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Abstract. In this paper we describe the architecture of a shogi proces-
sor based on reconfigurable hardware. For our implementation, we have
used Field-Programmable Gate Arrays (FPGAs), which can be reconfig-
ured dynamically by downloading configuration data from host comput-
ers. Because of this reconfiguration flexibility, it is possible to implement
and evaluate new algorithms quickly and to make small subsystems (of
very low cost) that can be used on demand. For shogi these two features
are especially important, as there are no stable subsystems that can be
ported to special purpose hardware. Also, in shogi different modules are
needed for different stages of the game. To test the feasibility of using
FPGAs for shogi, we have implemented two modules that are general
for all strong shogi programs on one off-the-shelf PCI board with one
FPGA. The piece cover module on an FPGA is 62 times faster than the
software module, while the module for finding mate on an FPGA is 9
times faster than the software module.

Keywords: Reconfigurable hardware, FPGA, Shogi.

1 Introduction

In chess, DEEP BLUE demonstrated that a large system with special purpose
hardware can beat the human world champion [9]. DEEP BLUE’s performance
is often credited to its hardware power, which is indeed impressive. However,
the number of positions that needs to be searched for strong chess play is too
large to rely on hardware speed alone [5]. Computation power is important, but
the key to the success of DEEP BLUE is the combination of hardware speed and
sophisticated algorithms for tree search, position evaluation, move generation
and so on. It was only possible to make special hardware for chess because there
had been a long history of research into chess algorithms and there was consensus
about which algorithms were most effective.
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This consensus does not necessarily exist in other games. An example is shogi,
a Japanese game that is similar to chess. Even though the objective of shogi is
the same as for chess (capture of the king of the opponent), there are some
important differences between the games. There are more pieces in shogi than
in chess (40), there are different pieces (no queen, but golds and silvers) and the
board is slightly bigger than for chess (9x9 instead of 8x8). The most important
difference between chess and shogi is the possibility of re-using captured pieces
in shogi. Pieces that have been captured from the opponent are put next to the
board at the side of the player that captured them (these pieces are called pieces
in hand). If it is a player’s turn to move, either a move with a piece on the board
can be played, or one of the pieces that was previously captured can be put
back on an empty square of the board (this type of move is called a drop). As
a result of this rule, the average number of legal moves in shogi is much larger
than in chess. Therefore, using the same algorithms as in chess does not lead to
programs that are strong enough to compete with human experts.

Modifications of chess algorithms and even completely new search algorithms
have been proposed for shogi with mixed results. Descriptions of two of the best
programs can be found in [6][14]. So far, there has been no attempt at making
specialized hardware for shogi. One of the reasons for this is that there is no
sponsor like IBM to fund such a costly project. However, the second problem
is that there is no consensus about the algorithms that work best for shogi.
Hardware based on fixed chips like those used in DEEP BLUE can not be used
for shogi, because the chips will already be outdated by the time they have been
manufactured. A third problem of the DEEP BLUE approach is that it is very
hard for others to improve upon the state-of-the-art. The DEEP BLUE chip is
not available to others for further improvements.

We think that shogi will benefit from the use of high speed hardware. In this
paper, we propose a solution to the problems of outdated and inaccessible hard-
ware. We describe how a shogi program can be implemented on reconfigurable
hardware devices called Field-Programmable Gate Arrays (FPGAs). FPGAs are
relatively cheap, flexible and have a short turn-around-time as it takes only a
couple of hours to reconfigure an FPGA.

This paper is organized as follows. Section 2 introduces the features of sys-
tems with reconfigurable hardware. Section 3 describes the shogi program which
we are currently implementing on FPGAs. Section 4 gives the architecture of
the shogi processor. Section 5 describes the implementation issues of the shogi
processor. In Section 6 and Section 7, details and results for two modules of the
shogi processor are given. Finally, conclusions are given in Section 8.

2 High Speed Computation with Reconfigurable
Hardware

The basic structure of a shogi program is the same as that of a chess program,
and most time for finding the next move is spent on search. Therefore, improve-
ments of hardware speed have the same impact on shogi programs as on chess
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programs and we expect considerable improvements of the playing strength of
shogi programs by using special purpose hardware.

