Regulatory Science of AI Based Medical Systems

Kiyo CHINZEI （鎮西 清行）
Health Research Institute, AIST
Tsukuba, Japan
AI

Artificial Intelligence

3rd wave of AI boom

= Machine learning

Deep Learning

Neural networks

Support vector machine

Random forest

Convolution NN

Boltzmann machine

Neo-cognitron

Applications

IT progress

Networks

Clouds

Big data

Super computation

Parallel computation

GPGPU

IBM Watson

CAD systems

Robots, Vehicles

© K. Chinzei, All rights reserved.
Image recognition was difficult...

Write how to distinguish dog and cat.

- You can’t write using natural language.
- But 3 year old kid can tell.

Deep learning solved this problem!
Error rates improves

Non-DL vs Deep Learning based

Beyond Human

© K. Chinzei, All rights reserved.
AI in medical applications

- Image recognition – computer assisted diagnosis
- IBM Watson - Literature search assistance

More applications in research...
- Hyper-resolution of CT
- Image conversion (CT↔MRI)
- Image segmentation/classification/registration
- Clinical decision making
Approved AI: FDA

<table>
<thead>
<tr>
<th>Year</th>
<th>Company/Tool</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017/1</td>
<td>Caldio DL (Arterys Inc.)</td>
<td>CAD to analyze cardiac MR images by deep learning.</td>
</tr>
<tr>
<td>2018/2</td>
<td>ContaCT (Viz. AI.)</td>
<td>CAD to detect possible infarctions of major cerebral arteries.</td>
</tr>
<tr>
<td>2018/4</td>
<td>IDx-DR (IDX LLC)</td>
<td>World’s first automated diagnosis software to diagnose retina images.</td>
</tr>
<tr>
<td>2018/5</td>
<td>OsteoDetect (Imagen)</td>
<td>CAD to detect bone fracture from stereo X-ray images.</td>
</tr>
</tbody>
</table>

CAD: Computer Assisted Diagnosis. NOT automated diagnosis.
Regulation & guidance on AI

<table>
<thead>
<tr>
<th>Country</th>
<th>Details</th>
</tr>
</thead>
</table>
| China | • CAD classification extended to accept AI in Sep. 2017.
• Tensent 騰訊覓影 started from June 2018.
（Nikkei Xtrend 2018/7/4） |
| USA | • Approved as ‘de Novo.’
• Several draft guidance on CAD.
• No guidance on machine learning. |
| EU | • Decision Support Software mentioned in SaMD guidance.
• A few CE certifications. |
| Korea | • Guidance issued. One approval. |
| Japan | • Endoscopic CAD approval soon? |
PMDA “AI-based med-sys” report

Advanced Biomedical Engineering

Invited Review Paper

Regulatory Science on AI-based Medical Devices and Systems

Kiyoyuki CHINZEI,1 Akinobu SHIMIZU,2 Kensaku MORI,3 Kanako HARADA,4 Hideaki TAKEDA,5
Makoto HASHIZUME,6 Mayumi ISHIZUKA,7 Nobumasa KATO,8 Ryuzo KAWAMORI,9 Shunei KYO,10
Kyosuke NAGATA,11 Takashi YAMANE,12 Ichiro SAKUMA,4 Kazuhiko OHE,13 Mamoru MITSUSHI14.

https://doi.org/10.14326/abe.7.118

Full report in Japanese
Unique 4 characters of AI med-sys

1. Plasticity
 - Performance can transform by continuous learning.
 - Transformation can be regulatory concerns.

2. Unpredictability (black-box)
 - Output of neural network is hard to predict.

3. Autonomy (in future)
 - Transform relations between patient and doctor.

4. Data quality
 - Data as fuel and ingredients.
Performance transformation by continuous learning

• Pros
 – Customization for region.
 – Differentiate hospitals.

• Cons
 – Transformation can be negative.
 – Site-wise variations make quality control and adverse event measures difficult.

Continuous learning without the ground truth can be costly.
Unpredictability (black box)

• 4 wins – 1 lose... Bad game.
• Alpha couldn’t explain why AI behaved so.
• Neural network is not always predictable.

Visualization of factors that strongly influence output – Hot topic
Level of CAD
CAD = Computer Assisted Diagnosis

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAD calculates feature value(s) related to a disease (e.g. likelihood of a cancer, tumor diameter) to assist diagnostic decision.</td>
</tr>
<tr>
<td>2</td>
<td>CAD calculates a diagnostic suggestion (e.g. malignancy, staging) to assist the diagnostic decision or to prevent oversights.</td>
</tr>
<tr>
<td>3</td>
<td>CAD processes images and information (can be multimodal) and presents a comprehensive diagnosis to doctors to assist the diagnostic decision.</td>
</tr>
<tr>
<td>4</td>
<td>CAD processes multimodal information and provides an automated diagnosis to doctors. The doctors must review and approve the diagnosis.</td>
</tr>
<tr>
<td>5</td>
<td>CAD processes multimodal information and provides a fully automated diagnosis without doctors' intervention and review.</td>
</tr>
</tbody>
</table>

IDx-DR
Level of autonomy of medical robots (Fig. 1)

<table>
<thead>
<tr>
<th>Level of Autonomy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No autonomy</td>
<td>Operator performs all tasks, including monitoring, decision making and execution.</td>
</tr>
<tr>
<td>Robot assistance</td>
<td>Operator maintains continuous control, and robot provides certain assistance.</td>
</tr>
<tr>
<td>Task autonomy</td>
<td>Operator maintains control of the system, and robot can perform operator-initiated tasks.</td>
</tr>
<tr>
<td>Conditional autonomy</td>
<td>Operator selects and approves plan, and robot performs it under close human oversight.</td>
</tr>
<tr>
<td>High autonomy</td>
<td>Robot can make decision but under supervision of qualified operator.</td>
</tr>
<tr>
<td>Full autonomy</td>
<td>No human needs to be in the loop, and robot can perform an entire surgery.</td>
</tr>
</tbody>
</table>
Data quality issue

- Learning data
 - Machine learning
 - Parameter tuning

- Testing data
 - Clinical trial data
 - Validation

DON’T MIX THEM

- Many available algorithms learning while solving.
- ‘Rewind’ the AI back to previous state before solving the test data.
- QA system to shutdown accidental mixture.
AI and risk

AI level does not directly correlate to risk level.

- No new hazard added by AI.
- Scenarios to hazardous situation can complicate.

cf: Degree of autonomy does not directly correlate to risk level. (IEC TR 60601-4-1)