[Last updated: Dec, 17, 2018]

CREST

Yuichiro HIMEDA

National Institute of Advanced Industrial Science and Technology,

Tsukuba Central 5-1, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

E-mail: himeda.y(atmark)aist.go.jp

 

[Research]

 

 

Keywords

Homogeneous Catalysis; Organometallic catalyst; Proton-responsive catalyst

CO2 fixation; H2 storage; Energy conversion

Hydrogenation of CO2, Dehydrogenation of formic acid

Catalyst tuning; Catalyst design; pH dependence, Proton-responsive

Green chemistry; Aqueous reaction; Catalyst recycling 

Hydrogenation; Transfer hydrogenation

H/D exchange; Deuterogenation

 

[Movie of the H2 evolution by dehydrogenation of formic acid]

Click here (IE or Firefox)

Reaction conditions: 88 ˚C, 8 M HCOOH aq.

 

[Publication list]

[2019]

Naoya Onishi, Ryoichi Kanega, Etsuko Fujita, Yuichiro Himeda, “Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation Catalyzed by Iridium Complexes Bearing Pyridylpyrazole Ligands: Effect of an Electrondonating Substituent on the Pyrazole Ring on the Catalytic Activity and Durability”

Advanced Synthesis & Catalysis 2019, DOI: 10.1002/adsc.201801323. <doi> (VIP)

 

Onishi, N.; Iguchi, M.; Yang, X.; Kanega, R.; Kawanami, H.; Xu, Q.; Himeda, Y., Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid. Advanced Energy Materials 2019, 1801275. <doi>

 

[2018]

Ryoichi Kanega, Naoya Onishi, Lin Wang, Kazuhisa Murata, James Muckerman, Etsuko Fujita, Yuichiro Himeda, Picolinamide-based Iridium Catalysts for Dehydrogenation of Formic Acid in Water: Effect of Amide-N Substituent on Activity and Stability, Chemistry – A European Journal 2018, 24(69), 18389-18392. <doi> (VIP)

 

Ryoichi Kanega, Naoya Onishi, Lin Wang, Yuichiro Himeda, “Electroreduction of Carbon Dioxide to Formate by Homogeneous Ir Catalysts in Water”,

ACS Catalysis 2018, 8, 11296-11301. <doi>

 

Wang, L.; Ertem, M. Z.; Kanega, R.; Murata, K.; Szalda, D. J.; Muckerman, J. T.; Fujita, E.; Himeda, Y., Additive-Free Ruthenium-Catalyzed Hydrogen Production from Aqueous Formaldehyde with High Efficiency and Selectivity. ACS Catalysis 2018, 8, 8600-8605. <doi>

 

Masayuki Iguchi, Maya Chatterjee, Naoya Onishi, Yuichiro Himeda, Hajime Kawanami, Sequential hydrogen production system from formic acid and H2/CO2 separation under high-pressure conditions, Sustainable Energy Fuels, 2018, 2, 1719-1725. <doi>

 

 

 

Naoya Onishi, Gábor Laurenczy, Matthias Beller, Yuichiro Himeda, Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coordination Chemistry Reviews 2018, 373, 317-332. <doi>

image 

 

Lin Wang, Mehmed Z. Ertem, Kazuhisa Murata, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, Highly Efficient and Selective Methanol Production from Paraformaldehyde and Water at Room Temperature, ACS Catalysis 2018, 8, 5233–5239. <doi>

 

Qi-Long Zhu, Fu-Zhan Song, Qiu-Ju Wang, Nobuko Tsumori, Yuichiro Himeda, Tom Autrey, Qiang Xu, Solvent-Switched In Situ Confinement Approach for Immobilizing Highly-Active Ultrafine Palladium Nanoparticles: Boosting Catalytic Hydrogen Evolution, Journal of Materials Chemistry A, 2018, 6, 5544-5549. <doi> (HOT Paper)

 

Heng Zhong, Masayuki Iguchi, Maya Chatterjee, Yuichiro Himeda, Qiang Xu, Hajime Kawanami, Formic Acid-Based Liquid Organic Hydrogen Carrier System with Heterogeneous Catalysts, Advanced Sustainable Systems, 2018, 2(2), 1700161. <doi>

Thumbnail image of graphical abstract

 

[2017]

