity between
phases is much smaller than that of the solid phase. The solid phase
stress velocity dependence cannot be accounted for by tuning the
frictional drag between phases and causes the inability of the
standard biphasic model to describe tissue behavior.

CONCLUSIONS
The standard biphasic models of the soft tissues rely on the

following simplifying assumptions:

« Tissue is a mixture of two immiscible, chemically inert
constituents: an incompressible solid matrix and incompressible
fluid,

« Solid matrix is non-dissipate; history independent, nemely, elastic,

« Fluid is non-dissipate,

« The only dissipation comes from frictional drag of relative motion
between the phases,

« The diffusive momentum exchange between phases is proportional
to their relative velocity.

The deformation behavior of the soft tissue is dominated by four

nonlinear effects:

« The strain-dependent porosity effect,

« The strain-dependent permeability effect,

« The finite deformation effect,

« The stress dependence on velocity of loading effect.

The second simplifying assumption of the standard biphasic
model - the elasticity of the solid matrix, conflicts with
experimentally demonstrated velocity dependence of the stresses.
Strictly considering, there is a possibility that the inconsistency was
caused by the difference between brain and cartilage. However, if
we study the behavior of brain, or other very soft tissues, we conclude
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that the pure elasticity assumption must be abandoned.

For computation, this obviously makes the analysis even difficult.
Therefore, we suggest that we develop certain calibration means
for the prediction stage of the deformation, which should be coupled
with the history of the measured deformation.

REFERENCES

[1) Aharoni A.: “Agreement Between Theory and Experiment”,
Physics Today, June 1995, pp.33-37-

(2] Brett P.N., Fraser C.A., Henningan M., Griffiths M. V., Kamel
Y.: “Automatic Surgical Tools for Penetrating Flexible Tissues”,
IEEE Engineering in Medicine and Biology, May/June 1995,
pp.264-270.

[3] Estes M.S., McElhaney J.H.: “Response of Brain Tissue of
Compressive Loading”, ASME Paper No. 70, BHF-13, 1970.
{4]Mow V.C., Ateshian G.A., Spilker R.L.: “Biomechanics of
Diarthrodial Joints: A Review of Twenty Years of Progress”,
Trans. of ASME, J. of Biomechanical Eng., vol. 115, pp. 460-

467, Nov. 1993,

load

impermeable load

permeable platen

platen

tissue

tissue

Fig. 1: Confined compression
experiment.

Fig. 2: Unconfined
compression experiment.
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Fig. 3 Results of the unconfined compression of human brain
tissue (cited from [3]). v1=-0.033 [1/s], v2=-0.33 [1/s5], v3=-
3.3 [1/s], v4=-16.5 [ 1/s). The strong dependence on the strain
rate is evident.



