
Cryptographic Key Generation from PUF Data
Using Efficient Fuzzy Extractors

Hyunho Kang∗, Yohei Hori∗∗, Toshihiro Katashita∗∗, Manabu Hagiwara∗∗∗, and Keiichi Iwamura∗

∗Dept. of Electrical Engineering, Tokyo University of Science,
6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan

{kang, iwamura}@ee.kagu.tus.ac.jp
∗∗Research Institute for Secure Systems (RISEC),

National Institute of Advanced Industrial Science and Technology (AIST)
Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

{hori, t-katashita}@aist.go.jp
∗∗∗Dept. of Mathematics and Informatics, Faculty of Science, Chiba University,

1-33 Yayoi-cho, Inage, Chiba 263-0022, Japan
hagiwara@math.s.chiba-u.ac.jp

Abstract—Physical unclonable functions (PUFs) and biomet-
rics are inherently noisy. When used in practice as cryptographic
key generators, they need to be combined with an extraction
technique to derive reliable bit strings (i.e., cryptographic key).
An approach based on an error correcting code was proposed
by Dodis et al. and is known as a fuzzy extractor. However, this
method appears to be difficult for non-specialists to implement.
In our recent study, we reported the results of some exam-
ple implementations using PUF data and presented a detailed
implementation diagram. In this paper, we describe a more
efficient implementation method by replacing the hash function
output with the syndrome from the BCH code. The experimental
results show that the Hamming distance between two keys vary
according to the key size and information-theoretic security has
been achieved.

Keywords—Fuzzy Extractor, Arbiter PUF, Physical Unclonable
Functions

I. INTRODUCTION

Physical unclonable functions (PUFs) generate device-
unique data streams by using the manufacturing variations of
each LSI. If a system requires the best extraction scheme,
high security authentication is possible using PUF-based secret
key generation. Since PUFs always produce bit errors in their
responses, some processing has to be performed to remove the
noise for use as a cryptographic key.

In this context, an approach based on an error correcting
code was proposed by Dodis et al. [1] and is known as a
fuzzy extractor. A fuzzy extractor corrects bit errors in the
non-uniform PUF responses and extracts uniform random bits.
Experimental studies of fuzzy extractors [2][3][4][5] have re-
ceived considerable attention since this approach was proposed
in 2004.

However, it appears to be a difficult method for non-
specialists to implement. In our recent study, we reported on
the results of some example implementations using PUF data
and presented a detailed implementation diagram [6]. In this
paper, we present a more efficient method by replacing the
hash function output with the syndrome from the BCH code.

The remainder of this paper is organized as follows.
Section II presents the method, detailing our previous work,
and proposes a more efficient fuzzy extractor method. The
experimental results and conclusions are provided in Sections
III and IV, respectively.

II. PROPOSED METHOD

A. Summary of our previous work

When implementing a fuzzy extractor scheme, there are
two important considerations: information reconciliation and
privacy amplification. Information reconciliation guarantees
the elimination of noise from the collected noisy data. Privacy
amplification guarantees the uniform distribution of the derived
key bits. In our recent work, a BCH code and SHA-256 hash
function were used to address these two basic requirements.

As shown in Fig. 1, the Generation procedure takes noisy
data w as input and returns a random string R along with
public helper data P. The Reproduction procedure takes noisy
data w′ and public helper data P as input, and outputs R if w
and w′ are close.

Generation procedure Reproduction procedure

RNG1
BCH

enc

PUF

r: 255bits

K bits

(ex.131bits)

w: 255bits

s: 255bits

SHA

256
R

R: 256bits

SS

x: 255bits
RNG2

s, x

Ext

P

SHA

256

Ext

PUF

s, x

w’: 255bits

s: 255bits

BCH

decr’: 255bits

BCH

encr: 255bits

w: 255bits

Rec

R
R: 256bits

K bits

(ex.131bits)

x: 255bits

(helper data)

Fig. 1. Implementation diagram for our previous fuzzy extractor based on
Dodis et al.’s scheme [6] (N = 255).