Masayuki Iguchi, Heng Zhong, Yuichiro Himeda, Hajime Kawanami, Effect of the Ortho-Hydroxyl Groups on Bipyridine Ligand of Iridium Complexes for the Catalytic High-Pressure Gas Generation from Formic Acid Decomposition. Chemistry – A European Journal 2017, 23(70), 17788-17793. <doi>

Link to full-size graphical abstract

Masayuki Iguchi, Heng Zhong, Yuichiro Himeda, Hajime Kawanami, Kinetic studies of formic acid dehydrogenation catalyzed by an iridium complex towards insights into the catalytic mechanism of high-pressure hydrogen gas production. Chemistry – A European Journal 2017, 23(67), 17017-17021. <doi>

 

 

Yuki Suna, Yuichiro Himeda, Etsuko Fujita, James T. Muckerman, Mehmed Z. Ertem, Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO2 Hydrogenation. ChemSusChem 2017, 10 (22), 4535-4543. <doi>

Link to full-size graphical abstract

 

Lin Wang, Ryoichi Kanega, Hajime Kawanami, Yuichiro Himeda, Development of Proton-Responsive Catalysts. The Chemical Record 2017, 17(11), 1071-1094. (Cover picture)<doi>

 

 

Ryoichi Kanega, Naoya Onishi, David J. Szalda, Mehmed Z. Ertem, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, CO2 Hydrogenation Catalysts with Deprotonated Picolinamide Ligands. ACS Catalysis 2017, 7(10), 6426-6429. <doi>

Abstract Image

 

Wan-Hui Wang, Hui-Peng Tang, Wen-Duo Lu, Yang Li, Ming Bao, Yuichiro Himeda, Mechanistic insights into the catalytic hydrolysis of ammonia borane with proton-responsive iridium complexes: an experimental and theoretical study. ChemCatChem 2017, 9(16), 3191-3196. <doi>

 Link to full-size graphical abstract

 

Hajime Kawanami, Yuichiro Himeda, Gábor Laurenczy, Formic Acid as a Hydrogen Carrier for Fuel Cells toward a Sustainable Energy System, Advances in Inorganic Chemistry 2017, 70, 395-427. <doi>

 

Katerina Sordakis, Akihiro Tsurusaki, Masayuki Iguchi, Hajime Kawanami, Yuichiro Himeda, Gábor Laurenczy, Aqueous phase homogeneous formic acid disproportionation into methanol, Green Chemistry 2017, 19, 2371-2378. <doi>

 

Zhangpeng Li, Xinchun Yang, Nobuko Tsumori, Zheng Liu, Yuichiro Himeda, Tom Autrey, Qiang Xu, Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid, ACS Catalysis 7(4), 2017, 2720-2724. <doi>

 

Lin Wang, Naoya Onishi, Kazuhisa Murata, Takuji Hirose, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand, ChemSusChem 2017, 10(6), 1071-1075. (VIP, Inside cover) <doi>

 Thumbnail image of graphical abstract 

 

Akihiro Tsurusaki, Kazuhisa Murata, Naoya Onishi, Katerina Sordakis, Gábor Laurenczy, Yuichiro Himeda, Investigation of Hydrogenation of Formic Acid to Methanol using H2 or Formic Acid as a Hydrogen Source. ACS Catalysis 2017, 7 (2), 1123-1131. <doi>

 

Chao Guan, Dan-Dan Zhang, Yupeng Pan, Masayuki Iguchi, Manjaly J. Ajitha, Jinsong Hu, Huaifeng Li, Changguang Yao, Mei-Hui Huang, Shixiong Min, Junrong Zheng, Yuichiro Himeda, Hajime Kawanami, Kuo-Wei Huang, Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N′-Diimine Ligand, Inorganic Chemistry 2017, 56(1), 438-445. <doi>

 

[2016]

Katerina Sordakis, Akihiro Tsurusaki, Masayuki Iguchi, Hajime Kawanami, Yuichiro Himeda, Gábor Laurenczy, Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature, Chemistry – A European Journal 2016, 22(44), 15605-15608. (Inside back cover) <doi>

Thumbnail image of graphical abstract Thumbnail image of graphical abstract

Naoya Onishi, Mehmed Z. Ertem, Shaoan Xu, Akihiro Tsurusaki, Yuichi Manaka, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands, Catalysis Science & Technology 2016, 6 (4), 988-992. (Inside front cover)<doi>

