
Introduction to Tree Language Theory

Hitoshi Ohsaki

National Institute of

Advanced Industrial Science and Technology (AIST)

seminar talk (1/10)

2009

I. Words

Alphabet

A finite set Σ = { s0, . . . , sn } of symbols (i.e. concrete and visibly

or otherwise recognizable representations) is called an alphabet if

every non-empty finite sequence over Σ is uniquely decomposed

to elements in Σ

Elements in the alphabet Σ are called characters or letters

Example

Consider Σ1 = {1, 11 } Σ2 = {01, 11 } Σ3 = {0, 01, 10 }

Σ1 is not an alphabet since 11 is formed by either 11 or 1 (and) 1

Σ2 is an alphabet

Σ3 is not an alphabet, e.g., since 010 is decomposed in two ways

0 10 and 01 0
2

Binary & unary encoding

Consider the alphabet Σ1 = { a, b, c }

a b c

Ψ1 let Ψ1 : mapping of a 7→ 1, b 7→ 10, c 7→ 100

110100 (binary encoding over Σ2 = { 0, 1 })

Ψ2 let Ψ2 : mapping of n 7→ 1decimal(n) (sequence of 1’s)

1decimal(110100) (unary encoding over Σ3 = { 1 })

Remark

Ψ1 : Ψ−1
1 (Ψ1(v)) = v & Ψ1(Ψ−1

1 (w)) = w if w ∈ {1,10,100 }∗

Ψ2 : Ψ−1
2 (Ψ2(v)) = v & Ψ2(Ψ−1

2 (w)) = w
3

Finite automata

finite automaton (Σ, Q, q0, Qfin, ∆)

Σ : alphabet

Q : finite set of state symbols

q0 : initial state such that q0 ∈ Q

Qfin : final states such that Qfin ⊆ Q

∆ : finite set of transition rules with the following forms

p
a−→ q p −→ q (p, q ∈ Q, a ∈ Σ)

Note p
a−→ q means “state p moves to q reading character a”

p −→ q means “state p moves to q”

4

Finite automata (as machines)

Given a tape a0 a1 · · · ai ai+1 · · · an and finite automaton A

a0 a1 · · · ai ai+1 · · · an

q0

⇓

a0 a1 · · · ai ai+1 · · · an

q1

1st step: q0
a0−→ q1

such that q0 is initial state

· · ·

a0 a1 · · · ai ai+1 · · · an

qi

⇓

a0 a1 · · · ai ai+1 · · · an

qi+1

i-th step: qi
ai−→ qi+1

If the above move ends in a0 a1 · · · ai ai+1 · · · an

qn+1

and

qn+1 is a final state, we say “the input tape is accepted by A”

5

Words and Languages

Given an alphabet Σ

word over Σ 〉〉 a finite sequence of characters from Σ

empty word ε 〉〉 empty sequence of character

language over Σ 〉〉 a subset of words over Σ

Σ∗ 〉〉 a set of all words over Σ

Σ
+ 〉〉 a set of all non-empty words, Σ∗ − { ε }

Given a finite automaton A with Σ

word accepted by A 〉〉 word, as input tape, accepted by A
language accepted by A 〉〉 a set of words accepted by A

For instance, we say “ a language L over Σ is accepted by A,” denoted L(A),

if L = { w ∈ Σ∗ | w is accepted by A }
6

Example

Define transition rules

∆1 : q0
a−→ q0 q0

b−→ q0 q0
c−→ q0

∆2 : Ø

∆3 : q0
a−→ q0 q1

b−→ q1 q2
c−→ q2

q0 −→ q1 q1 −→ q2

for the finite automata with the alphabet Σ = {a, b, c }. Let

A1 = (Σ, { q0 }, q0, { q0 },∆1)

A2 = (Σ, { q0 }, q0, { q0 },∆2)

A3 = (Σ, { q0, q1, q2 }, q0, { q2 },∆3)

then

L(A1) = Σ∗ L(A2) = { ε } L(A3) = { a`bmcn | `,m, n > 0 }
7

Deterministic finite automata (DFA)

finite automaton (Σ, Q, q0, Qfin, ∆) is deterministic if

1. ∆ contains transition rules with the following form only:

p
a−→ q

2. there are no transition rules p
a−→ q1 and p

a−→ q2 with q1 6≡ q2

Proposition

Given a finite automaton A, one can construct a DFA B such that

L(A) = L(B) i.e., DFA B accepts the language accepted by FA A

Proof

Let A = (Σ, Q, q0, Qfin,∆), the procedure for constructing DFA consists of two steps:

(1) eliminating rules of the form p −→ q from ∆

(2) eliminating non-determinisity in rules of p
a−→ q1 and p

a−→ q2 with q1 6≡ q2

(proof cont’d) 8

(1) Repeat the following computation until no more rules can be added to ∆:

if there is a pair of transition rules in ∆ either p
a→ q, q → r or

p → q, q
a→ r , then add p

a→ r to ∆

Note 1

The above computation terminates because the number of transition rules of

the form p
a→ q in ∆ must be |Q|2 × |Σ| or less, and this is the upper limit on

the number of the loops.

(2) Take 2Q, which is the power set of Q, and let Qd fin = {S ∈ 2Q | S∩Qfin 6= ∅}. If A
accepts ε, add {q0} to Qd fin. Define finite automaton B = (Σ,2Q, {q0}, Qd fin,∆d)

based on A with ∆ obtained in (1), where for each two states S, T in 2Q and

character a in Σ,

S
a−→ T in ∆d

if T = { q | p ∈ S and p
a−→ q ∈∆ } and T 6= ∅.

Note 2

In the above construction, the reverse (pi → pi+1, pm
a→ q1, qj → pj+1 in ∆

(1 6 i < m, 1 6 j < n) implies S
a−→ T in ∆d) does not hold in general. Why ?

2 9

Example

Consider A= ({ a, b }, { p, q }, p, { q }, ∆) where

{ a, b } : alphabet

{ p, q } : state symbols (p : initial state, q : final state)

∆ : p
a→ p p→ q q

b→ q

Step (1)

Add the transition rules

p
a→ q as p

a→ p & p→ q

p
b→ q as p→ q & q

b→ q

Since no more transition rules can be added, all epsilon rules can be eliminated

Step (2)

Define Qd = { {p}, {q}, {p, q} } ∗ ∅ (empty set) is eliminated for optimization

and ∆d to be

{p} a→ {p, q} {p, q} a→ {p, q} {p} b→ {q} {q} b→ {q} {p, q} b→ {q}

Since ε is accepted by A, {p} is also the final state, so Qd fin = { {p}, {q}, {p, q} }

Let Ad = ({a,b}, Qd, {p}, Qd fin, ∆d), then one can show that L(Ad) = L(A) 10

Closure properties

Let

C(FAΣ) : set of languages over Σ accepted by finite automata

opn : n-ary function 2Σ∗ × · · · × 2Σ∗ → 2Σ∗

where 2Σ∗ means the set of all subsets of Σ∗

e.g. the example for opn :

op1 : ()c (complement)

op2 : ∪ (union) ∩ (intersection) · (concatenation)

For all languages L1, . . . , Ln in C(FAΣ), if opn(L1, . . . , Ln) ∈ C(FAΣ),

we say “the class C(FAΣ) is closed under opn”

E.g. C(FAΣ) is closed under union iff for all L1, L2 in C(FAΣ), L1 ∪ L2 in C(FAΣ). 11

Proposition

The class C(FAΣ) is closed under union, intersection, complement

Proof for ∪

Suppose A1 = (Σ, P, p0, Pfin,∆1) and A2 = (Σ, Q, q0, Qfin,∆2) are finite automata

whose sets P,Q of state symbols are disjoint to each other. Let r0 be a fresh state

symbol, then define B = (Σ, P ∪Q ∪ {r0}, r0, Pfin ∪Qfin,∆1 ∪∆2 ∪ {r0 → p0, r0 → q0}).

By construction, trivially B accepts a word w if and only if A1 or A2 accepts w. 2

Proof for ∩

From the previous proposition about DFA, we suppose A1 = (Σ, P, p0, Pfin,∆1) and

A2 = (Σ, Q, q0, Qfin,∆2) are already DFA. Define C = (Σ, P ×Q, 〈p0, q0〉, Pfin×Qfin,∆)

where

P ×Q : { 〈p, q〉 | p ∈ P, q ∈ Q }
Pfin ×Qfin : { 〈p, q〉 | p ∈ Pfin, q ∈ Qfin }

∆ : { 〈p1, q1〉 a−→ 〈p2, q2〉 | p1
a−→ p2 ∈∆1, q1

a−→ q2 ∈∆2 }

C is DFA and it simulates the transition moves of A1 and A2, simultaneously. 2
12