However, typical special purpose hardware like ASIC takes several months to
be manufactured, after which a month or so is needed for modification. Such a
long system development time is undesirable in shogi, as most of the important
modules are still being revised often. Therefore, a shogi chip would be out of
date at the time is can be used. A possible solution is to produce multiple chips,
replacing only the modules that have been revised. A problem with this approach
is that the circuit for a shogi program requires wide memory bandwidth and a
high data transfer rate. When a shogi program is implemented on several chips,
data has to be transferred between these chips. However, the number of I/O pins
on the chips is smaller than the required data width and the operation speed
of I/O pins is much slower than that of the internal processor. For high speed
computation, it is best to have all modules of a shogi program on a single chip.

We think that hardware systems that are based on reconfigurable devices are
a more promising approach to speed up shogi programs. In our research, we have
focused on Field Programmable Gate Arrays (FPGAs), which are very popular
reconfigurable devices. A detailed hardware description of an FPGA is outside
the scope of this paper, but more information about FPGAs can be found in the
proceedings of several international conferences on FPGA-based systems that
have been held [16][17][18]. Here we limit ourselves to the way an FPGA can be
used for implementing a shogi program.

An FPGA chip consists of logic cells, internal memory and the connections
between these cells and memory [15][1]. The function of the logic cells and the
connections between cells and memory can be changed by downloading config-
uration data to the chip. The configuration data is generated by compiling a
program written in a hardware description language. Compiling programs from
the hardware description language takes several hours, while the actual recon-
figuration of the FPGAs takes less than 100 msec in general.

The reconfigurability of FPGAs makes it possible to modify circuits for new
algorithms relatively quickly. Minor modification of the circuits on the FPGAs
can be finished and tested on the hardware in several hours. The size of FPGAs
as well as the speed has improved drastically in the last couple of years and we
expect that it will soon be possible to have a complete shogi program running
on a single FPGA chip.

The flexibility of the FPGAs also makes it possible to realize a small but high
performance shogi processor by removing unnecessary modules and reconfiguring
required modules. This is important for shogi, as the behavior of shogi programs
depends on the stage of the game. In the opening, the system has to perform
efficient pattern matching between the current position and positions in opening
libraries. In the middle game, it is necessary to search the game tree efficiently
to find the best move. In the endgame, attack and defense of the king is vital,
and special circuits to find mate are required. Also, different parameters and
different evaluation functions may be required depending on the strategies that
have been employed in the game.



4 Y.Hori, M.Seki, R.Grimbergen, T.Maruyama and T.Hoshino

Of course, FPGAs will not be as fast as the specialized hardware used by
DEEP BLUE, but FPGAs are relatively cheap and flexible. Once there is consen-
sus about the most effective software and hardware for shogi, it is still possible
to produce a special purpose chip for further speed improvements.

3 The SPEAR Shogi Program

As said, the basic structure of a shogi program is similar to a chess program. The
next move to play is determined by exploring a mini-max tree [13] with iterative
alpha-beta search. Other common techniques taken from chess programs are
transposition tables, quiescence search [2], principal variation search [10] and
the history heuristic [11]. The main difference between programs for chess and
shogi is that in shogi programs considerable effort is spent on dealing with the
high number of legal moves, which on average is about 80 [7]. This is more than
twice the average number of legal moves for chess, which is about 35[8].

Therefore, to search deeply it is important to discard moves early, often
without any search. Most strong shogi programs make decisions about which
move to play by the following steps: (1) update the position, (2) generate all
legal moves, (3) evaluate the position after each move, (4) discard bad moves,
thereby keeping the plausible ones, (5) search plausible moves. This procedure
has the disadvantage that moves that are obviously bad still need to be evaluated.
Evaluation is expensive, so this extra evaluation is not efficient.

SPEAR is a shogi program that aims at generating plausible moves more effi-
ciently by using the evaluation after the previous move to generate moves [3][4].
During evaluation, information about game conditions like piece shape, castle
shape, king danger and so on are collected. Plausible moves are then generated
based on the current position and the game conditions.

In this section, we describe the data structures that are being used in SPEAR
and how SPEAR finds the best next move.

3.1 Data Structures

The data structures in SPEAR are divided into data structures for positional
data and data structures for the game conditions. Here are the data structures
for positional data:

— Board data: information about which piece is on which square.

— Piece cover table: information about which piece can move to which
square.

— Piece info table: information about which side the piece belongs to, where
it is located and if the piece is promoted or not.