Graphical abstract: Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands

 

Masayuki Iguchi, Yuichiro Himeda, Yuichiro Manaka, Hajime Kawanami, Development of an Iridium-Based Catalyst for High-Pressure Evolution of Hydrogen from Formic Acid, ChemSusChem 2016, 9 (19), 2749-2753.(VIP, Back cover) <doi>

Thumbnail image of graphical abstractThumbnail image of graphical abstract 

 

Masayuki Iguchi, Yuichiro Himeda, Yuichi Manaka, Koichi Matsuoka, Hajime Kawanami, Simple Continuous High-Pressure Hydrogen Production and Separation System from Formic Acid under Mild Temperatures, ChemCatChem, 2016, 8 (5), 886-890.(Cover picture) <doi>

Thumbnail image of graphical abstractThumbnail image of graphical abstract

 

Lele Duan, Gerald F. Manbeck, Marta Kowalczyk, David J. Szalda, James T. Muckerman, Yuichiro Himeda, Etsuko Fujita, Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in Ru(tpy)(6DHBP)(NCCH3)2+)(6DHBP=6,6'-(OH)2bpy). Inorganic Chemistry 2016, 55 (9), 4582-4594. <doi>

Abstract Image

 

Mehmed Ertem, Yuichiro Himeda, Etsuko Fujita, James Muckerman, Interconversion of Formic Acid and Carbon Dioxide by Proton-Responsive, Half-Sandwich Cp*Ir(III) Complexes: A Computational Mechanistic Investigation, ACS Catalysis 2016, 6, 600-609. <doi>

 

[2015]

Wan-Hui Wang, Yuichiro Himeda, James T. Muckerman, Gerald Manbeck, Etsuko Fujita, CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction, Chemical Reviews 2015, 115 (23), 12936-12973. <doi>

Figure

 

Shaoan Xu, Naoya Onishi, Akihiro Tsurusaki, Yuichi Manaka, Wan-Hui Wang, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO2 Hydrogenation, European Journal Inorganic Chemistry 2015, 34, 5591–5594. <doi>

  

 

Wan-Hui Wang, Mehmed Z. Ertem, Shaoan Xu, Naoya Onishi, Yuichi Manaka, Yuki Suna, Hide Kambayashi, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda,

Highly Robust Hydrogen Generation by Bioinspired Ir Complexes for Dehydrogenation of Formic Acid in Water: Experimental and Theoretical Mechanistic Investigations at Different pH, ACS Catalysis 2015, 5 (9), 5496–5504. <doi>

Abstract Image

 

 

Naoya Onishi, Shaoan Xu, Yuichi Manaka, Yuki Suna, Wan-Hui Wang, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, CO2 Hydrogenation Catalyzed by Iridium Complexes with Proton-responsive Ligand, Inorganic Chemistry 2015, 54(11), 5114–5123. <doi>

Abstract Image

 

Gerald Manbeck, James Muckerman, David Szalda, Yuichiro Himeda, Etsuko Fujita, Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO2 Reduction Catalysts, The Journal of Physical Chemistry B 2015, 119 (24), 7457–7466. <doi>

Figure

 

[2014]

Yuki Suna, Mehmed Z. Ertem, Wan-Hui Wang, Hide Kambayashi, Yuichi Manaka, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, Positional Effects of Hydroxy Groups on Catalytic Activity of Iridium(III) Complexes with Proton-Respoisive Ligands, Organometallics 2014, 33 (22), 6519–6530. <doi>

Figure

 

Wan-Hui Wang, Shaoan Xu, Yuichi Manaka, Yuki Suna, Hide Kambayashi, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, Formic Acid Dehydrogenation with Bioinspired Iridium Complexes: A Kinetic Isotope Effect Study and Mechanistic Insight, ChemSusChem 2014, 7(7), 1976-1983. <doi>

 

Anna Lewandowska-Andralojc, Dmitry E. Polyansky, Chiu-Hui Wang, Wan-Hui Wang, Yuichiro Himeda, Etsuko Fujita, Efficient Water Oxidation with Organometallic Iridium Complexes as Precatalysts, Physical Chemistry Chemical Physics 2014, 16, 11976-11987. <doi>

Graphical abstract: Efficient water oxidation with organometallic iridium complexes as precatalysts

 