Proof for ∩ (another version)

Suppose A1 = (Σ, P, p0, Pfin,∆1) and A2 = (Σ, Q, q0, Qfin,∆2) are finite automata

whose sets P,Q of state symbols are disjoint. Let r, s be fresh state symbols, then

define C′ = (Σ, P ×Q, 〈p0, q0〉, Pfin ×Qfin,∆′) where

∆′ : { 〈p1, q1〉 a−→ 〈p2, q2〉 | p1
a−→ p2 ∈∆1, q1

a−→ q2 ∈∆2 } ∪

{ 〈p1, q〉 −→ 〈p2, q〉 | p1 −→ p2 ∈∆1, q ∈ Q } ∪

{ 〈p, q1〉 −→ 〈p, q2〉 | q1 −→ q2 ∈∆2, p ∈ P }

C′ simulates the transition moves of A1 and A2, simultaneously, whenever ∆1 con-

tains p1
a−→ p2 and ∆2 contains q1

a−→ q2. For the transition move by p1 −→ p2 of

A1, the other move in A2 is suspended by assuming that for each state q in Q, there

exists a transition rule q −→ q in ∆2. For the move by q1 −→ q2 of A2, we assume a

similar condition for A1. 2

Proof for ()c

The basic idea to construct a finite automaton that accepts for a given finite automa-

ton A the complement of L(A) is similar to the construction of DFA from finite au-

tomata. See 6–7 in Exercise . 2
13

Example

Consider A1 = ({ a }, P, p0, { p0 }, ∆1) and A2 = ({a }, Q, q0, { q0 }, ∆2)

where

∆1 : p0
a→ p1 p1

a→ p0

∆2 : q0
a→ q1 q1

a→ q2 q2
a→ q0

Note that

L(A1) = (aa)∗ sequence of a’s of multiple of 2

L(A2) = (aaa)∗ sequence of a’s of multiple of 3

Now we define by product construction that

Q× : (p0, q0) (p0, q1) (p0, q2) (p1, q0) (p1, q1) (p1, q2)

Q× fin : (p0, q0)

∆× : (p0, q0)
a→ (p1, q1) (p0, q1)

a→ (p1, q2) (p0, q2)
a→ (p1, q0)

(p1, q0)
a→ (p0, q1) (p1, q1)

a→ (p0, q2) (p1, q2)
a→ (p0, q0)

Let A× = ({ a }, Q×, {(p0, q0)}, Q× fin,∆×), then one can show L(A×) = L(A1) ∩L(A2)
14

Decidability

Computable function (by Turing 1936) :

program, which is purely mechanical process, that for some of the input

for an instance of a given problem, terminates and gives the correct

yes/no answer ∗ computable function is total if it is defined for every input

Cf. effective method by Rosser 1939

effectively calculable function by Kleene 1952 (Church 1936 for informal use)

effective procedure by Minsky 1967

but, algorithm is named after Abu Abdullah Muhammad ibn Musa al-Khwarizmi 825

Decidable problem :

A decision problem (Entscheidungsproblem) is called decidable if there exists

a total computable function which solves the problem

Undecidable problem :

If there does not exist a total computable function solving the problem,

the problem is called undecidable.
15

Proposition

The following problems are decidable for the class of finite automata :

w ∈ L(A) ? (membership problem)

L(A) = Ø ? (emptiness problem)

L(A) = Σ∗ ? (universality problem)

L(A) ⊆ L(B) ? (inclusion problem)

L(A) = L(B) ? (equivalence problem)

Proof

Omitted (proofs in a more general framework will be found in seminar talk 3). Note

that if the emptiness problem is decidable, the other problems are decidable, due

to the property that for finite automata A,B, one can construct finite automata,

each of which accepts the union L(A) ∪ L(B), the intersection L(A) ∩ L(B), the

complement (L(A))c. For instance, the membership problem can be rephrased to

the question if {w}∩L(A) 6= ∅. 2
16

Finite state diagrams

directed graph with

Σ : alphabet

Q : finite set of vertices with labels

q0 : start vertex such that q0 in Q

Qfin : final vertices such that Qfin ⊆ Q

∆ : Σ-labeled or unlabeled arrows connecting vertices

e.g. this finite state diagram accepts a`bmcn (`,m, n > 0)

q0

a

q1

b

q2

c

Cf. Moore machine, Mealy machine 17

Regular grammar

regular grammar G = (Σ, T, N, q0, ∆)