Here are the data structures for the game conditions:

— Weak piece table: information about which piece is not active, undefended,
threatened by opponent pieces and so on.
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— Strong piece table: information about which piece is active, able to pro-
mote, attacking opponent pieces and so on.

— Piece square table: the relative value of the pieces on each square.

King danger: the evaluated value of king danger.

— Soma value: the expected profit of capturing a piece on a square.

3.2 Procedure for Deciding Upon the Next Move

In the program, the following steps are repeatedly executed to decide which
move to play next: (1) update the position, (2) evaluate the position and update
game conditions, (3) generate plausible moves based on the game conditions, (4)
search plausible moves.

Figure 1 shows the block diagram of this program. Each module directly cor-
responds to one of the stages above. We will now give a more detailed explanation
for each module.

board data
move . . game
data Position piece cover table Position conditions
Updater pieceinfo table Evaluator
Plausible candidate next move
moves Tree —
Move ;
Generator Builder
candidate
moves
(next node)

Fig. 1. A block diagram of the SPEAR program

Position Updater Based on the move data, this module updates board data,
piece cover table and piece info table. This data is then used for po-
sition evaluation and plausible move generation.

Position Evaluator This module evaluates the position and updates the game
conditions. The evaluation module has many sub-modules such as piece shape
evaluator, castle evaluator, king position evaluator and so on. Each sub-
module evaluates the position and adds the evaluation to the game condi-
tions. For example, piece shape evaluator evaluates the weakness or strength
of a piece formation, and this evaluation is added to weak piece table,
strong piece table and piece square table.

Plausible Move Generator This module generates plausible moves based on
the game conditions. Using the game conditions (as well as board data, piece
cover table and piece info table), only promising looking moves are generated.
A value is given to each plausible move, and the best N moves are selected
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and added to the game tree (in the latest tournament version of SPEAR N
was set to 20).

Tree Builder This module adds the remaining plausible moves to the game
tree. Game tree search in shogi is similar to the search in chess programs.

4 Architecture of the Shogi Processor

As pointed out earlier, for efficient hardware implementation a single chip is
best. Since a complete shogi program does not fit on a single FPGA chip yet, we
must reduce the size of the circuit by reconfiguring the chip for different stages of
the game and use different configurations for different strategies. In this section
we discuss the issues in designing a shogi processor. First, we will explain the
circuits for each game stage. Second, we will give the architecture for the middle
game and endgame circuit for which we have made a partial implementation.

4.1 Circuits for Different Game Stages

An FPGA chip can be reconfigured in about 100ms, so deleting obsolete modules
and reconfiguring other modules for each stage of the game is a viable option
for reducing the size of the program. The following observations for the circuits
in different game stages are not specific to SPEAR, but apply to most shogi
programs.

Opening Circuit Moves in the opening are usually generated by an opening

book, so high speed matching between the current position and the positions
in the opening book is required. However, the opening book is typically too
large to fit in memory, so data has to be loaded from external memory. The
necessary data transfer and I/O operations will slow down the matching with
the opening book.
By using an FPGA, we can store the opening library on the processor because
this library (which will occupy a large part of the FPGA memory), can be
overwritten if necessary. It is expected that this internal processing will speed
up the matching with the opening book considerably.

Middle Game Circuit This circuit finds the next move by searching the game

tree. Most time during this stage is spent on position evaluation and can-
didate move generation. With an FPGA, we can expect high speed compu-
tation by processing different sub-modules in parallel and in pipeline. For
example, the evaluation of a position has many different features like piece
activity, piece formation shape, capturing profit and so on. Some of these
features are independent and can be processed in parallel. Moreover, we will
later explain how different features can be processed in pipeline, leading to
further speedups.
Move generation can also be performed in parallel and in pipeline. The plau-
sible moves have many different categories like attack moves, defense moves,
captures, promotions and so on. These categories can be generated in parallel
and each move can be generated by pipeline processing.
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Endgame Circuit In the endgame, the weights of the evaluation function fea-
tures change dramatically. Mating the king becomes the most important
feature and material gain is only a secondary consideration. One of the mod-
ules that most strong shogi programs use is a tsume shogi solver to find mate
(more details will be given in Section 7). Because of the reconfigurability of
an FPGA, this module can be prepared on demand.

