
A Tsume-Shogi Processor Based on Reconfigurable Hardware

Yohei Hori†, Tsutomu Maruyama‡ and Kenji Toda†

† Information Technology Research Institute,
National Institute of Advanced Industrial Science and Technology

1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568 Japan
E-mail: {hori.y, k-toda}@aist.go.jp

‡ Institute of Engineering Mechanics and Systems, University of Tsukuba
1-1-1, Ten-nou-dai, Tsukuba, Ibaraki, 305-8573 Japan

E-mail: maruyama@darwin.esys.tsukuba.ac.jp

Abstract

High performance, low cost and compact specialized
hardware for tsume-shogi (shogi problems) has been de-
veloped with a Field-Programmable Gate Array (FPGA).
Developing dedicated hardware systems is an essential ap-
proach to improve the playing strength of shogi programs.
However, inflexibility and high cost of hardware have been
significant problems in development of the systems. An
FPGA gives solutions to the problems of hardware imple-
mentation. To devise parallel and pipeline architecture of
shogi hardware and test the feasibility of an FPGA for
shogi, we first implemented a tsume-shogi solver. With
the latest FPGA, we successfully implemented all of the
highly parallelized modules on a single chip. The hard-
ware tsume-shogi solver achieved about 11 times higher
performance than software on Pentium4-2.53 GHz. The
devised architecture can be also applied for normal shogi.

1 Introduction

Shogi 1, or Japanese chess, is a challenging target in arti-
ficial intelligence for game playing. The complicated rules
and large search space have been motivating researchers to
study shogi programs. The complexity of shogi is mainly
attributed to the reuse of captured pieces. In shogi, the
pieces captured from the opponent can be put back onto
the board (this type of move is called a drop). The reuse
of pieces causes a large number of legal moves, and conse-

1For brief explanation of the rules of shogi and difference between
shogi and chess, see [4].

quently the game tree of shogi becomes enormously large.
The number of nodes in the game tree of chess and shogi
are reportedly 10123 and 10226 respectively [3].

To date, lots of algorithms to deal with the compli-
cated rules and large search space have been developed,
nevertheless shogi programs are not competent enough to
beat human professional players. To improve the playing
strength of shogi programs, developing specialized hard-
ware systems is an essential approach. However, inflexi-
bility and high cost of hardware are the serious problems
in developing shogi hardware.

Using a Field-Programmable Gate Array (FPGA) helps
in resolving these problems in shogi hardware develop-
ment. With an FPGA, favorite logic circuits are realized by
downloading configuration data from a host computer, and
the implemented circuits can be easily changed by down-
loading data again. So new algorithms can be implemented
and tested as soon as they are devised. Additionally, the
price of an FPGA is much lower than that of typical hard-
ware devices when ordering a few test chips.

Tsume-shogi is a mating problem in shogi. Develop-
ing a tsume-shogi solver is effective to devise parallel and
pipeline architecture of shogi hardware and test the feasi-
bility of an FPGA for shogi. As already reported by the
authors, FPGAs are quite effective for move generation
and elimination in tsume-shogi [1, 2]. This time we im-
plemented a tree search algorithm and realized a complete
tsume-shogi processor with a single FPGA. We solved ac-
tual tsume-shogi problems and compared the performance
of hardware with software. In this paper, we show the ar-
chitecture of the modules and discuss the performance of
the tsume-shogi processor.

1

2 Hardware Algorithms

The main ideas for fast move generation and size re-
duction of hardware are parallel computation of different
types of moves and parallel/pipeline processing with the 9-
square architecture. This section briefly explains the hard-
ware algorithms to generate check/defense moves and to
search the game tree.

2.1 Check/Defense Move Generation
Ideally, computation with hardware should be per-

formed to all 81 (9x9) squares simultaneously in shogi. In
that case, however, complicated wiring causes a decline of
hardware performance. So our modules deal with 9 squares
(1 rank) at a time to generate check/defense moves. Al-
though it takes 9 clocks to scan the whole board (9 ranks)
with this method, hardware works at high frequency be-
cause of simple wiring. As data of the whole board are pro-
cessed in pipeline, the computation of shogi with 9-square
architecture finishes in quite short time.

