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Abstract. This paper presents ongoing research on a semi-automatic
method for computing, from CT and MR data, patient-specific anatom-
ical models used in surgical simulation. Surgical simulation is a software
implementation enabling a user to interact, through virtual surgical tools,
with an anatomical model representative of relevant tissues and endowed
with realistic constitutive properties. Up to now, surgical simulators have
generally been characterized by their reliance on a generic anatomical
model, typically obtained at the cost of extensive user interaction, and
by biomechanical computations based on mass-spring networks.

We propose a minimally supervised procedure for extracting from a set
of CT and MR scans a highly descriptive tissue classification, a set of
triangulated surfaces coinciding with relevant tissue boundaries, and vol-
umetric meshes bounded by these surfaces and comprised of tetrahedral
elements of homogeneous tissue. In this manner, a series of models could
be obtained with little user interaction, allowing surgeons to be trained
on a large set of pathologies which are clinically representative of those
they are likely to encounter. The application of this procedure to the
simulation of pituitary surgery is described. Furthermore, the resolution
of the surface and tissue meshes is explicitly controllable with a few sim-
ple parameters. In turn, the target mesh resolution can be expressed as
a radially varying function from a central point, in this case coinciding
with a point on the pituitary gland.

A further objective is to produce anatomical models which can inter-
act with a published finite element-based biomechanical simulation tech-
nique which partions the volume into separate parent and child meshes:
the former sparse and linearly elastic; the latter dense, centered on the
region of clinical interest and possibly nonlinearly elastic.

1 Introduction

Surgical simulation is a software implementation enabling a user to interact,
through virtual surgical tools, with an anatomical model representative of rele-
vant tissues and endowed with realistic constitutive properties. The anatomical
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Fig. 1. Illustration of anatomy relevant to pituitary surgery: pituitary gland and sur-
rounding critical tissues (reproduced with permission from [8]).

model must feature tissues whose consideration is essential to the clinical sit-
uation, such as critical vasculature and nerves, so as to appropriately simulate
and penalize any damage to them. This is particularly true in our clinical ap-
plication, the simulation of transnasal pituitary surgery [8][10], where the target
is surrounded by the optic and oculomotor nerves and by cranial arteries (see
figure 1).

Up to now, virtual anatomical models for surgical simulation have been highly
task-specific and obtained by elaborate computer-user interaction, including seg-
mentation and meshing. This paper presents on-going research on a minimally
supervised procedure for extracting from a set of MR and CT scans a highly
descriptive anatomical model, leading not merely to one generic model, but to a
family of patient-specific models. This procedure integrates a distortion-tolerant
mutual information MR-CT registration, a new tissue classification exploiting
global spatial cues, a simplex-based surface meshing model to identify and tri-
angulate the relevant anatomical boundaries, and an automatic almost-regular
tetrahedralization of tissue volumes surrounded by these boundaries. This pro-
cedure is designed to be extensible to other surgical applications.

Lastly, a further objective of our research is to apply a new finite element
(FE) software architecture, proposed by Astley [1][2] and specifically designed
for surgical simulation, to a real clinical problem. As shown on figure 2 (a)-
(c), this architecture partitions the underlying volume into one or more dense
child meshes and a sparse parent mesh. The static FE equation is represented
as follows:

Ka-f=0, (1)



where K is the stiffness matrix, a is the vector of node displacements, and f is the
set of node forces. Fach represents the assemblage of elemental stiffness matrices
K¢, displacements a® or forces £¢ [28]. The set of forces £¢ include a concentrated
loads term which accounts for user-controlled virtual cutting forces [18] [9]. This
FE architecture considers each node shared by the parent and child meshes: for
each subregion, parent or child, it expresses the other subregion(s) encountered
at each node as one equivalent impedance and force. A large stiffness matrix is
then reduced to n+ 1 decoupled, significantly smaller stiffness matrices, where n
is the number of child meshes. Each mesh can be resolved independently and at
different rates over time, but the child system(s) surrounding the surgical tool(s)
must be solved at haptic rates, typically of the order of 500 Hz [7]. Decoupling
the problem naturally leads to parallelization on n + 1 processors, which can
make optimal use of even a dual-processor Pentium computer, particularly if the
haptic [19] and visual [21] rendering can be handled by peripheral hardware.
Finally, the FE method can be extended to nonlinearly elastic models [22] [5]
and the Astley architecture allows for nonlinearly elastic child meshes and has
been demonstrated at haptic rates on non-anatomical geometries, justifying its
selection over methods that are constitutively limited or that require extensive
precomputation [3].