Yuichi Manaka, Wan-Hui Wang, Yuki Suna, Hide Kambayashi, Etsuko Fujita, James T. Muckerman, Yuichiro Himeda, Efficient H2 generation from formic acid using azole complexes in water, Catalysis Science & Technology, 2014, 4, 34-37. <doi>

 

Wan-Hui Wang, Yuichiro Himeda, James T. Muckerman, Etsuko Fujita, Interconversion of CO2/H2 and Formic Acid Under Mild Conditions in Water: Ligand Design for Effective Catalysis, Advances in Inorganic Chemistry 2014, 66, 189-222. <doi>

 

[2013]

Yosra M. Badiei, Wan-Hui Wang, Jonathan F. Hull, David J. Szalda, James T. Muckerman, Yuichiro Himeda, Etsuko Fujita, Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media,

Inorganic Chemistry 2013, 52, 12576-12586. <doi>

 

Wan-Hui Wang, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda,

Mechanistic insight through factors controlling effective hydrogenation of CO2 catalyzed by bio-inspired proton-responsive iridium(III) complexes,

ACS Catalysis 2013, 3(5), 856-860. <doi>

Figure

 

Wan-Hui Wang, Yuki Suna, Yuichiro Himeda, James T. Muckerman, Etsuko Fujita, Functionalized cyclopentadienyl rhodium(III) bipyridine complexes: Synthesis, characterization, and catalytic application in hydrogenation of ketones,

Dalton Transactions 2013, 42, 9628-9236.<doi>

 

Wan-Hui Wang, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, Hydroxy-substituted pyridine-like N-heterocycles: versatile ligands in organometallic catalysis, New Journal of Chemistry 2013, 37, 1860-1866. <doi>

 

Etsuko Fujita, James T. Muckerman, Yuichiro Himeda., Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases, Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2013, 1827, 1031-1038. <doi>

image

 

(Book Chapter)

Yuichiro Himeda, Wan-Hui Wang, Application of carbon dioxide in hydrogen storage: homogeneous hydrogenation of carbon dioxide and dehydrogenation of formic acid, in New and Future Developments in Catalysis, 1st Edition; Steven L. Suib Ed, Elsevier: 2013; 171-188. <doi>

 

 

[2012]

(Original paper)

Jonathan F. Hull, Yuichiro Himeda, Wan-Hui Wang, Brian Hashiguchi, Roy Periana, David J. Szalda, James T. Muckerman, Etsuko Fujita, Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures, Nature Chemistry, 2012, 4(5), 383-388.<doi> <Nature: RESEARCH HIGHLIGHTS> <Press releases in Nature Chemistry> <Top 10 in Nature Chemistry> <Asahi Shinbun>

 

Wan-Hui Wang, Jonathan F. Hull, James T. Muckerman, Etsuko Fujita, Yuichiro Himeda, Second-coordination-sphere and electronic effects enhance iridium(III)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure, Energy & Environmental Science 2012, 5(7), 7923-7926.<doi>

 

Wan-Hui Wang, Hull, J. F, James T. Muckerman, Etsuko Fujita, Takuji Hirose, Yuichiro Himeda, Highly Efficient D2 Generation by Dehydrogenation of Formic Acid in D2O through H+/D+ Exchange on an Iridium Catalyst: Application to the Synthesis of Deuterated Compounds by Transfer Deuterogenation

Chemistry – A European Journal 2012, 18(30), 9397-9404.<doi>

TOC

 

 

(Book Chapter)

Wan-Hui Wang, Yuichiro Himeda, Recent Advances in Transition Metal-Catalysed Homogeneous Hydrogenation of Carbon Dioxide in Aqueous Media, in Hydrogenation; Iyad Karamé Ed.; INTECH: 2012; 249-268. <doi>

 

Wan-Hui Wang, Yuichiro Himeda, Recent Advances of Homogeneous Iridium Catalysts in Aqueous Solution, in Iridium: Occurrence, Characteristics and Applications; Chieko Fukui and Maemi Ono Eds.; Nova Science Pub Inc: 2012; 39-68. ISBN: 978-1-62081-692-9

 

[2011-]

Yuichiro Himeda, Satoru Miyazawa, Takuji Hirose, Interconversion between Formic Acid and H2/CO2 using Rhodium and Ruthenium Catalysts for CO2 Fixation and H2 Storage. ChemSusChem 2011, 4 (4), 487–493. <doi>