Library For/Against Strategies Using a library to deal with different strate-
gies is a good way to guide the search to promising parts of the game tree.
For example, different castles have different strengths and weaknesses, so
an attack should be aimed at the weak point of the castle. There are many
different strategies and castle formations in shogi, so such a library would
be too large to keep in memory on the chip. With an FPGA, we can load
and configure only the required libraries.

4.2 Data Structures

For a hardware implementation, we need the following data structures. Even
though these data structures have been taken from SPEAR, similar data struc-
tures are used in most shogi programs.

— The move data contains information about a move. It shows which player
played the move, if the moving piece promoted, which square the piece came
from and which square the piece moved to.

— For each piece, there are 10 bits of Piece data. The bit assignment, shown
in Figure 2, has the following meaning.

e The 3 bits of piece_type are used to store the kind of piece (King,
Rook, Bishop and so on). In shogi there are 8 different pieces, so 3 bits
are needed.

e The promotion bit is set if the piece is promoted.

e The ownership bit is set if the piece is owned by black.

e The 5 bits of index distinguish pieces of the same type. For example,
there are 18 pawns in shogi, which can be uniquely identified by the
index. The piece_type and index are used to find the piece in the piece
cover table and the piece info table.

The piece data in Figure 2 means that the piece is Pawnis, promoted, and
owned by white.

— The board data is a set of piece data and contains the location of pieces.
For the complete description of the board, 810 bits (=81 squaresx 10 bits of
piece data) are needed.

— The piece cover table stores which piece can move to which square. One
square has 40 bits of piece cover data where each bit corresponds to one of
40 pieces (40 is the total number of pieces in shogi). If a piece can move to
a square, the corresponding bit is 1. If not, the corresponding bit is 0. In
Figure 3, the piece cover data shows that King;, Rook, Bishop;, Gold; and
Golds can move to square(5, 8).
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7 6 5 4 3

B1 7 K: King
R: Rook
) board data K1 ﬁ Ri|s  B: Bishop
10 bit .
Pe G1 Ga . G: Gold
Ve ™ P: Pawn
Pawny, [1[0[1]0fofof1[1]1]1]
piece cover [o] [1]2]oJz]o]2]o]1]
. data P G2G1B2 BiR2R1 K2 K1
piece_type
index  ownership 40 bit
promotion

Fig.3. The piece cover data of the
Fig. 2. Bit assignment of the piece data square(5, 8)

4.3 Architecture of the Middle Game Circuit

Before implementing a shogi program in hardware it is important to think about
the architecture of the processor. Not all applications are speeded up by the
use of an FPGA. If an application has no possibilities for parallel and pipeline
processing, the performance will be disappointing, sometimes even slower than
the corresponding software application.

With this in mind, we designed a middle game circuit for shogi that is highly
parallelized and designed to perform pipeline processing. The architecture di-
rectly corresponds to the structure of the software program given in Section 3.
Therefore, it has four major modules that we will now describe in more detail.

Position Updater
board data
move
data R Board Data Piece Cover piece cover table
Updater Table Updater
Piece Info Table pieceinfo table
Updater

Fig. 4. A block diagram of Position Updater

Position Updater In Position Updater, board data, piece cover table and
piece info table are updated for each move. Figure 4 shows the structure of
the circuit for Position Updater. The modules board data updater and
piece info table updater can be processed in parallel, and the modules
board data updater and piece cover table updater can be processed
in pipeline.
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Fig. 5. The structure of the shogi processor.
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Position Evaluator A block diagram of Position Evaluator is shown in the
upper half of Figure 5. Position Evaluator has many sub-modules. These
modules can be divided into the following three groups.

1. Piece square table evaluator.
2. Modules for evaluating pins, discovered attacks, piece mobility and king
distance.
3. Modules for evaluating the soma value, piece shape, promotion threats,
castle shape and king position.
These three groups can be processed in pipeline, while the modules in each
group can be processed in parallel. A position is evaluated by these modules,
and the results of this evaluation are stored in the data structures for the
game conditions such as weak piece table, strong piece table and king in
danger.

Plausible Move Generator Each position is evaluated before generating plau-
sible moves, and only promising moves are generated. The hardware modules
shown in the lower half of the Figure 5 are used for this process. All these
modules can be processed in parallel.

Game Tree Builder The game tree is stored in the memory of the FPGA. A
node is represented by the move data and a relative address from its parent.
This module builds nodes by adding this address to the move data, and then
stores the node information in memory.