This perspective imposes on our surface and volumetric meshing stages a
requirement of explicit control over mesh resolution. Control is exercised with a
smooth, radially varying mesh scale function defined from a user-provided central
point (e.g.: on the pituitary gland), which naturally leads to a conformal mesh
composed of a dense child and a sparse parent. It should also be emphasized that
our procedure identifies anatomical surfaces prior to volumetric meshing, rather
than proceed directly from the classification to tissue-guided volumetric meshing,
because in general the latter approach will not produce a mesh boundary which is
smooth and which closely agrees with the anatomical boundary. From a haptic
and visual rendering standpoint, an anatomical model with jagged and badly
localized boundaries would detract from the realism and clinical relevance of a
surgical simulator.

2 Materials and Methods

2.1 Locally Weighted Mutual Information Registration

Pituitary surgery imposes requirements on the surgeon of a highly accurate tra-
jectory through both bone and soft tissue, which entails their accurate resolution
near the pituitary gland [8]. To do so, we must co-register CT and MR volumes,
and resample MR data in a manner compatible with CT sampling. However,
this registration is complicated by MR distortion caused by magnetic suscepti-
bility variations near the pituitary gland and sinus cavities [25]. The prevalent
co-registration technique for MR and CT is the global mutual information (MI)
procedure [27]. It registers two volumes in manner which iteratively minimizes
the dispersion of their joint intensity distribution, is widely used and provides
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Fig. 2. Illustration of biomechanical modeling principle. (a) Partition of FE domain
into parent and one or more child meshes. Subsequently, either subregion, parent or
child, can be represented in the stiffness matrix of the other as an equivalent based
on the Norton equivalent in circuit analysis. Each node shared by parent and child is
considered (b), and, in computing the decoupled stiffness matrix of the child mesh, the
parent mesh as seen by this node can be expressed as force and stiffness equivalents
(reproduced with permission from [2]).



globally accurate results. However, this method suffers from misregistration pre-
cisely where the distortion is most pronounced, and where the greatest accuracy
is required by our clinical application. Our registration technique, which ad-
dresses this shortcoming, is comprised of the two following stages:

1. a standard global 7-parameter MI procedure (rigid + scale), followed by
2. alocally weighted linear MI procedure based exclusively on information “near”
the anatomy of interest, using a spherical mask easily specified by the user.

2.2 Global Structure-preserving Voxel Classification

Voxel Classification is a mapping of feature vectors, typically comprised of to-
mographic modalities such as CT or MRI, to a discrete set of tissue classes. Up
to now, virtual anatomical models for surgical simulation have been obtained
by highly elaborate manual segmentation. Ultimately, the tissue classification
on which the anatomical model is based must account for clinically relevant tis-
sues, including critical tissues such as vasculature and nerves, while also fulfilling
our objective to produce a series of such models with little supervision. These
conflicting requirements lead to the necessary consideration of a priori anatom-
ical information in the classification, as feature space alone does not provide
enough information to discriminate between all classes relevant to the simula-
tion. Recent techniques [16] [20] exploit essentially local spatial constraints on
tissue classification. In constrast, we exploit the global spatial structure of tissues,
whose recruitment in disambiguating two or more clinically relevant tissue types,
overlapping in feature space, has been neglected up to now in the literature.

Our classification method, somewhat inspired from the semi-supervised Fuzzy
C-Means technique [6], begins with a Minimum Distance (MD) classification
from a small training set, and then tries either to consolidate, or to invalidate
and recompute, membership on the basis of global spatial constraints. We inte-
grate the Fast Marching (FM) [24] method with our minimally supervised, iter-
ative classifier. Constraints can easily be placed on the FM front propagation to
implement assumptions about global structure. These assumptions include (for
more details see [4]):

1. Contiguity with training points !: given an initial classification, the contiguity
of voxels xj with the training points of class C; can be enforced by an
outward front from these points, propagating only on voxels of class C;.

2. Prior assumptions about spatial extent: the FM method described in 1 can
be restricted by a scale factor, preventing the front propagation to continue
beyond this limit; e.g.: pathology, cranial nerve and vasculature voxels can
be assumed to be close to their training points, if the latter are well chosen.

3. Embedded structure: a very useful cue for classification relates to how con-
tiguous tissues fit within each other, particularly in relation to a tissue class

! For classes where this constraint is useful, training points should be chosen not only
for their intensity, but for their spatial relation to tissues. We consider this added
burden on the user to be manageable, since the training set remains small.



which can be identified reliably such as bone; e.g.: grey and white matter
occur inside, while muscle and fat are found outside, the cranium.

4. Similarity and proximity to confidently classified vozels: if there is still am-
biguity, feature similarity and spatial proximity to the boundary I; of a set
of contiguous blobs of confidently classified voxels X ; can be exploited.