BCH

enc

PUF

W

255bits

115bits

255bits

Key

Syndrome
140bits

115bits

PUF

S0

255bits

N bits

W’: 255bits

BCH

dec

255bits

115bits

Generation procedure Reproduction procedure

(helper data)
140bits

K bits N-K bits

K bits N-K bits

255bits

N bits

255bits

N-K bits000…0

S

140bits

Key
K bits

Fig. 2. Implementation diagram for our efficient fuzzy extractor based on the syndrome (N = 255).

B. Proposed syndrome fuzzy extractor

The proposed method is more simply constructed by re-
placing the hash function output with the syndrome from the
BCH code, at the same time enabling an information theoretic
security of K bits (where K is the key size).

We examine the proposed fuzzy extractor performance by
presenting results for all possible combinations of message
length K for a BCH code with a fixed codeword length (i.e.,
255 and 511) in Section III.

Furthermore, we calculate the entropy of the syndrome
data using the formula from [7] to ensure there are uniformly
random bits:

Entropy =
µ ∗ (1− µ)

σ2

where µ is mean and σ is standard deviation of the distribution.

Figure 2 shows the implementation diagram for our ef-
ficient fuzzy extractor using the BCH code and syndrome
concept (N=255). However, the ideas presented in this paper
are not limited to BCH codes. In fact, any error correcting
code with an efficient syndrome decoding algorithm can be
used in this scheme. An approach used for low density
parity check (LDPC) codes, for example, was proposed by
Hagiwara et al. [8]. In future work, we plan to generalize
the extraction scheme (fuzzy extractors) such that other ECC
methods, including LDPC codes, may be applied.

III. EXPERIMENTAL RESULTS

The field-programmable gate arrays (FPGAs) used in this
experiment were two Xilinx’s Virtex-5LXs on SASEBO-GII
evaluation boards [9].

In this study, we selected challenge response pair data for
100 test iterations using 500 IDs from each Arbiter PUF under
test (Fig. 3). We evaluated the performance of the two Arbiter
PUFs before evaluating the fuzzy extractor performance. As
shown in Figs. 4 and 5, the SC intra-PUF distribution and
the DC intra-PUF distribution were computed and plotted to
determine how the PUF algorithm separated the two classes.

In this experiment, we obtained ideal results with no errors.
Therefore, we can conclude that the reliability of each PUF
output is high.

Arbiter PUF1 Arbiter PUF2

Virtex-5 LX FPGAVirtex-5 LX FPGA

Fig. 3. The two PUFs tested on the SASEBO-GII.

Hamming distance

C
o

u
n

t 
ra

te

Maximum HD of SC Intra: 28; minimum HD of DC Intra: 148

Hamming distance

C
o

u
n

t 
ra

te

Maximum HD of SC Intra: 17; minimum HD of DC Intra: 72

17 72

Reliability 

(Response 255bits)

28 148

Reliability 

(Response 511bits)

Fig. 4. Reliability (Intra-chip Hamming distance of PUF1).

Hamming distance

C
o

u
n

t 
ra

te

Maximum of the left: 17, Minimum of the right: 66

Hamming distance

C
o

u
n

t 
ra

te

Maximum of the left: 30, Minimum of the right: 140

17 66 30 140

Reliability 

(Response 255bits)

Reliability 

(Response 511bits)

Fig. 5. Reliability (Intra-chip Hamming distance of PUF2).



Hamming distance

C
o

u
n

t 
ra

te
Maximum HD of SC Intra: 17; minimum HD of SC Inter: 30

Hamming distance

C
o

u
n

t 
ra

te

Maximum HD of SC Intra: 30; minimum HD of SC Inter: 64

Uniqueness

(Response 255bits)

Uniqueness

(Response 511bits)
17

30

30

64

Fig. 6. Uniqueness (Inter-chip Hamming distance of the two test chips).