Σ : alphabet

T : set of terminal symbols such that T ⊆ Σ

N : set of non-terminal symbols such that N = Σ− T

q0 : start symbol such that q0 ∈ N

∆ : finite set of production rules with the following forms

p→ a p→ a q p→ ε (p, q ∈ N , a ∈ T)

word generated by G : word over T reachable from q0

language generated by G : set of words generated by G
(called regular language)

18

Exercise

1. Can we determine if a given finite set is an alphabet or not?

Specifically, given words w1, . . . , wn over an alphabet Σ, is it de-

cidable whether {w1, . . . , wn } is an alphabet?

2. [McMillan’s Theorem] Let w1, . . . , wn be n non-empty words over

the alphabet Σ = { a1, . . . , ak }. If {w1, . . . , wn } is an alphabet,

then
n∑

i=1

k−|wi| 6 1

where |wi| is the length of word wi. Prove the above statement.

3. Let Σ = { a1, . . . , ak } be the alphabet. Show that for n natural

numbers p1, . . . , pn that possibly include the same numbers, there

exist n non-empty words w1, . . . , wn over Σ of length p1, . . . , pn,

respectively, such that {w1, . . . , wn } is the alphabet if and only if
n∑

i=1

k−|wi| 6 1.

19

Exercise (cont’d)

4. Show that for every finite set L of words over an alphabet Σ, one

can construct a finite automaton A over Σ that accepts L.

5. For a finite automaton Ad obtained from A in page 10, show that

Ad is DFA and L(Ad) = L(A).

6. Even if the condition “T 6= ∅ for ∆d” in the step (2) is eliminated,

B is DFA and L(B) = L(A). Verify this statement.

7. Let D = (Σ,2Q, {q0},2Q−Qdfin,∆d) associated to the above B in

6. Show that L(D) = Σ∗ −L(A).

8. Show that the class C(FAΣ) is closed under concatenation. The

concatenation of language L1 to language L2 over the same alpha-

bet, denoted L1 ·L2, is defined as L1 ·L2 = {uw | u ∈ L1, w ∈ L2 }.

9. Show that languages accepted by finite automata are regular lan-

guages, and regular languages are accepted by finite automata.
20

Appendix : Post’s correspondence problem (PCP)

Given an alphabet Σ

instance of PCP of size n : n pairs of words vi, wi (i 6 n) over Σ

solution to this instance of : sequence i1 i2 . . . ik of indices

length k such that vi1vi2 . . . vik ≡ wi1wi2 . . . wik

Question if there is a solution to a given instance is undecidable [1],

even for size 7 [2], but decidable for 2 [3]. Decidability for size 3–6

is unknown so far.

[1] E.L. Post: A Variant of a Recursively Unsolvable Problem, Bulletin of the
American Mathematical Society 52, pp.264–268, 1946

[2] Y. Matiyasevich & G. Senizergues: Decision Problems for Semi-Thue Systems
with a Few Rules, Proc. of 11th LICS, pp.523-531, 1996

[3] A. Ehrenfeucht, J. Karhumaki, G. Rozenberg: The (Generalized) Post Corre-
spondence Problem with Lists Consisting of Two Words is Decidable, TCS
21, pp.119-144, 1982

21

Advanced topics : MSO and regular languages

vocabulary (F,R) of second-order logic :

F : a finite set of function symbols (with arity)

R : a finite set of relation symbols (with arity)

variables (V1, V2) :

V1 : a set of first-order variables

V2 : a set of second-order variables (with non-zero arity)

terms T ::= x if x ∈ V1

| f(T, . . . , T) if f ∈ F

formulas Ψ ::= T = T

| r(T, . . . , T) if r ∈ R
| ∃xΨ | ∀xΨ if x ∈ V1

| X(T, . . . , T) if X ∈ V2

| ∃X Ψ | ∀X Ψ

| Ψ ∨Ψ | Ψ ∧Ψ | ¬Ψ 22

Examples

1. Given a finite set A, define an SO-sentence ψ1 such that |A| is even iff ψ1 has

a model A whose carrier is A. We take ψ1 to be

∃X ∃F [∀x ∀y (F(x, y) ⇒ X(x) ∧ ¬X(y)) ∧
∀x ∃y F(x, y) ∧ ∀y ∃x F(x, y) ∧
∀x1 ∀x2 ∀y1 ∀y2 (F(x1, y1) ∧ F(x2, y2) ⇒ (y1 = y2 ⇔ x1 = x2))]

Then, ψ1 has a model A1 whose carrier is A1 iff |A1| is even

(∵ F is a bijective mapping from X to A1 −X).