The philosophy of this method is not to favour any single class over all others,
but merely to discount from consideration any class which at a given position
has essentially zero likelihood, based on prior information.

2.3 Simplex-based Tissue-guided Surface Meshing with Resolution
Control

Once a descriptive tissue classification is computed, our next step is to establish
the triangulated tissue boundaries relevant to the simulation by exploiting this
classification, a discrete surface model, and the position of the training points of
each class. The n-simplex mesh is a discrete active model [12], characterized by
each vertex being linked to each of n + 1 neighbours by an edge. A balloon force
can act on this mesh to cause it to expand until some image-based force halts this
expansion. A surface model in 3D is realized as a 2-simplex, characterized by each
vertex having 3 neighbours, and this representation is the dual of a triangulation,
with each simplex vertex coinciding with a center, and each simplex edge being
bisected by an edge, of a triangle. Furthermore, this surface model also features
other internal forces [12] which nudge each simplex face, and consequently each
dual triangle, towards having edges of equal length, and towards Cy, C; or Cs
continuity, for example.

We apply the 2-simplex surface model to our anatomical meshing problem
because of the explicit control on mesh characteristics which can be achieved,
many of which are already implemented [12][13]. Each simplex is initialized with
a small spherical mesh centered on a tissue class training point, and expanded
until halted by image information, in the form of a set of tissue classes assumed
“outside” the volume of interest. A few adaptations to the simplex model are
proposed here for automatic FE mesh generation. First, we can endow the surface
model with absolute mesh size thresholds, expressed as a target simplex area
scale A, and a percent tolerance €4,: a simplex face falling below the area
minimum A, — €4, /100 results in the fusion of two contiguous faces into one by
eliminating a shared edge [12], while a face above the maximum area A;+£4, /100
is subdivided into two by a new edge. This constant factor can be replaced with
a radially varying function As(x), determined by the distance R(x) = [|x — x.||
between the centroid x of each simplex face and a user-defined central point x.,
e.g.: inside the pituitary gland:

A _ As,min if R(x) <= Rchiid
5(X) Agmin + (As.maz — As.min) {1 —exp [M] } otherwise,

scale

(2)



where A; pmin and Ag mes specify smallest and largest target areas, and Rcpiq
and Rg.qe determine the behaviour of the function bridging the two values:
a small, constant scale for a radius less than R.p;q and an exponential func-
tion tending towards A; ;.. as the distance of the simplex face to the central
point increases. This scale function thereby produces small mesh faces near the
pituitary gland and larger faces away from it. The triangulated surface coincid-
ing with the anatomical boundary, obtained by duality with the final simplex
mesh, is the objective of this stage. More than one children are possible, at the
cost of selecting other “central” points of interest x.;, in which case we define
R(x) = min; ||x — xc]|.
Finally, a number of other adaptations are underway, including;:

— A conformality-preserving force, which would cause two contiguous bound-
aries to share vertices wherever desirable, and

— Topological adaptivity applied to the 3D simplex model (previously demon-
strated for 2D simplex models [13]), which would allow two or more spheres
emerging from neighbouring training points to fuse together upon contact,
or conversely would allow a simplex boundary to break apart over large gaps.
In particular, a promising approach is that of Lachaud [17], which sets an
inner bound on edge length and detects topological changes on the basis of
an inter-vertex distance falling under this bound.

2.4 Almost-regular Volumetric Meshing with Radial Resolution
Control

The last stage in our procedure partitions each volume bounded by a triangulated
mesh, coinciding with a relevant tissue class, into tetrahedral elements consistent
with the FE method. The volumetric meshing stage is essentially a published
technique [15] which automatically produces an optimal tetrahedralization from
a given polygonal boundary, such as a triangulated surface. In this case, optimal-
ity is defined as near-equal length of the tetrahedral edges, along with a sharing
of each inner vertex by a nearly consistent number of edges and tetrahedra. This
method features the optimal positioning of inner vertices, expressed as a mini-
mization of a penalty functional, followed by a Delaunay tetrahedralization. The
resulting near-regularity is important for FE stability and efficiency [23].

We modify this technique by integrating into the penalty functional the now-
familiar radially varying scale function, which is specified as a target edge length
L(x) for each tetrahedron. Based on the relationship between the number of
simplex and triangle vertices V; ~ V,/2 [12], a target simplex mesh size of A,
works out to a triangular area of A; = A,/2, and to the following triangular and
tetrahedral target edge length (assuming edges of near-equal lengths):

Li(x) ~ \/[24,(x)/V3] . 3)

The separation of the resulting tetrahedral mesh into child and parent is as fol-

lows: contiguous tetrahedra whose edge lengths approach L min = \/[24s.min/ V3]
comprise the child mesh, while the other elements constitute the parent.
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Fig. 3. Illustration of local weighting: (a) CT scan with manually identified fiducial; (b)
MR scan transformed to CT space based on global MI registration, with CT fiducial
overlaid; (c) transformed MR data as in (b), using the locally weighted method.