 

 

Yuichiro Himeda, Utilization of Carbon Dioxide as a Hydrogen Storage Material: Hydrogenation of Carbon Dioxide and Decomposition of Formic Acid Using Iridium Complex Catalysts, in Advances in CO2 Conversion and Utilization ACS Symposium Series, 2010, 1056, Chapter 9, 141–153. <doi>

figure

 

Yuichiro Himeda, Highly efficient hydrogen evolution by decomposition of formic acid using iridium catalyst with 4,4'-dihydroxy-2,2'-bipyridine. Green Chemistry 2009, 11, 2018–2022. <doi>

 

Yuichiro Himeda, Satoru Miyazawa, Nobuko Onozawa-Komatsuzak, Takuji Hirose, Kazuyuki Kasuga.

Catalytic (transfer) deuterogenation in D2O as deuterium source with H2 and HCO2H as electron sources.

Dalton Transactions 2009, 32, 6286–6288. <doi>

Graphical abstract: Catalytic (transfer) deuterogenation in D2O as deuterium source with H2 and HCO2H as electron sources

 

 

Yuichiro Himeda, Nobuko Onozawa-Komatsuzak, Satoru Miyazawa, Hideki Sugihara, Takuji Hirose, Kazuyuki Kasuga. pH-Dependent Catalytic Activity and Chemoselectivity in Transfer Hydrogenation Catalyzed by Iridium Complex with 4,4-Dihydroxy-2,2-bipyridine. Chemistry-A European Journal 2008, 35, 11076-11081.<doi>

Thumbnail image of graphical abstract

 

Yuichiro Himeda, Conversion of CO2 into Formate by Homogeneously Catalyzed Hydrogenation in Water: Tuning Catalytic Activity and Water Solubility through the Acid–Base Equilibrium of the Ligand. European Journal Inorganic Chemistry 2007, 25, 3927–3941.<doi>

 

pp

 

Yuichiro Himeda, Nobuko Onozawa-Komatsuzak, Hideki Sugihara, Kazuyuki Kasuga, Simultaneous tuning of activity and water solubility of complex catalysts by acid-base equilibrium of ligands for conversion of carbon dioxide. Organometallics 2007, 26(3), 702–712. <doi>

Abstract Image

Yuichiro Himeda, Nobuko Onozawa-Komatsuzak, Hideki Sugihara, Kazuyuki Kasuga, Highly efficient conversion of carbon dioxide catalyzed by half-sandwich complexes with pyridinol ligand: The electronic effect of oxyanion.

Journal of Photochemistry and Photobiology A-Chemistry 2006, 182(3), 306–309. <doi>

 

Yuichiro Himeda, Nobuko Onozawa-Komatsuzak, Hideki Sugihara, Kazuyuki Kasuga, Recyclable catalyst for conversion of carbon dioxide into formate attributable to an oxyanion on the catalyst ligand, Journal of the American Chemical Society 2005, 127(38), 13118–13119. <doi> 

Yuichiro Himeda, Nobuko Onozawa-Komatsuzak, Hideki Sugihara, Hironori Arakawa, Kazuyuki Kasuga, Half-sandwich complexes with dihydroxy polypyridine: Water-soluble, highly efficient catalysts for hydrogenation of bicarbonate attributable to electron-donating ability of oxyanion on catalyst ligand. Studies in Surface Science and Catalysis 2004, 153, 263-266.

 

Yuichiro Himeda, Nobuko Onozawa-Komatsuzak, Hideki Sugihara, Hironori Arakawa, Kazuyuki Kasuga, Half-sandwich complexes with 4,7-dihydroxy-1,10-phenanthroline: Water-soluble, highly efficient catalysts for hydrogenation of bicarbonate attributable to the generation of an oxyanion on the catalyst ligand.

Organometallics 2004, 23(7), 1480-1483. <doi>

Abstract Image

 

Yuichiro Himeda, Nobuko Onozawa-Komatsuzak, Hideki Sugihara, Hironori Arakawa, Kazuyuki Kasuga, Transfer hydrogenation of a variety of ketones catalyzed by rhodium complexes in aqueous solution and their application to asymmetric reduction using chiral Schiff base ligands.

