Recent Publications
1)Ryohei Hosoya, Hiroshi Morita, Machine Learning for Analyzing Phase-Separated Structures of ABA Triblock Copolymer Blends in Elongation, Macromolecules, (2023), DOI: 10.1021/acs.macromol.3c00532
2)Ryohei Hosoya, Hiroshi Morita, Stress Chain Analysis for an ABA Triblock Copolymer Using Principal Component Scores, The Journal of Physical Chemistry B, (2023), DOI: 10.1021/acs.jpcb.3c01846
3)Kouki Akaike, Yukihiro Shimoi, Toshiaki Miura, Hiroshi Morita, Haruhisa Akiyama, Shin Horiuchi, Disentangling Origins of Adhesive Bonding at Interfaces between Epoxy/Amine Adhesive and Aluminum, Langmuir, (2023), DOI: 10.1021/acs.langmuir.3c01218
4)Hiroshi Morita, Satoshi Yoda, Takumi Ono, Kouhei Tazumi, Takeshi Furuya, Analysis of nanocellular foaming with nucleating agents based on coarse-grained molecular dynamics simulations, Polymer, (2022), DOI: 10.1016/j.polymer.2022.125059
5)Ryohei Hosoya, Makiko Ito, Ken Nakajima, Hiroshi Morita, Coarse-Grained Molecular Dynamics Study of Styrene-block-isoprene-block-styrene Thermoplastic Elastomer Blends, ACS Applied Polymer Materials, (2022), DOI: 10.1021/acsapm.1c01684
6)Yoshinori Tomiyoshi, Toshihiro Kawakatsu, Takeshi Aoyagi, Hiroshi Morita, Rheological Properties of Lamellae-Forming Diblock Copolymers, Advanced Theory and Simulations, (2021), DOI: 10.1002/adts.202100097
7)Tomohiro Miyata, Tomohiko Nagao, Daisuke Watanabe, Akemi Kumagai, Keizo Akutagawa, Hiroshi Morita, Hiroshi Jinnai, Nanoscale Stress Distribution in Silica-Nanoparticle-Filled Rubber as Observed by Transmission Electron Microscopy: Implications for Tire Application, ACS Applied Nano Materials, (2021), DOI: 10.1021/acsanm.1c00009
8)Norizoe, Yuki; Kawakatsu, Toshihiro; Morita, Hiroshi, Molecular-shape- and size-independent power-law dependence of percolation thresholds on radius of gyration in ideal molecular systems, EPL, (2021), DOI:10.1209/0295-5075/133/36003
9)Takashi Honda, Shun Muroga, Hideaki Nakajima, Taiyo Shimizu, Kazufumi Kobashi, Hiroshi Morita, Toshiya Okazaki, Kenji Hata, Virtual experimentations by deep learning on tangible materials. Communications Materials, (2021) DOI:10.1038/s43246-021-00195-2
10)Yasuda, Yusuke; Masumoto, Takeyoshi; Mayumi, Koichi; Toda, Masatoshi; Yokoyama, Hideaki; Morita, Hiroshi; Ito, Kohzo, Molecular Dynamics Simulation and Theoretical Model of Elasticity in Slide-Ring Gels, ACS MACRO LETTERS, (2020), DOI:10.1021/acsmacrolett.0c00194
11)Hosoya, Ryohei; Morita, Hiroshi; Nakajima, Ken, Analysis of Nanomechanical Properties of Polyethylene Using Molecular Dynamics Simulation, MACROMOLECULES, (2020), DOI:10.1021/acs.macromol.0c01009
12)Morita, Hiroshi; Miyamoto, Ayano; Kotani, Motoko, Recoverably and destructively deformed domain structures in elongation process of thermoplastic elastomer analyzed by graph theory, POLYMER, (2020), DOI:10.1016/j.polymer.2019.122098
13)Morita, Hiroshi; Miyamoto, Ayano, Machine Learning Analysis of the Bridge Chains in Thermoplastic Elastomer Obtained by CGMD Simulation, NIHON REOROJI GAKKAISHI, (2020), DOI:10.1678/rheology.48.79
14)Norizoe, Yuki; Morita, Hiroshi, Conducting transition analysis of thin films composed of long flexible macromolecules: Percolation study, EUROPEAN PHYSICAL JOURNAL E, (2019), DOI:10.1140/epje/i2019-11884-9
15)Yasuda, Yusuke; Toda, Masatoshi; Mayumi, Koichi; Yokoyama, Hideaki; Morita, Hiroshi; Ito, Kohzo, Sliding Dynamics of Ring on Polymer in Rotaxane: A Coarse-Grained Molecular Dynamics Simulation Study, MACROMOLECULES, (2019), DOI:10.1021/acs.macromol.9b00118
16)Miura, Toshiaki; Funada, Maki; Shimoi, Yukihiro; Morita, Hiroshi, Simulation Study of the Effects of Nanoporous Structures on Mechanical Properties at Polymer-Metal Interfaces, JOURNAL OF PHYSICAL CHEMISTRY B, (2019), DOI:10.1021/acs.jpcb.8b10556
17)Toda, Masatoshi; Morita, Hiroshi, Rubber elasticity of realizable ideal networks, AIP ADVANCES, (2018), DOI:10.1063/1.5061686
18)Saito, H., Aoyanagi, Y., Mihara, T., Tanaka, T., Higuchi, T., Morita, H., Jinnai, H., Direct three-dimensional imaging of the fracture of fiber-reinforced plastic under uniaxial extension: Effect of adhesion between fibers and matrix, Polymer, (2017), DOI: 10.1016/j.polymer.2017.01.072
19)Hagita, K., Morita, H., Takano, H., Molecular dynamics simulation study of a fracture of filler-filled polymer nanocomposites, Polymer, (2016), DOI: 10.1016/j.polymer.2016.07.030
20)Morita, H., Lithography process simulation studies using coarse-grained polymer models, Polymer Journal, (2016), DOI: 10.1038/pj.2015.78
21)Hagita, K., Morita, H., Doi, M., Takano, H., Coarse-Grained Molecular Dynamics Simulation of Filled Polymer Nanocomposites under Uniaxial Elongation, Macromolecules, (2016), DOI: 10.1021/acs.macromol.5b02799
22)Morita, H., Toda, M., Honda, T., Analysis of the end-segment distribution of a polymer at the interface of filler-filled material, Polymer Journal, (2016), DOI: 10.1038/pj.2015.135
23)Morita, H., Norizoe, Y., Analysis of the self-assembling and the defect annihilation processes in DSA using meso-scale simulation, Advances in Patterning Materials and Processes Xxxii, (2015), DOI: 10.1117/12.2085650
24)Morita, H., Lithography Process Simulations using OCTA-Application to Development and DSA, Journal of Photopolymer Science and Technology, (2014), DOI: 10.2494/photopolymer.27.25
25)Morita, H., Development of fast DSA simulation method using OCTA system, Alternative Lithographic Technologies Vi, (2014), DOI: 10.1117/12.2046090
26)Morita, H., Applicable Simulation Methods for Directed Self-Assembly -Advantages and Disadvantages of These Methods, Journal of Photopolymer Science and Technology, (2013), DOI: 10.2494/photopolymer.26.801
27)Atarashi, H., Hirai, T., Hori, K., Hino, M., Morita, H., Serizawa, T., Tanaka, K., Uptake of water in as-spun poly(methyl methacrylate) thin films, Rsc Advances, (2013), DOI: 10.1039/c3ra23066j