2. Graph connectivity : Given a finite directed graph G whose predicate e(,)

indicates the edge relation, the SO-sentence ψ2 defined below satisfies that G
is connected iff (G,∅, {e}) |= ψ2 :

∀X ¬[∃x X(x) ∧ ∃x ¬X(x) ∧ ∀x ∀y (X(x) ∧ ¬X(y) ⇒ ¬e(x, y))]

3. Graph 3-colorability : Similarly, given a finite directed graph G, we define the

SO-sentence ψ3 below such that G is 3-colorable iff (G,∅, {e}) |= ψ3 :

∃X ∃Y ∃Z [∀x {∨U∈{X,Y,Z}(U(x) ⇔ ∧
V ∈{X,Y,Z}−{U} ¬V (x)) } ∧

∀x ∀y {∧U∈{X,Y,Z}(e(x, y) ∧ U(x) ⇒ ¬U(y)) }]
23

SO vs. FO

SO is strictly more expressive than FO (first-order logic).

Proof

FO ⊆ SO is obvious; we show below that the inclusion is strict, by using the

following two theorems :

[Compactness] A set S of sentences (i.e. closed formulas) over a vocabulary (F,R)

has a model iff every finite subset of S has a model.

[Downward Löwenheim-Skolem] If a set S of sentences over a vocabulary (F,R)

has a infinite model, then S has a countable model.

Given a vocabulary (F,R) whose F and R are empty, consider the (F,R)-structure

A = (A,∅,∅), where A is the carrier. Suppose, for leading to contradiction, that

there exists an FO-sentence ψ such that A |= ψ iff |A| mod 2 = 0. Note that this

property is definable in SO. Let φk = ∃x1 . . .∃xk
∧
i6=j ¬(xi = xj) for all k > 0, and

define two sets of sentences, S1 = {ψ} ∪ {φk | k > 0} and S2 = {¬ψ} ∪ {φk | k > 0}.
By Compactness theorem, each of S1 and S2 has a model. Let Ai be a model of Si
(i ∈ {1,2}). Since each model must be infinite, by Downward Löwenheim-Skolem

theorem, Ai = (Ai,∅,∅) such that Ai is a countable set (i ∈ {1,2}). Thus, A1 and

A2 are isomorphic. However, A1 |= ψ and A2 |= ¬ψ, leading to the contradiction. 2 24

Monadic second-order logic (MSO)

MSO : ∀X ∈ V2 : X is 1-ary

∃MSO : ∀ψ ∈ Ψ : ψ is MSO formula ∃X1 . . .∃Xn φ such that

φ does not contain ∃X or ∀X

∀MSO : ∀ψ ∈ Ψ : ψ is MSO formula ∀X1 . . .∀Xn φ such that

φ does not contain ∃X or ∀X

Note 1

FO ⊆ ∃MSO,∀MSO ⊆ MSO ⊆ SO

It is not obvious, however, whether each inclusion is strict or not, though FO (SO.

Note 2

– “Graph connectivity” is definable in ∀MSO (Example 2 in page 23).

– “Graph 3-colorability” is definable in ∃MSO (Example 3 in page 23). 25

SO-definable languages

For each word w over Σ, define

Aw : finite structure ({1, . . . , |w| }, ∅, { < } ∪ {pc() }c∈Σ)

where < : linear order on N
pc : pc(i) = true if w = ucv (u, v ∈ Σ∗) & |uc| = i

(e.g. if w = aabcb, then pa(1) = true, but pb(1) = false).

A language defined by an SO-sentence ψ, denoted L(ψ) :

L(ψ) = {w ∈ Σ∗ | Aw |= ψ }

Example

Consider

ψ = ∃X [∀x (∀y (x = y ∨ x < y) ⇒ X(x)) ∧
∀x (∀y (x = y ∨ y < x) ⇒ ¬X(x)) ∧
∀x∀y {x < y ∧ ¬∃z (x < z ∧ z < y) ⇒ X(x)⇔ ¬X(y)}],

then

L(ψ) = (ab)∗, (ba)∗, . . . over the alphabet {a,b} 26

Büchi-Elgot-Trakhtenbrot’s theorem

A language is definable in MSO iff the language is regular.