In our method, check and defense moves are catego-
rized into 3 groups respectively, therefore totally 6 move
generators are in the hardware. Check categories are Di-
rect, X-ray and Drop, and defense categories are King-
Evasion, Defensive-Capture and Blockade. Each move
generator has the 9-square architecture, and all generators
work in parallel. The detail procedure for move generation,
architecture of the move generators and data structures are
described in [1, 2].

2.2 Tree Search
The implemented tree search algorithm is PN∗ intro-

duced by Seo [8]. Seo’s tsume-shogi solver is the first
program to solve the longest problem with the answer of
1525 steps. In hardware, tree search is controlled with a
complicated state machine. Figure 1 shows the state tran-
sition diagram of the tree search circuit. The details of the
state transition are out of the scope in this paper. The detail
structures of the tree search circuit are described in Sec-
tion 3.

2.3 The Block Diagram
Figure 2 shows the block diagram of the move gener-

ator. The number described on each module corresponds
to the pipeline stage of computation of move generation.
All modules described in Figure 2 work in parallel, and
additionally, parallel data processing of 9 squares and fine-
grained pipeline computation are performed in all modules.
Therefore all groups of moves are generated in quite short
time.

NXT

WMB

BMB

BNB

BNS

BNM

FINFCKNMV

STP

EXP

WMG

INI

BMG

WNM

UDP

AT’s
turn

DF’s
turn

DF’s
turn

AT’s
turn

any
MV

no
MV

hit
hash tab.

eval.
>= TH.

eval.
< TH.

no
MV

AT’s turn,
checkmated,
depth neq 1

DF’s turn,
checkmated

AT’s turn, checkmated, depth=1

DF, checkmated

AT’s turn,
no checkmate

AT, no checkmate,
unexpanded

DF, checkmate found,
unexpanded

TH. =
Sup.

TH. <
Sup.

Figure 1. The state transition diagram of Tree
Search Circuit.

board data

check move data

 Black Direct CoverIndirect Cover Direct Mask

White Direct
Cover Generator

Diffensive
Capture

Generator

Multiplexer

Indirect Mask
Generator

Black Direct
Cover Generator

Direct Mask
Generator

Black Direct
Cover Generator

Direct Check
Generator

Drop Check
Generator

X-ray Check
Generator

King-Evasion
Generator

Blocade
Generator

Diffense
Generator

 White Direct
Cover

Multiplexer

diffense move data

1

Tree Search Circuit (Position Updater is included)
4

2

3 3

2 2 2 2 2

1 1 1 1

board data

Indirect Mask

Check
Genenrators

Figure 2. The block diagram of the tsume-
shogi hardware

3 Tree Search Circuit

3.1 Data Structure
The structure of data used in the circuit depends on the

implemented tree search algorithm, but it is independent
of the structure of check move, defense move or other data
generators. Therefore various kinds of tree search algo-
rithms can be implemented without changing the structure
of move generators. This feature is useful for testing the
feasibility of different tree search algorithms.

Moves generated in the move generators are all sent to
Tree Search Circuit and stored to a stack. Deepening and
backtracking of the game tree is realized by controlling the
stack. The implemented algorithm uses iterative deepen-
ing, so the hash table is used to avoid expanding the same
node again. Here we explain the structure of the move
stack and the hash table.

3.1.1 Move Stack Move Stack is a 16 k x 38 bit memory
and is constructed with internal memory of an FPGA. Two

Table 1. The data structure of Hash Table.

name width (bit) explanation
Data Flag 1 Occupancy (stored/empty).
Evaluation 8 Evaluation of the position.
Depth 11 Depth of the mate-found node.
Compressed Pos. 88 Prevents malfunction caused by

hash collision.

kinds of data are stored to Move Stack. One is Move Data
sent from Check/Defense Move Generator. Move data are
stored to Move Stack with information about depth of the
node and mate flag. The other is information to control tree
search. After the move generation in some position fin-
ished, information about the number of generated moves,
the upper limit of the threshold in the iterative deepening
and address of previous move is stored to the Move Stack.

