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Abstract

The speed, accuracy, and adaptability of human
movement depends on the brain performing an inverse
kinematics transformation — that is, a transforma-
tion from visual to joint angle coordinates — based
on learning from experience. In human motion con-
trol, it is important to learn a feedback controller for
the hand position error in the human inverse kine-
matics solver. This paper proposes a novel model that
uses disturbance noise and the feedback error signal
to learn coordinate transformations of the human vi-
sual feedback controller. The proposed model redresses
drawbacks in current models because it does not rely on
complex signal switching, which does not seem neuro-
physiologically plausible. Numerical simulations show
the effectiveness of the model.

1 Introduction

The task of calculating each joint angle that would
result in a specific hand position in the visual coor-
dinates is called the inverse kinematics problem. An
infant without a thumb had a major surgical opera-
tion, transplanting an index finger as a thumb, which
is kinematically influential. After the operation, the
child was able to learn how to use the index finger
like a thumb [1]. The angle between an index finger
and a thumb is about 90 degrees when we do some
tasks using the fingers. If the coordinate transforma-

tion of the visual feedback controller is fixed, the to-
tal hand position controller probably cannot adapt 90
degrees change. We believe that the coordinate trans-
formation learning is necessary to explain the motor
learning capability of humans. Although a number of
learning models of the visual feedback controller have
been proposed [2][3][4], a definitive learning model has
not yet been obtained.

Many researchers [2][4] employ direct inverse mod-
eling. However, it requires the complex switching of
the input signal to the inverse model from the de-
sired hand position, velocity, or acceleration during
hand position control to the observed hand position,
velocity, or acceleration during inverse model learning.
Although the desired and observed signal might coin-
cide, their characteristics are quite different. No re-
search has yet modeled the switching system success-
fully. Furthermore, the learning model is not “goal-
directed”: there is no direct way of finding an ac-
tion that corresponds to a particular desired result [3].
The forward and inverse modeling proposed by Jordan
[3] requires a back-propagation signal; this technique
lacks a biological basis [5]. It also requires complex
switching of the desired output signal of the forward
model from the observed hand position during forward
model learning to the desired hand position during the
learning of the inverse kinematics solver. We believe
that the complex signal switching for the learning re-
quired by direct inverse modeling or forward and in-
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verse modeling does not occur in the relatively low-
level sensorimotor learning of the human nervous sys-
tem. The feedback error learning proposed by Kawato
[6] requires a pre-existing accurate feedback controller.

We would like our learning model to be (1) rel-
atively simple, (2) biologically plausible, and (3) to
cover the behavioral data. We have already proposed
two models for learning the coordinate transformation
function of the hand position feedback controller. One
of the models is based on disturbance noise in the
hand position control loop [7]. The other is based
on changes in hand position error [8]. Both can avoid
complex signal switching. However, since the former
model becomes inaccurate when the disturbance noise
is infinitesimal, we propose a new learning model of
the position feedback controller based on disturbance
noise and the feedback error signal [9][10]. Although
the learning based on the feedback error signal is ef-
fective only if the feedback controller is reasonably ac-
curate, the learning based on disturbance noise during
the initial stage of the learning can obtain the accurate
status of the controller. The feedback error signal by
the accurate controller can keep the coordinate trans-
formation function of the controller in the cases that
the disturbance noise is infinitesimal. Since the two
learning signals complement each other, the perfor-
mance of the novel learning model is much improved.
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Fig. 1: Configuration of 1-st Order Model of Hand
Position Controller

2 Background

2.1 Hybrid Inverse Kinematics Solver

Before proposing the model for learning the hand
position feedback controller, we state the model of
the human inverse kinematics solver. Let θ ∈ Rm

be the joint angle vector and x ∈ Rn be the hand
position/orientation vector given by the vision sys-
tem. The relationship between x and θ is expressed
as x = f(θ) where f is a C1 class function. The
Jacobian of the hand position vector is expressed
as J(θ) = ∂f(θ)/∂θ. Let xd(k)(k = −γT,−γT +

1, . . . ,−1, 0, 1, 2, . . . , T −1, T ) be the desired hand po-
sition and e(k) = xd(k) − x(k) = xd(k) − f(θ(k))
be the hand position error vector. γ is an appropri-
ate constant which can make γT an integer. We as-
sume that xd(k) = xd(0), e(k) = 0 and θ(k) = θ(0)
are established when k ≤ 0. The hybrid control sys-
tem, consisting of a learning feedback controller and a
learning feed-forward controller, is considered.