4.4 Architecture of Endgame Circuit

As we pointed out earlier, the weights of the features of the evaluation function
change in the endgame. Despite these changes, the endgame circuit still should
perform a tree search, so the basic structure is similar to that of the circuit used
for the middle game. There is one exception, as there is a need for a circuit
performing specialized mating search. This module is a vital part of strong shogi
programs. Details of a tsume shogi circuit will be given later in Section 7.

5 Implementation of the Shogi Processor

Unfortunately, reconfigurable hardware is not a magic box where a shogi program
in a common programming language like C can be entered, a button can be
pushed and the FPGA chip rolls out at the other end. We already pointed at
the importance of good hardware design, taking advantage of the parallel and
pipeline processing abilities of the FPGA chip. In the next two sections we will
see how the special features of the FPGA make it necessary to rewrite some of
the basic building blocks of our shogi program.

As a result of these FPGA specific design issues, implementing a full shogi
processor is a time consuming task. However, if we wait until the shogi proces-
sor is finished, we miss an opportunity to take advantage of another appealing
feature of FPGAs: they are relatively cheap and can be used by many different
researchers. By combining the efforts of different people, we can reduce the work
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on the full shogi processor and we can also take advantage of improvements by
others on modules that have already been implemented.

As a first step, we have made two partial implementations to get an indica-
tion of how a shogi program can be speeded up by the use of FPGAs. There are
of course many candidates for partial implementation, but we chose to imple-
ment two modules that are general for all strong shogi programs: a circuit for
computing the piece cover table and a circuit for mating search, the tsume shogi
solver. As these modules are stable, there is probably no need for important
modifications later.

In Section 6, we describe the Piece Cover Circuit in detail. From this descrip-
tion, it will be clear that the method for acquiring piece cover data used in this
circuit is general and can be used in most other modules as well.

The Tsume Shogi Circuit, described in Section 7 is not as general as the
Piece Cover Circuit, but the advantage of this module is that it is completely
independent from the other modules. Move generation is different (only checks
and defenses against checks), position evaluation is different (estimate of distance
to mate) and even the tree search is different (proof number search instead of
alpha-beta search). Therefore, this module is a good test of the stand-alone
abilities of an FPGA.

6 Piece Cover Circuit

As a first step in implementing our shogi processor, we have designed the Piece
Cover Circuit that will be described in detail below. As pointed out earlier, it is
necessary to use parallelism and pipeline computing for good speed-up results.
The implementation on an FPGA is therefore very different from the software
implementation of a piece cover table.

6.1 Obtaining the Piece Cover Data

Parallelization of the computation of the piece cover table is achieved by loading
9 squares (= one rank) of board data simultaneously at each clock cycle. Ideally,
we would like to scan all 81 squares in parallel. However, the required memory
bandwidth would be too wide and the circuit would become too large to fit on
a single FPGA chip.

By loading one rank of board data, the whole board can be scanned in 9
clock cycles (as the dimension of a shogi board is 9x9). In our method, we use
two scans of the board: a top-down scan and a bottom-up scan. To balance the
size of the circuits the top-down scan and the bottom-up scan, each give piece
cover data of four of the eight adjacent squares. An example of the top-down
scan is given in Figure 6(a), while the bottom-up scan is given in Figure 6(b).

Two separate scans are necessary, because the problem with a single scan
is that piece cover data for long range pieces (rook, bishop and lance) can not
be obtained. These pieces can not only move to an adjacent square, but also
to squares that are further away. An example of how the piece cover data for
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the bishop is obtained by a top-down scan and a bottom-up scan is given in
Figure 7. Let’s assume that the fifth rank is currently scanned. The board data
of this rank is loaded, but there will be no piece cover data as there is no piece
on this rank. We will get the same result after scanning the sixth rank, as there
is still no piece found. Only after loading the board data of the seventh rank,
the bishop is found and the piece cover data of the squares (2,8) and (4, 8) is
obtained. The information that there is a bishop on (3,7) is stored in a register.
The information in this register can be used at the next clock cycle, as the board
data for the eight rank is loaded and the piece covering of square (1,9) and (5, 9)
by the bishop is obtained. The top-down scan is now finished, and the bottom-up
scan is performed next. The piece covering of the squares in Figure 7(b) can now
be obtained in the same way as for the top-down scan.