3.1.2 Hash Table In iterative deepening, the same node
may be evaluated and expanded many times. To avoid the
idle evaluation of the node, hash table is used in our cir-
cuit. Data stored to Hash Table are evaluation of the node,
the depth of mate-found node and compressed board data.
Compressed board data are referred when the hash colli-
sion occurred. When the compressed code of the current
position is different from the stored code and the evaluation
of the current position is smaller than stored value, stored
hash code is overwritten with the current one. In addition,
exceptional operation is done when the stored position is a
mate-found node. A mate-found node is not overwritten to
speed up tree search.

Hash Table is a 1 M x 108 bit of external memory. Ta-
ble 1 shows the structure of Hash Table. If more memory
resource is available, larger hash table is preferable to avoid
hash collision.

3.2 The Structure of the Circuit
Figure 3 shows the structure of Tree Search Circuit.

Board Stack is a memory where board data are stored.
The stored data are used to avoid re-calculating board data
when backtracking the tree. Hash Code Stack is a mem-
ory where hash code data are stored. The stored data are
used to avoid re-calculating hash code when backtracking
the tree.

4 Implementation and Performance

4.1 Implementation Results
We are currently porting the tsume-shogi hardware to

a new hardware platform REX2 [9] vended by REXEON
Technology, Inc [7]. REX2 has an XC2VP70-6 [10]

Move Stack Position
Updator

Hash Code
Generator

Position
Evaluator

Position Stack Hash Code
Stack

Hash Table

Move Stack
Data

Controller Evaluation (PN)

Hash
Code

w
k_

y

w
k_

x

w
h_

pa
w

n

bl
_p

aw
n

bt
m

_b
rd

_d
at

a

to
p_

br
d_

da
ta

bl
_h

an
d

w
h_

ha
nd

to
p_

br
d_

da
ta

bl
_h

an
d

w
h_

ha
nd

br
d_

rq
st

m
v

m
v_

va
lid

m
v_

en
d

pl
ay

er

br
d_

se
nd

_s
ta

rt

br
d_

st
op

br
d_

va
lid

External RAM

Move Data

Figure 3. The structure of Tree Search Circuit.

Table 2. The implementation result of each
module.

Module Slice Block RAM Freq. [MHz]
Check Move 11,977 (36%) 66 (20%) 112.108
Defense Move 7,147 (21%) 25 (8%) 93.879
Tree Search 1,080 (3%) 43 (13%) 140.262
TOTAL 20,204 (61%) 134 (41%) 93.879

(33,088 slices, 328 Block RAMs), 18MB DDR2-SSRAM
and up to 2GB DDR-SDRAM.

Below we show the result of the implementation of
modules in Table 2. Table 2 shows that the imple-
mented modules totally use 41% of slices and 61% of
Block RAMs, and the whole circuit works at 93.879 MHz.
Figure 4 describes the timing chart of the tsume-shogi
solver. Figure 4 shows that required clock cycles for move
generation is 54 + N . N is the number of valid moves by
the attacker or the defender in a position. In all modules,
required clock cycles except N is always constant and does
not depend on the number of moves to be generated.

clock

PosUpdate

BlackDirectCv

BlackIndirectCover

DirectMask

IndirectMask

DirectCheck

DropCheck

X-rayCheck

Mux

WhiteDirectCover

King-Evasion

DiffensiveCapture

Blockade

Mux

1 11 22 33 35 54+N

(11)

scan (11) or (11)

scan (11) or (11)

scan (11) or (11)

scan (11) or (11)

(10)

(10)

(10)

(20+N)

scan (11) or (11)

(10)

(6)

(11)

(20+N)

Figure 4. The timing chart of move genera-
tion in the tsume shogi hardware.

Table 3. The number of the nodes expanded
in the tsume-shogi problems.

steps # of prbs. # of nodes SW [ms] HW [ms] ratio
3 2 1940 55 2.6 20.9
5 9 5494 137 10.2 13.5
7 17 3282 80 5.1 15.8
9 23 12452 270 22.2 12.2
11 23 19901 379 33.8 11.8
13 17 28389 546 48.5 11.2
15 6 60889 1012 89.7 11.3
17 1 37801 590 56.5 10.4

overall 98 19874 330 29.4 11.2

4.2 Performance
We selected 98 tsume-shogi problems from the book

“Naito’s Tsume-Shogi Selection” [6] as benchmark prob-
lems. Table 3 shows the average number of expanded
nodes and the computation time taken to solve tsume-shogi
with software and hardware. Software was run on Pen-
tium 4–2.53 GHz + Cygwin (Unix emulator on Windows
2000). Software is specially designed for this benchmark
test, and employs the same tree search algorithm and trans-
position table as hardware does. Software is designed to
perform completely the same move generation and order-
ing as hardware, though some software algorithms are dif-
ferent from hardware ones to gain the best computation
speed. The performance of hardware is calculated on the
assumption that the clock frequency is 93.879 MHz.