3 Results

Ongoing validation for each stage is based on the application of the procedure to
real patient data obtained in collaboration with the Tokyo Women’s Hospital.
Validation of the registration exploits fiducial registration error (FRE) statistics,
based on manually identified fiducials in both spaces, and is documented in
[4]. A study evaluating the relative merits of different linear transformations is
currently under way and will be published shortly. We use either a small set of
homologous anatomical landmark pairs or a principal axis transform to provide
the global MI stage with an initial transformation, with the former proving to be
slightly less accurate than the latter under ideal circumstances, but more robust
to artefacts and non-overlapping information, such as the presence of a headrest
in one scanner but not in the other. The size of the spherical mask is typically
100 mm. An illustration of typical results is shown in figure 3.

Classification validation, while currently qualitative, provides a stark justifi-
cation for incorporating global spatial constraints, given the number of classes
which can be discriminated, in comparison to what is achievable otherwise, as



illustrated in figure 4. Future validation will make use of a digital anthropomor-
phic phantom as well as CT and MR simulators.

The validation of both the surface and volumetric meshing are also based on
qualitative studies with patient data, as shown in figure 5, and in the future will
exploit synthetic anthropomorphic data.

4 Conclusion and Future Directions

This paper presented results of ongoing research on a semi-automatic procedure
for computing anatomical models for patient-specific surgical simulation. The
procedure features distortion-tolerant MI registration of MR and CT, classifica-
tion which exploits the global structure of tissues, simplex-based tissue-guided
surface meshing, and automatic almost-regular volumetric meshing, with ex-
plicit resolution control on both meshing techniques. We believe that the near-
regularity of the resulting mesh has positive bearing on the stability and effi-
ciency of the FE method [23]. It should be emphasized that this meshing strategy
will produce a mesh of radial density but heterogeneous material properties, re-
sulting from the consideration of triangulated boundaries of different tissues. In
the event that a particular tissue is essential to the simulation but is impractical
to tessellate at the scale target computed for it, it may become imperative for our
target to be relaxed somewhat. Moreover, some tubular structures may benefit
from a modeling as curvilinear, rather than volumetric, elements, for the sake of
computational performance. Ultimately, forthcoming experimentation with the
multirate FE architecture of [2] will validate our meshing strategy, or suggest
modifications to it.

In our tissue classification, there is currently no special treatment of criti-
cal tissues, but given their importance to the simulation, we recognize that our
framework must be refined to consider them as a separate case. In research cur-
rently underway, user-provided “training points” from blood vessels and cranial
nerves are being used to anchor a minimal path (MP) through them [11][14], and
a tissue classification which proceeds outwards from these minimal paths. In con-
trast with existing MP techniques, which exploit only image gradient magnitude
information and may be undermined by low-contrast areas, our MP computa-
tion makes use of a robust image feature for detecting tubular structures. This
feature, which takes gradient direction into consideration, is the image gradient
fluz [26], which distinguishes between sources and sinks of a gradient vector field,
coinciding with points where the outward fluz of this field is positive and negative
respectively. For visible vessels and nerves, tubular structures of higher intensity
than their surroundings, points along their central axis coincide with strong neg-
ative outward flux, so that a minimal path along this central axis can be defined
based on a flux-weighted potential. The subsequent critical tissue classification
can make use of the sign of image gradient flux, as well as the proximity of a
voxel to a particular minimal path.
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Fig. 4. Illustration of improvement due to global spatial constraints: (a) CT data; (b)
CT-based classification of hard and soft tissues, via constraints 1, 2 and 3; (c) MR
data; (d) embedded intracranial and intraorbital regions (constraint 3); classification
of 9 soft tissues (e) without, and (f) with, constraints 1, 2, 3 and 4. In (e) there are
many corticospinal fluid (royal blue) and muscle (green) false positives, as well as many
vasculature (bright green) and ocular tissue (orange and red) false negatives.



Fig. 5. Illustration of surface and volumetric meshing: (a)-(d) evolution of simplex
mesh, at (a) 10, (b) 300 and (c) 1300 iterations at constant target mesh size; (d) radial
target mesh size, with faces with minimal target area shown in turquoise; (e) final dual
triangulated surface; (f) volumetric mesh, bounded by the surface in (e) (with child
mesh shown in pink), featuring visibly near-regular structure.
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