Figure 6 shows a histogram of the count rate versus the
Hamming distance for two PUF outputs combined. The result
showed a zero error rate, but not sufficient uniqueness.

Enrolled PUF Authenticated PUF=

The codeword length, N, is 255

Index of Table 1

Fig. 7. Hamming distance between two keys extracted from the same PUF (N
= 255).

Enrolled PUF Authenticated PUF≠

The codeword length, N, is 255

Index of Table 1

Fig. 8. Hamming distance between two keys extracted from different PUFs (N
= 255).

Figures 7 and 9 show the Hamming distance between two
extracted keys when the two tested PUFs were the same,
demonstrating the dependency of the number of correctable
errors, t, on the testing index (refer to Table I).

Figures 8 and 10 show the Hamming distance between
two extracted keys when two different PUFs were tested.
Hence, in the practical implementation of a fuzzy extractor,
it is important to consider the size of K (refer to Table II).

Figure 11 shows the Hamming distance distribution of 500
syndromes generated by our fuzzy extractor. As can be seen
in this figure, the distribution is perfectly Gaussian with a
mean value µ of 0.50011. The standard deviation σ of this
distribution is 0.040077. Estimating the entropy of this data
gives:

Enrolled PUF Authenticated PUF=

The codeword length, N, is 511

Index of Table 2

Fig. 9. Hamming distance between two keys extracted from the same PUF (N
= 511).

Enrolled PUF Authenticated PUF≠

The codeword length, N, is 511

Index of Table 2

Fig. 10. Hamming distance between two keys extracted from different
PUFs (N = 511).

Entropy =
0.50011 ∗ (1− 0.50011)

0.0400772
= 155.65 bits.

In this test, the length of the bit sequence extracted from
the Arbiter PUF is N (⇒255) and the length of the syndrome
produced by the encoder is N-K (⇒255-99). Based on this
evaluation, it appears that the output strings of the proposed
fuzzy extractor are truly random and contain full entropy, since

Fig. 11. Hamming distance distribution of 500 generated syndromes (N =
255).



Fig. 12. Hamming distance distribution of 500 generated syndromes (N =
511).

the length of these strings is 156 bits. Then, the probability
of guessing the true PUF from the syndrome would be about
2−156 (i.e., an information theoretic security of 156 bits).

As can be seen in Fig. 12, the distribution is perfectly
Gaussian with a mean value µ of 0.500003. The standard
deviation σ of this distribution is 0.0273. Estimating the
entropy of this data gives:

Entropy =
0.500003 ∗ (1− 0.500003)

0.02732
= 335.44 bits.

In this test, the length of the bit sequence extracted from
the Arbiter PUF is N (⇒511) and the length of the syndrome
produced by the encoder is N-K (⇒511-175). Based on this
evaluation, it appears that the output strings of the proposed
fuzzy extractor are truly random and contain full entropy, as
the length of these strings is 336 bits. Then, the probability
of guessing the true PUF from the syndrome would be about
2−336 (i.e., an information theoretic security of 336 bits).

TABLE I. NUMBER OF CORRECTABLE ERRORS IN THE BCH CODE FOR
N = 255

index N K t index N K t
1 255 247 1 18 255 115 21
2 255 239 2 19 255 107 22
3 255 231 3 20 255 99 23
4 255 223 4 21 255 91 25
5 255 215 5 22 255 87 26
6 255 207 6 23 255 79 27
7 255 199 7 24 255 71 29
8 255 191 8 25 255 63 30
9 255 187 9 26 255 55 31
10 255 179 10 27 255 47 42
11 255 171 11 28 255 45 43
12 255 163 12 29 255 37 45
13 255 155 13 30 255 29 47
14 255 147 14 31 255 21 55
15 255 139 15 32 255 13 59
16 255 131 18 33 255 9 63
17 255 123 19