Journal of Molecular Catalysis A-Chemical 2003, 195(1-2), 95-100. <doi>

 

Takuji Hirose, Yoshihito Maeno, Yuichiro Himeda, Photocatalytic carbon dioxide photoreduction by Co(bpy)32+ sensitized by Ru(bpy)32+ fixed to cation exchange polymer. Journal of Molecular Catalysis A-Chemical 2003, 193(1-2), 27-32. <doi>

 

Nobuko Komatsuzaki, Yuichiro Himeda, Takuji Hirose, Hideki Sugihara, Kazuyuki Kasuga, Synthesis and photochemical properties of ruthenium-cobalt and ruthenium-nickel dinuclear complexes. Bulletin of the Chemical Society of Japan 1999, 72(4), 725-731. <doi>

 

[Previous studies]

Synthesis of Polysubstituted Cyclopentadienes Using Allylidenephosphoranes and its Applications

 

 

Yuichiro Himeda, Yasuhiro Tanaka, Ikuo Ueda, Minoru Hatanaka, Convenient synthesis of substituted cyclopentenones via [3+2] annulation of allylidenetriphenylphosphorane with 1,2-diacylethylenes: application to synthesis of (+/-)-methyl dehydrojasmonate.

Journal of the Chemical Society-Perkin Transactions 1 1998, 8, 1389-1396. <doi>

 

Yuichiro Himeda, Hiroshi Yamataka, Ikuo Ueda, Minoru Hatanaka, [3+2] Annulation of allylidenetriphenylphosphorane with 1,2-diacylethylenes and 1,2-diacylacetylenes: A one-step synthesis of tri- and tetrasubstituted cyclopentadienes and fulvenes.

Journal of Organic Chemistry 1997, 62(19), 6529-6538. <doi>

 

Yuichiro Himeda, Ikuo Ueda, Minoru Hatanaka, A new one-step synthesis of functionalized fulvenes.

Chemistry Letters 1996, 1, 71-72. <doi>

 

Yuichiro Himeda, Minoru Hatanaka. Yasuhiro Tanaka, Ikuo Ueda, [3+2]-Annulation of Allylidene(Triphenyl)Phosphorane with 1,2-Diacylethylenes - Synthesis of Substituted Cyclopentadienes.

Journal of the Chemical Society-Chemical Communications 1995, 4, 449-450. <doi>

 

Minoru Hatanaka, Yuichiro Himeda, Yasuhiro Tanaka, Ikuo Ueda, Cyclopentenones from 2-Ethoxyallylidene(Triphenyl)Phosphorane and 1,2-Diacylethylenes - Synthesis of (+/-)-Methyl Dehydrojasmonate.

Tetrahedron Letters 1995, 36(18), 3211-3214. <doi>

 

Minoru Hatanaka, Yuichiro Himeda, Ritsuo Imashiro, Yasuhiro Tanaka, Ikuo Ueda.

Allylidenetriphenylphosphorane as a Bifunctional Reagent - Synthesis of Cyclopentenones and Alpha,Beta-Unsaturated Ketones with (3-(Alkoxycarbonyl)-2-Ethoxy-2-Propenylidene)Triphenylphosphorane.

Journal of Organic Chemistry 1994, 59(1), 111-119. <doi>

 

Yuichiro Himeda, Kazuhisa Hiratani, Kazuyuki Kasuga, Takuji Hirose, A New Bis(Benzo-15-Crown-5)-Type Ionophore Having 1,10-Phenanthroline Moiety as a Highly-Selective Potassium Ion-Carrier.

Chemistry Letters 1993, 9, 1475-1478. <doi>

 

Minoru Hatanaka, Yasuhiro Tanaka, Yuichiro Himeda, Ikuo Ueda, A Single-Step Synthesis of 4-Hydroxycyclopentenones from 3-Ethoxycarbonyl-2-Oxo-Propylidenetriphenylphosphorane and Glyoxals.

Tetrahedron Letters 1993, 34(30), 4837-4840. <doi>

 

Minoru Hatanaka, Yuichiro Himeda, Ikuo Ueda, [3+2]-Annulation Using Allylidene(Triphenyl)Phosphoranes - a One-Step Synthesis of Cyclopentadienes.