Proof

First we show the “if” part : Given a DFA A = (Σ, Q, q0, Qfin,∆), we define below an

(∃)MSO-formula ψA such that L(ψA) = L(A). Let Q = { q0, . . . , qn }. We introduce

SO-variables Xq0, . . . ,Xqn to indicate a state of the tape-head such that Xq(x) = true

iff the head is in position q. So, at the beginning, if q0
c→ q, then

ψinit = ∀x ∧c∈Σ[pc(x) ∧ ∀y (x = y ∨ x < y) ⇒ Xq(x)].

For each transition p
c→ q, we have

ψtran = ∀x ∀y ∧p∈Q
∧
c∈Σ[Xp(x) ∧ pc(x) ∧ (x < y ∧ ¬∃z (x < z ∧ z < y)) ⇒ Xq(y)].

When accepting an input by the transition p
c→ q (q ∈ Qfin),

ψfin = ∀x [∀y (x = y ∨ y < x) ⇒ ∨
q∈Qfin

Xq(x)].

We take the conjunction of the above three formulas to be ψA(Xq0, . . . ,Xqn). Then,

by construction, it is not difficult to see L(∃Xq0 . . .∃XqnψA(Xq0, . . . ,Xqn)) = L(A).

Next, to prove the “only if” part, we use a result obtained as a consequence of MSO

Ehrenfeucht-Fäıssé theorem (e.g. [4]). The result is explained in the next page.

[4] L. Lipkin: Elements of Finite Model Theory, EATCS, Springer-Verlag, 2004. 27

Proof (cont’d)

Let ψ be an MSO-formula, we write rank(ψ) = k if the depth of quantifier nesting

is at most k (k ∈ N), and we write MSO[k] for the set {ψ | rank(ψ) 6 k}. Given

two structures A and B, we say A and B are elementary MSO-equivalent up to k,

denoted A ≡MSO
k B, when A |= ψ iff B |= ψ for all ψ ∈ MSO[k]. Then it is known

that the following property hold :

Lemma 1 For every vocabulary (F0, R), where F0 is a finite set of constant

symbols, with finite fixed numbers m,n of MSO and FO free variables, MSO[k]

can be partitioned to S1, . . . , S` and contains formulas ψ1(~xm, ~Xn), . . . , ψ`(~xm, ~Xn),

such that

1. for every structure A with the carrier A, and elements ~am ∈ Am and ~Un ∈
(2A)n, there exists i such that A |= ψi(~am, ~Un) iff A |= θ(~am, ~Un) for all θ ∈ Si,

2. for every θ ∈MSO[k], there exists J such that θ is equivalent to
∨
j∈J ψj.

We suppose that a language L over Σ is defined by an MSO sentence δ with

rank(δ) = k. According to the above lemma, over a vocabulary (∅, {<} ∪ {pc}c∈Σ)

with no SO or FO free variable, MSO[k] can be partitioned to S1, . . . , S`, and MSO[k]

contains sentences ψ1, . . . , ψ` that satisfy the above conditions 1 and 2. This implies

that there exists a subset F of {1, . . . , `} such that δ ≡ ∨i∈F ψi. Moreover, there

exists some Se that contains a sentence logically equivalent to ¬∃x (x = x). Now

we define the finite automaton Aδ = (Σ, {1, . . . , `}, e, F,∆). (Proof cont’d) 28

Proof (cont’d)

The transition rules in ∆ of Aδ are defined as follows :

i
c→ j if Bw |= θ for all θ ∈ Si and Bwc |= Sj for all θ ∈ Sj.

We show below that for every word w, after reading w, the automaton Aδ ends

in some state i (1 6 i 6 `) such that Bw |= θ for all θ ∈ Si. We use induction on

the length of w. The base case is obvious, because Aδ ends in the initial state e.

For induction step, we suppose w = vc for some c ∈ Σ. By induction hypothesis,

after reading w, Aδ is in state i and Bw |= θ for all θ ∈ Si. If the next character

on the tape is c, there is some j such that Bwc |= θ for all θ ∈ Sj. That means,

Aδ ends in such j after reading wc. Note that ∃x (x = x) (≡ true) is in MSO[k].

