CCC Extras

Clicking on the link below will download a pdf containing ca. 700 references (as of December 2008) but does in no way claim to be exhaustive. This file should be seen as the start of a ‘growing compilation’.

GET THE CALDERA REFERENCE LIST!!

*Please, send an email containing the citation of a paper you wish to have added to the reference list.*


Key literature on Collapse Calderas

 

Numerical models on collapse calderas

Bower, S.M. and Woods, A.W., 1997. Control of magma volatile content and chamber depth on the mass erupted during explosive volcanic eruptions. Journal of Geophysical Research, 102: 10273-10290.

Burov, E.B. and Guillou-Frottier, L., 1999. Thermomechanical behaviour of large ash flow calderas. Journal of Geophysical Research, 104(B10): 23081-23109.

Druitt, T.H. and Sparks, R.S.J., 1984. On the formation of calderas during ignimbrite eruptions. Nature, 310: 679-681.

Gudmundsson, A., 1998. Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bull. Volcanol., 60: 160-171.

Martí, J., Folch, A., Macedonio, G. and Neri, A., 2000. Pressure evolution during caldera forming eruptions. Earth and Planetary Science Letters, 175: 275-287.

Classification of collapse calderas

Acocella, V. (2007), Understanding caldera structure and development: An overview of analogue models compared to natural calderas, Earth-Science Reviews, 85, 125-160.

Cole, J.W., Milner, D.M. and Spinks, K.D., 2004. Calderas and caldera structures: a review. Earth-Science Reviews, 69(1-2): 1-26.

Lipman, P.W., 1997. Subsidence of ash-flow calderas:relation to caldera size and magma- chamber geometry. Bulletin of Volcanology, 59/3: 198-218.

Martí , J., A. Geyer, and A. Folch (2009), A genetic classification of collapse calderas based on field studies, analogue and theoretical modelling in Volcanology: the Legacy of GPL Walker, edited by T. Thordarson and S. Self, pp. 249-266, IAVCEI-Geological Society of London, London.

Smith, R.L. and Bailey, R.A., 1968. Resurgent cauldrons. Geological Society of America Memories, 116: 613-622.

Williams, H., 1941. Calderas and their origin. Bulletin of the Department of Geological Sciences, 25(6): 239-346.

Analogue studies of the structure and structural development of collapse calderas

Acocella, V., F. Cifelli, and R. Funiciello (2000), Analogue models of collapse calderas and resurgent domes, J. Volcanol. Geotherm. Res., 104(1-4), 81-96.

Acocella, V., R. Funiciello, E. Marotta, G. Orsi, and S. de Vita (2004), The role of extensional structures on experimental calderas and resurgence, J. Volcanol. Geotherm. Res., 129(1-3), 199-217.


Geyer, A., A. Folch, and J. Martí (2006), Relationship between caldera collapse and magma chamber withdrawal: An experimental approach, Journal of Volcanology and Geothermal Research, 157(4), 375-386.


Kennedy, B., Stix, J., Vallance, J.W., Lavallée, Y. ; Longpré, M.-A. 2004. Controls on caldera structure: Results from analogue sandbox modeling. Geological Society of America Bulletin, 116, 515–524.

Komuro, H. (1987), Experiments on cauldron formation: a polygonal cauldron and ring fractures, J. Volcanol. Geotherm. Res., 31, 139-149.
Walter, T. R., and V. R. Troll (2001), Formation of caldera periphery faults:an experimental study, Bulletin of Volcanology, 63, 191-203.

Marti, J., Ablay, G.J., Redshaw, L.T. ; Sparks, R.S.J. 1994. Experimental studies of collapse calderas. Journal of the Geological Society of London, 151, 919-929.

Roche, O., Druitt, T.H. & Merle, O. 2000. Experimental study of caldera formation. Journal of Geophysical Research, 105, 395-416.