As shown in Table 3, our hardware works 11.2 times
faster than our software and is able to generate about
676,000 positions per second on average. For comparison,
the performance of one of the most powerful software (Na-
gai’s program, run on Athlon 1.4 GHz) is 100,000–120,000
nodes per second [5].

Here we make further discussion on the performance of
hardware. As the frequency of the circuit is 93.879MHz
and required clocks is 54 + N , computation time for
generating N moves in a position (TN) is (54 + N) ×
(1/93.879) [µsec] . As found out from this expression,
computation time for the move generation in hardware
does not significantly depend on the number of generated
moves because of highly parallelized architecture of the
circuit. For example, T5 and T10 are 0.628 and 0.682 µsec
respectively, that is, T10 is only 1.08 times longer than T5

in hardware while that in software would be about twice
longer. Therefore the circuit can work efficiently for a
tsume-shogi problem where lots of possible moves are to
be generated. Usually in tsume-shogi puzzles, the num-
ber of moves generated in a position is limited because all
pieces are seldom used and the attacker is given minimum
piece-in-hand to solve the problem. Our hardware would
show higher performance in practical end-game positions
in normal shogi.

5 Conclusions

In this paper, we presented a high performance, low
cost and compact tsume-shogi solver based on a Field-
Programmable Gate Array (FPGA). We categorized check
and defense moves into 6 groups (3 groups each) and gen-
erated moves of all categories in parallel to gain high per-
formance. Modules in each move generator are imple-
mented parallel and pipeline architecture to achieve high
speed computation. With the latest FPGA, we successfully
implemented all tsume-shogi modules on a single chip.

We solved 98 tsume-shogi problems with hardware and
software and compared the performance. As a result,
hardware turned out to work about 11 times faster than
software. The performance of hardware against software
depends on the game tree complexity. Hardware is ex-
pected to show better performance in more complex tsume-
shogi problems and practical end-game positions in normal
shogi.

6. References

[1] Y. Hori, M. Seki, R. Grimbergen, T. Maruyama, and
T. Hoshino. A shogi processor with a field programmable
gate array. In Computers and Games, pages 297–314, 2000.

[2] Y. Hori, M. Sonoyama, and T. Maruyama. An FPGA-
based processor for shogi mating problems. In IEEE Inter-
national Conference on Filed-Programmable Technology,
pages 117–124, 2002.

[3] H. Matsubara. Algorithms of move generation in a shogi
program. In Game Programming Workshop, pages 134–
138, 1994.

[4] H. Matsubara and R. Grimbergen. Differences between
shogi and western chess from a computational point of view.
In Board Game in Academia, 1997.

[5] A. Nagai. Df-pn Algorithm for Searching AND/OR Trees
and Its Applications. PhD thesis, University of Tokyo,
Tokyo, Japan, 2001.

[6] K. Naito. Naito Tsume-Shogi Selection. Japan Shogi Asso-
ciation, Tokyo, Japan, 2002. in Japanese.

[7] REXEON Technology, Inc. http://www.rexeon.com/.

[8] M. Seo, H. Iida, and J. W. H. M. Uiterwijk. The PN*-search
algorithm: Application to tsume-shogi. Artificial Intelli-
gence, 129(1–2):253–277, 2001.

[9] K. Toda and K. Sayano. Porting of M32R, the soft-macro
processor, to REX, the multiprocessor experimental plat-
form. Technical Report CPSY2003-51, The Institute of
Electronics, Information and Communication Engineering,
Tokyo, March 2004. In Japanese.

[10] Xilinx, Inc., San Jose, CA. Virtex-II Pro and Virtex-II Pro
X Platform FPGAs: Complete Data Sheet v4.0, June 2004.