After both the top-down and the bottom-up scan have finished, the piece
cover table is simply the logical OR of the piece data obtained from the top-
down scan and the bottom-up scan.

(b) obtained by 3 2 1

5 4
bottom-up scan \@ 5

(b) piece cover data
given by Bottom Up scan

(a) obtained by
top-down scan
(a) piece cover data
given by Top Down scan
Fig. 6. The piece cover data given by Fig. 7. An example of obtaining the
each scan piece covering of longe range pieces.

Getting the piece cover data of the rook is a little more difficult, as the
horizontal piece cover data of the rook is opposite to the scan direction. In this
case an extra left-to-right scan and a right-to-left scan is necessary on the rank
where the rook is positioned. The board data of this rank is stored in a register
and the two horizontal scans are performed on this register.

Here is a summary of the computation of the piece cover table:

1. Carry out the top-down scan and the computation of the rook rank covering
in parallel:

— A top-down scan of the board is executed to compute piece cover data
shown in Figure 7(b). The top-down piece cover data is stored in memory
on the FPGA.

— Compute the rook rank cover data by a left-to-right and a right-to-left
scan. The rook rank cover data is stored to a register.

2. Carry out a bottom-up scan to obtain the piece cover data shown in Fig-
ure 7(a). The bottom-up piece cover data is stored in memory on the FPGA.
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3. Compute the logical OR of the top-down piece cover data, the bottom-up
piece cover data and the rook rank cover data.

6.2 Structure of the Hardware

l from "Position Updater"

Address address Board Data

Controller (RAM)
Top Down Bottom Up Rook Cover
Scanner Scanner Calculator

address

Logical OR
Calculator

Fig. 8. A block diagram of the circuit for computing the piece cover data.

}

Piece Cover

Table (RAM) "

(-

Figure 8 shows the design of the circuit. The circuit has the following mod-

ules:

Board Data One piece is represented by 10 bits and one rank has 9 squares, so
the board data of one rank is 90 bits. The board has 9 ranks, therefore the
complete description of the board requires 810 bits. This module is a 9 x 90
bit size RAM in which the board is stored. 90 bits of board data are loaded

at one clock cycle.

Top Down Scanner/Bottom Up Scanner The Top Down Scanner does a
top-down scan. The input of this module is one 9 x 10 bit data block from
the Board Data. This data block is split into 10 bit blocks that are processed
in parallel by the sub-modules filel, file2, ..., file9. Each of the sub-modules
checks the data of one square and gives the piece cover data on that square
as output. This data is stored in Piece Cover Data. One rank of piece cover

data is 360 (= 9 x 40) bits wide.

The Bottom Up Scanner does a bottom-up scan. The construction of the
Bottom Up Scanner is similar to that of Top Down Scanner. Both the par-

allel processing and the pipeline processing is performed in the same way.
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It takes eight clock cycles to compute one rank of piece cover data. Obtaining
the piece cover data of the whole board takes 25 clock cycles. For this it is
necessary to use pipeline processing, where the computation of the piece
cover data of one rank does not need to finish before computing the piece
cover data of the next rank. This is shown in Figure 9.

Rook Cover Calculator TheRook Cover Calculator performs a left-to-right

Top Down scan

Bottom Up scan

scan and a right-to-left scan to compute the rook rank piece cover data. The
piece cover data obtained by these scans is stored to registers in the module.

8 clock

 —
rankl
rank2 | B 2
rank3 1 ?
rank4
rank5
ranké
rank7
rank8 6 clock
rank9 rank9
renko rank8 | [ N4
rank8 rank? [ [ N
rank7 rank6 [ [N
rank6 ranks [ [ N
rank 2 rank4 [ [ N
’a“:g Z3 rank3 Bl T~
ol 4
rank2 e mRR
rankl rank1
I
25 clock ' 22 clock
memory memory access - caculate ” memor memory memory access 5 calculate % memory
B e - delay piece covering write'y B o ] delay OR write

Fig.9. Pipeline processing of the piece Fig. 10. Pipeline processing of the calcu-
cover table computation lation of the logical OR

Logical OR Calculator This module calculates the logical OR of the top-

down piece cover data, the bottom-up piece cover data and the rook rank
cover data. It takes 6 clock cycles to calculate a logical OR and write it to
RAM. The computation of the final piece cover table finishes in 22 clock
cycles by pipeline processing as shown in Figure 10.