Journal of the Chemical Society-Perkin Transactions 1 1993, 19, 2269-2274. <doi>

 

Yuichiro Himeda, Kazuhisa Hiratani, Minoru Hatanaka, Yasuhiro Tanaka, Ikuo Ueda, Intramolecular Diels-Alder Reaction of 1-Ethoxycarbonyl-4-Alkenylcyclopentadienes.

Journal of the Chemical Society-Chemical Communications 1992, 22, 1684-1685. <doi>

 

Minoru Hatanaka, Yuichiro Himeda, Ikuo Ueda, Cyclopentenones from Allylidene Triphenylphosphoranes and Alpha-Halocarbonyl Compounds.

Tetrahedron Letters 1991, 32(35), 4521-4524. <doi>

 

Minoru Hatanaka, Yuichiro Himeda, Ikuo Ueda, The Reaction of Allylidene Triphenylphosphoranes with Alpha-Halocarbonyl Compounds - a Convenient Synthesis of Cyclopentadienes.

Journal of the Chemical Society-Chemical Communications 1990, 7, 526-527. <doi>

 

[Invited Lecture (International)]

Yuichiro Himeda, Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid for Hydrogen Storage, Second Interdisciplinary and Research Alumni Symposium iJaDe2018, 2018/09/07

Yuichiro Himeda, CO2 Hydrogenation for Hydrogen Storage Using Iridium Catalysts with Deprotonated Picolinamide Ligands, ACS meeting, USA/Boston, 2018/8/21

Yuichiro Himeda, Water-Soluble Iridium Catalysts for CO2 Hydrogenation and Dehydrogenation of Formic Acid, 43rd International Conference on Coordination Chemistry, Sendai, 2018/08/02

Yuichiro Himeda, Iridium Catalysts for CO2 Hydrogenation and Dehydrogenation of Formic Acid toward Hydrogen Storage in Water, 28th International Conference on Organometallic Chemistry, Italy/Florence, 2018/07/20

Yuichiro Himeda, Development of Catalyst for Hydrogenation of CO2 and Dehydrogenation of Formic Acid in Water, The third Japan-UK joint symposium on Coordination Chemistry, UK/ St Andrews, 2018/05/1

Yuichiro Himeda, Hydrogen Production by Dehydrogenation of Formic Acid using Iridium Catalysts, ACS meeting, USA/New Orleans, 2018/3/19

Yuichiro Himeda, Hydrogenation of CO2 using Proton-Responsive Iridium Catalyst with Imidazolin in Water, ICMFC-3, Singapore, 2017/2/28

Yuichiro Himeda, Development of Homogeneous Catalysts for CO2 Hydrogenation under ambient conditions in water, 2017 International Workshop for Collaboration in Hydrogen Energy, Saudi Arabia/Thuwal, 2017/1/22

Yuichiro Himeda, James Muckerman, Mechanistic Investigation of Interconversion of Formic Acid and Carbon Dioxide by Iridium, European Colloquium on Inorganic Reaction Mechanisms, Poland/Krakow, 2016/6/23

Yuichiro Himeda, Etsuko Fujita, Hydrogen Production by Dehydrogenation of Formic Acid using Homogeneous Iridium, Catalysts Pacifichem, USA/ Honolulu, 2015/12/18

Yuichiro Himeda, Catalyst Design for Interconversion of CO2 and Formic Acid on the Basis of Proton-Responsible Ligand, I2CNER&ACT-C JOINT SYMPOSIUM, Fukuoka, 2014/1/30

Yuichiro Himeda, Wan-Hui Wang, Catalyst Design for Interconversion of CO2 and Formic Acid on the Basis of Proton-Responsible Ligand, International Conference on Carbon Dioxide Utilization, USA/Alexandria, 2013/6/24

Yuichiro Himeda, Recent Advance on Interconversion between H2/CO2 and Formic Acid using Hydroxybipyridine-based Iridium Catalysts, The 243rd ACS National Meeting, USA/San Diego, 2012/3/26

 

[Invited Lecture (Domestic)]