IV. CONCLUSION

We showed the results of the proposed fuzzy extractor im-
plementation using Arbiter PUF data and presented a detailed

TABLE II. NUMBER OF CORRECTABLE ERRORS IN THE BCH CODE
FOR N = 511

index N K t index N K t
1 511 502 1 30 511 241 36
2 511 493 2 31 511 238 37
3 511 484 3 32 511 229 38
4 511 475 4 33 511 220 39
5 511 466 5 34 511 211 41
6 511 457 6 35 511 202 42
7 511 448 7 36 511 193 43
8 511 439 8 37 511 184 45
9 511 430 9 38 511 175 46

10 511 421 10 39 511 166 47
11 511 412 11 40 511 157 51
12 511 403 12 41 511 148 53
13 511 394 13 42 511 139 54
14 511 385 14 43 511 130 55
15 511 376 15 44 511 121 58
16 511 367 17 45 511 112 59
17 511 358 18 46 511 103 61
18 511 349 19 47 511 94 62
19 511 340 20 48 511 85 63
20 511 331 21 49 511 76 85
21 511 322 22 50 511 67 87
22 511 313 23 51 511 58 91
23 511 304 25 52 511 49 93
24 511 295 26 53 511 40 95
25 511 286 27 54 511 31 109
26 511 277 28 55 511 28 111
27 511 268 29 56 511 19 119
28 511 259 30 57 511 10 127
29 511 250 31

implementation diagram. The proposed method has been very
simply constructed by replacing the hash function output with
the syndrome from the BCH code, at the same time achieving
an information theoretic security of K bits (where K is key
size).

REFERENCES

[1] Y. Dodis, R. Ostrovsky, L. Reyzin and A. Smith, “Fuzzy Extractors:
How to Generate Strong Keys from Biometrics and Other Noisy Data,”
(A preliminary version of this paper appeared in Eurocrypt 2004) SIAM
J. Comput., 38(1), pp. 97–139, 2008.

[2] P. Bulens, F.-X. Standaert and J.-J. Quisquater, “How to strongly link
data and its medium: the paper case,” IET Inf. Secur., Vol. 4, Iss. 3, pp.
125–136, 2010.

[3] Ya.N. Imamverdiev and L.V. Sukhostat, “A Method for Cryptographic
Key Generation from Fingerprints,” Automatic Control and Computer
Sciences, Vol. 46, No. 2, pp. 66–75, 2012.

[4] V. van der Leest, E. van der Sluis, G-J. Schrijen, P. Tuyls and H. Hand-
schuh, “Efficient Implementation of True Random Number Generator
Based on SRAM PUFs. Cryptography and Security: From Theory to
Applications,” LNCS6805, Springer, pp. 300–318, 2012.

[5] C. Bohm and M. Hofer, Physical Unclonable Functions in Theory and
Practice. Springer, 2013.

[6] H. Kang, Y. Hori, T. Katashita, M. Hagiwara and K. Iwamura, “Perfor-
mance Analysis for PUF Data Using Fuzzy Extractor,” (to be appear
in) International Conference on Ubiquitous Information Technologies
and Applications (CUTE2013), Lecture Notes in Electrical Engineering,
Springer, 2013.

[7] J. Daugman, “The importance of being random: statistical principles of
iris recognition,” Pattern Recognition, 279–291, 2003.

[8] M. Hagiwara, M.P.C. Fossorier and H. Imai, “Fixed Initialization De-
coding of LDPC Codes Over a Binary Symmetric Channel,” IEEE
Transactions on Information Theory, 58(4), 2321–2329, 2012.

[9] A. Satoh, T. Katashita, H. Sakane, “Secure implementation of crypto-
graphic modules–Development of a standard evaluation environment for
side channel attacks–,” Synthesiology-English edition, Vol. 3, No. 1, pp.
86–95, 2010.