Piece Cover Table One rank of piece cover data requires 360 bits because

each square has 40 bits of piece cover data. Thus 3240 (= 9 ranks x 360)
bits are needed to represent the whole board. The top-down piece cover data,
the bottom-up piece cover data and the logical OR. each require 9 x 360 bits,
therefore the Piece Cover Table can be stored in 27 x 360 bits of RAM.
360 bit of the piece cover table is stored to or loaded from RAM at one clock
cycle.

6.3 Performance

To test the performance of the piece cover circuit, the computation time was
compared to that of SPEAR. The result of this test is shown in Table 1.
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Table 1. Piece cover computation time per position

| [Frequency [MHz]|Computation time [usec][Performance ratio]

SPEAR 400 74.89 1
FPGA 38.46 1.20 62

The piece cover table computation of SPEAR was performed on a 400MHz
Pentium II. The test consisted of 100 shogi positions. The average computation
time of the piece cover table in these positions was 74.89usec.

enable 4‘
initial delay | (2)
top-down/bottom-up scan | |

computation of logical OR| |
memory accessdelay [ ! : @
02 22 27 44 46

clock cycles

Fig. 11. A timing chart of the circuit for piece cover table

Figure 11 shows that in hardware the number of clock cycles required to
compute the piece cover table is always 46. The frequency of the circuit was
calculated with the simulator in MAX+pPLUS II, which is a circuit design tool.
Max+pLUSs II can find the critical path in the circuit because of the delay-
predictable connections in an FPGA [1]. The longest delay was 26.0 ns and the
maximum frequency of the circuit was 38.46 MHz. Therefore, the computation
time of the cover table is

46 = 1.20usec.

1
" 38.46

Therefore, the computation speed of the circuit is 62 times faster than that
of SPEAR.

Note that the scanning method described in this section is not limited to the
piece cover circuit. It will be the same for most of the modules of the position
evaluator and move generator. Therefore, the performance of the Piece Cover
Circuit is a good indication of the overall performance that can be expected of
our shogi circuit.

7 The Tsume Shogi Circuit

In this section we describe the circuit for finding mate in the endgame. Building
a program for solving mating problems in shogi (the ¢sume shogi solver) has been
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an independent research area in shogi for years with impressive results. The most
important difference between mating problems in chess and tsume shogi is that
in tsume shogi every move by the attacker has to be a check. As a result, the
search space of tsume shogi is much smaller than that of normal shogi play,
as the branching factor of the search tree is only about 5 [7][12]. Tsume shogi
problems are used for endgame training or just as puzzles and there are tsume
shogi problems that have solutions of several hundred ply. The longest tsume
shogi problem has a solution of 1525 ply. The quest for solving this problem
called Microcosmos inspired researchers for years until Masahiro Seo build a
program that could solve Microcosmos in 1997. Tsume shogi is currently the
only area where programs outperform the human experts.

A partial module for tsume shogi was our first test for using FPGAs in shogi.
It seems clear that the use of FPGAs will have more impact in a search domain
with a high branching factor, so it is interesting to compare the results for tsume
shogi with the speed-ups given in the previous section. Even though the tsume
shogi circuit was not completely finished, the performance of a complete tsume
shogi circuit can be estimated by the intermediate results we have collected so
far.

7.1 Structure of the Circuit

The tsume shogi circuit finds mate by processing the following three stage in
pipeline:

1. Update position after a move.
2. Generate all moves, generate check mask and generate defense mask.
3. Distinguish check/defense moves from all moves, and store them in memory.

move data
Position Updater stage 1

board data —

l | |

Check Mask Defense Mask stage 2
| All Move Generator || Generator || Generator |
l al moves J check mask J defense mask —
Check/Defense Move Generator | stage 3

check/defense moves

Fig.12. A block diagram of the circuit for shogi mating problem

To implement this procedure, we designed the circuits Position Updater,
A1l Move Generator, Check Mask Generator, Defense Mask Generator and
Check/Defense Move Generator. The function of each circuit is as follows.
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Position Updater This module updates the position. The board data is up-
dated based on the move data.

All Move Generator The structure of A11 Move Generator is similar to the
Piece Cover Circuit in Section 6. The piece cover table contains informa-
tion about which piece can move to which square, so the data collected by
this circuit is the same as the data that is needed to generate all legal moves.