Finally, we consider the language accepted by Aδ. From the above observation, the

language L(Aδ) is {w ∈ Σ∗ | ∃i ∈ F : Bw |= θ for all θ ∈ Si}, which is equivalent to

{w ∈ Σ∗ | ∃i ∈ F : Bw |= ψi}. Hence, because δ =
∨
i∈F ψi, we have L(δ) = L(Aδ). 2

Corollary

MSO = ∃MSO over words.

Proof

According to the proof of the previous theorem, every language definable in MSO

is regular, and every regular language is expressible in ∃MSO. 2 29

MSO (SO

There exists a language definable in SO, but not in MSO.

Proof

We show that the language L= = {w ∈ {a,b}∗ | |w|a = |w|b } is definable in SO. Here

|w|a means the number of occurrences of a in w. Define ψ= to be

∃X ∃F [∀x (X(x)⇔ pa(x) ∧ ¬X(x)⇔ pb(x)) ∧
∀x ∀y (F(x, y)⇒ X(x) ∧ ¬X(y)) ∧ ∀x ∃y F(x, y) ∧ ∀y ∃xF(x, y) ∧
∀x1 ∀x2 ∀y1 ∀y2 (F(x1, y1) ∧ F(x2, y2) ⇒ (y1 = y2 ⇔ x1 = x2)].

The above sentence ψ= specifies that for each word w over the alphabet {a,b}, the

number of occurrences of a and b in w are the same iff Aw |= ψ=. Thus, L(ψ=) = L=.

However, L= is not a regular language, which will be explained later in Exercises 5,6

in the next seminar talk. Indeed, L= is a context-free language (See page 5, seminar

talk 2). Therefore, by Büchi-Elgot-Trakhtenbrot’s theorem (page 27), L= is not

definable in MSO. 2

Note

Over the alphabet Σ = {a}, a language is context-free iff it is definable in MSO.

(Cf. Exercise 7, seminar talk 2) 30

FO (MSO

There exists a language definable in MSO, but not in FO.

Proof

In order to show the statement, one should introduce the following result :

[Gurevich, 1984] Given two linear ordered structures A = (A,∅, {<A}∪RA) and

B = (B,∅, {<B} ∪ RB), where <X is a linear order over X (X ∈ {A,B}), then

|A|, |B| > 2k implies A ≡FO
k B.

Using the above property, we show that (aa)∗ is not definable in FO. Suppose, for

leading to contradiction, that there exists an FO-sentence ψ such that L(ψ) = (aa)∗

and rank(ψ) = k. Let Aw be a structure associated to a word w in a∗, and let Bwa be

a structure associated to wa. Obviously, Aw |= ψ iff Bwa 6|= ψ. However, according to

Gurevich’s claim, if |w| > 2k, then Aw ≡FO
k Bwa, leading to the contradiction. 2

Corollary

There is no FO-sentence ψeven such that for every linear ordered structure A =

(A,∅, {<} ∪R), |A| is even iff A |= ψeven.

(∵ If ψeven exists, the language (aa)∗ is definable by ψeven.) 31

Exercise for advanced topics

1. Show that the Hamiltonicity of finite undirected graphs can be

expressed in SO, i.e. construct an SO-sentence ψHam over graph

structures such that a finite undirected graph G is Hamiltonian iff

G |= ψHam. (Note that a finite undirected graph is Hamiltonian iff

there exists a path in the graph which visits every vertex exactly

once.)

2. Show that a∗b∗ is definable in FO, i.e. construct an FO-sentence

ψ such that L(ψ) = a∗b∗. Likewise, show that Σ∗ and ∅ are

definable in FO.

3. Construct an MSO-sentence that defines a∗(bb)∗a∗.

4. Show that there is no FO-sentence ψconn such that for every fi-

nite directed graph G = (G,∅, {e}), G is connected iff G |= ψconn.

(Hint : Use the previous corollary guaranteeing that there is no

FO-sentence which expresses the linear ordered set is even.)

5. Show that FO (∃MSO and FO (∀MSO. 32

Copyright (version Jul-01-2009) c© 2009 Hitoshi Ohsaki

National Institute of Advanced Industrial Science and
Technology (AIST) – Senri-site, AIST Kansai.

Office: Shin-Senri Nishi 1--2--14 (MSK bldg. 5th floor),
Toyonaka, Osaka 560--0083, Japan

URL: http://staff.aist.go.jp/hitoshi.ohsaki/

All rights reserved.

No part of this lecture material may be reproduced in
any form or by any means, electronic, mechanical, pho-
tocopying, or otherwise, without the prior consent of the
author.