姫田雄一郎、ギ酸をキャリアとする水素貯蔵・製造のための錯体触媒の開発、第38回水素エネルギー協会大会、東京、2018/11/28

姫田 雄一郎、水素貯蔵を志向した二酸化炭素からのギ酸合成とギ酸からの水素発生、化学工学会第50回秋季大会、鹿児島大学、2018/09/20

姫田 雄一郎, 水素キャリアを指向したCO2水素化触媒の開発, 新エネルギー部会講演会, 東京, 2017/9/28

姫田 雄一郎, ギ酸からの高圧水素製造技術, 14 GREENシンポジウム, 東京, 2017/2/1

姫田 雄一郎, 水素貯蔵を指向したCO2/ギ酸の相互変換触媒の開発, 常温常圧での水素貯蔵と高圧水素供給, 触媒学会若手会, 静岡/熱川, 2016/8/5

姫田 雄一郎, ギ酸の脱水素化反応による高圧水素発生, 第23回燃料電池シンポジウム, 東京/船堀, 2016/5/27

姫田 雄一郎, ギ酸の脱水素化による高圧水素製造, 水素の製造と利用に関するシンポジウム, 東京, 2016/1/21

姫田 雄一郎, 二酸化炭素/ギ酸の相互変換を利用した水素貯蔵, 日本化学会第95春季年会, 船橋, 2015/3/27

姫田 雄一郎, 水素キャリアを指向したCO2/ギ酸の相互変換触媒の開発, 触媒学会, 東京, 2015/3/24

姫田 雄一郎, CO2/ギ酸の相互変換触媒の開発, CO2還元触媒ワークショップ, 茨城/つくば, 2015/3/13

 

 

解説

●兼賀量一、川波肇、姫田雄一郎「CO2とギ酸の相互変換による水素貯蔵技術」『ケミカルエンジニヤリング』62(4)、化学工業社、20174

 

●尾西尚弥、井口昌幸、川波肇、姫田雄一郎「イリジウム錯体触媒を用いたギ酸からの高圧水素ガス発生技術」『自動車技術』(「材料目線でのクルマ開発」特集)70(11)、(公社)自動車技術会、201611

 

●井口昌幸、姫田雄一郎、川波肇「ギ酸の脱水素化による高圧水素製造」『再生可能エネルギーによる水素製造』、S&T 出版、20169

 

●井口昌幸、姫田雄一郎、川波肇、「ギ酸」、『水素貯蔵材料の開発と応用』、CMC出版、20164

 

●井口昌幸、姫田雄一郎、川波肇「新エネルギー:水素の貯蔵・利用方法」『サイエンスネット』56、数件出版、20164

 

●井口昌幸、姫田雄一郎、川波肇「圧縮機不要の高圧水素連続製造技術の開発」、『燃料電池』15(4)20164

 

●尾西尚弥、姫田雄一郎「水素貯蔵を指向した二酸化炭素/ギ酸の相互変換触媒の開発」『触媒』57、触媒学会、20152

 

●福住俊一、佐山和弘、姫田雄一郎「人工光合成」実現にいどむ 実用化のスタートラインに立った夢の技術」『ニュートン別冊「社会を一変させる新素材100 注目のスーパーマテリアル」』ニュートンプレス、20142

 

●砂有紀、姫田雄一郎「ギ酸を用いた水素貯蔵技術」『ペトロテック』36(8)、公益社団法人石油学会、2013

 

●姫田雄一郎「二酸化炭素とギ酸を相互変換する高効率触媒の開発」『二酸化炭素の直接利用最新技術』NTS20134

 

●姫田雄一郎「二酸化炭素を利用した水素貯蔵に向けて―水中常温常圧で行う二酸化炭素の水素化とギ酸分解による高圧水素の放出―」『現代化学』20132月号、東京化学同人、20131

 

●姫田雄一郎「常温常圧で水素貯蔵可能な二酸化炭素の水素化触媒の開発」『OHM』(201212月号)、オーム社、2012

 

研究プロジェクト

JST-CREST「再生可能エネルギーからのエネルギーキャリアの製造とその利用のための革新的基盤技術の創出」

「ギ酸の脱水素化反応による高圧水素の高効率製造技術の開発」(研究代表者:2013.102019.3

 

<終了したプロジェクト>

JST「低エネルギー、低環境負荷で持続可能なものづくりのための先導的な物質変換技術の創出(ACT-C)

「プロトン応答性錯体触媒に基づく二酸化炭素の高効率水素化触媒の開発と人工光合成への展開」(研究代表者:2012.102018.3

 

公益信託ENEOS水素基金

「二酸化炭素の水素化によるメタノール合成のための高効率錯体触媒の開発」(研究代表者:2017.102018.9