Check Mask Generator Generating a check mask makes it possible to discard
the non-checking moves in an efficient way. This module scans the board
twice (top-down and bottom-up) and checks if it is possible for a piece to
check the king from a square. Figure 13 shows an example of a board position
and the generated check mask. A white square means that there is a piece
that can check the king by moving or dropping there. A black square means
that no piece can check the king from that square.

K:King R:Rook B: Bishop

(a) asample board data (b) agenerated check mask

Fig. 13. An example of board data and the check mask.

Defense Mask Generator Generates a defense mask in the same way as a
check mask. This module also scans the board twice and tests if there is a
piece that can defend against the opponent check from a square.

Check/Defense Move Generator All legal moves are generated in A11 Move
Generator and Check/Defense Move Generator distinguishes the check
and defense moves from the other moves. This module generates check moves
using all moves and the check mask, and defense moves using all moves and
the defense mask.

7.2 Performance

Although we have not implemented the module Defense Mask Generator yet,
we can estimate the performance of the full tsume shogi circuit by looking at the
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results of the partial implementation. Table 2 shows the frequency of the modules
in the circuit. The frequency of each module was calculated with MAX+pPLUSII.

Table 2. table: The frequency of each modules

|module [frequency [MHz]]
Position Updater 80.06
All Move Generator 54.87
Check Mask Generator 90.07
Check/Defense Move Generator 22.32

The performance of the whole tsume shogi circuit can now be estimated as
follows:

— The Defense Mask Generator runs at almost the same frequency of Check
Mask Generator because the structures of these two modules are similar.
Thus, the frequency of the whole circuit does not change if Defense Mask
Generator is added to the circuit.

— The required clock cycles do not change if Defense Mask Generator is
added to the circuit because it runs in parallel to Check Mask Generator.

Therefore, the frequency of the whole circuit is 22.32 MHz even if the Defense
Mask Generator is added to the circuit. The required number of clock cycles is
48 (obtained with MAX+PLUSIT), thus the computation time is

48 x

— 215
22.32 psec

We implemented a tsume shogi solver in C++ and compared its computation
time for 100 tsume shogi problems to that of the circuit. The software ran on a
Pentium [I-700MHz.

The result in Table 3 shows that the computation time of the hardware is
about 9 times faster than that of the software.

Table 3. The computation time of tsume shogi

| |[Frequency[MHz]| Computation time[usec][Performance ratio
Software 700 18.9 1
FPGA 22.32 2.15 8.8

In our current implementation, the operation speed of Check/Defense Move
Generator is relatively slow. It is possible to improve the results by further
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pipelining the circuit, improving the operation speed to more than 54.87MHz.
This is the frequency of A11 Move Generator, which is then the new bottle-neck
of the tsume shogi circuit. If we can speed up Check/Defense Move Generator
in this way, we can expect a speed-up of 23 instead of a speed-up of 8.8 as given
in Table 3.

8 Conclusions

In this paper, we have described the architecture of a shogi processor based on
reconfigurable hardware. Reconfigurable hardware promises significant speed-
ups with a short development time. Also, reconfigurable hardware is relatively
cheap, so a cooperative effort in the hardware design of a shogi processor is
possible.

To evaluate the use of Field Programmable Gate Arrays (FPGAs) as the
reconfigurable hardware for our shogi processor, we have implemented two mod-
ules of the shogi processor. The speed-up of the module Piece Cover Circuit was
62 times, while the speed-up of the T'sume Shogi Circuit was 9 times compared
to an equivalent software program. We will continue our work on the processor
by finishing the tsume shogi circuit and designing the other modules of the shogi
processor that we have described in this paper.

FPGAs are a rather new technology that are still being improved fast and
the speed gain is almost proportional to the hardware size. In the near future one
PCI board with several FPGAs can be expected to be a thousand times faster
than our shogi software by improvements of the hardware technology alone.

Another area that will be improved is how the FPGA chips are being recon-
figured. At the moment it is still necessary to write circuits for each module in a
hardware description language. This requires more time than programming in a
traditional programming language like C. There have been many proposals for
generating hardware circuits automatically from software programs, but so far it
has been difficult to generate efficient circuits. However, by preparing hardware
libraries for efficient data management in shogi, we expect that it is possible to
write most of the modules of a shogi processor in C without negative effects on
the performance. Preparing these libraries is also a future work.
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