The feed-forward controller Φff (θ(k),∆xd(k)) ∈
Rm transforms the change of the desired hand position
∆xd(k) = xd(k + 1) − xd(k) to the joint angle vector
space. The feedback controller Φfb(θ(k), e(k)) ∈ Rm

transforms the hand position error e(k) to the joint
angle vector space. The following first order control
system is considered:

θ(k + 1) = θ(k) +∆θ(k) (1)
∆θ(k) = d(k) +∆θc(k) (2)
∆θc(k) = Φff (θ(k),∆xd(k))

+Φfb(θ(k), e(k)) (3)

where d(k) is assumed to be a disturbance noise from
all components except the hand position control sys-
tem. We assume that d(k) has no correlation with the
change of the desired hand position ∆xd(k). Let Rd

be the covariance matrix of d(k) defined as
Rd = E[d(k)dT (k)] (4)

where E[t] is the expected value of a scalar, a vector,
or a matrix function t.

We have already proposed the learning model based
on the disturbance noise in the hand position control
loop [7]. There are a variety of sources of the distur-
bance noise in human motion control. (1) Infants ex-
perience various kinds of motions including reflexes be-
fore they can reach and grasp objects [11][12]. Motion
signals that are not generated by the hand position
controller can be regarded as disturbance noise. (2)
Based on observations of motor-neural firing [13][14],
Harris and Wolpert assumed that the neural control
signal contains noise that increases with the mean of
the signal [15]. (3) Nakamura uses the excitatory
spikes from thalamic neurons to the cerebral cortex
to generate the random motions in his reinforcement
learning models [16]. (4) A lack of completeness in the
inverse dynamics solver can cause the desired and real
joint motion to differ. The error can be regarded as
disturbance noise. The physiological tremor [17] may
be an example of this.

Fig. 1 shows the configuration of the hybrid con-
trol system. In this figure, z−1 is the operator that
indicates a one-step delay in the discrete time signal
by a sampling interval of ∆t, and z−1 is the operator
that calculates the change in the signal. Although the
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human hand position control system includes higher
order complex dynamics terms which are ignored in
Equation (3), McRuer’s experimental model of human
compensation control suggests that the term that con-
verts the hand position error to the hand velocity is
a major term in the human control system [18]. We
consider Equation (3) to be a good approximate model
for the analysis of coordinate transformation learning
in humans.

The learner Φfb(θ, e), and the learner Φfb(θ, e)
are modeled using an artificial neural network. Let
Φ′

fb(θ, e) be the desired output of the learner
Φfb(θ, e) and Φ′

ff (θ,∆xd) be the desired output of
the learner Φff (θ,∆xd). Φ′

fb(θ, e) and Φ′
ff (θ,∆xd)

function as teachers for Φfb(θ, e) and Φff (θ,∆xd),
respectively. Without any prior knowledge of the func-
tion f(θ), or the Jacobian J(θ), we examine how to
learn a hand position controller by observing the hand
position x(k) and the joint angle vector θ(k) only.

2.2 Feed-forward Controller Learning

According to Kawato’s feedback error learning [6],
we use Φ′

ff (θ(k),∆xd(k)) expressed as:

Φ′
ff (θ(k − 1),∆xd(k − 1))

= (1 − λ)Φff (θ(k − 1),∆xd(k − 1))
+d(k − 1) +Φfb(θ(k), e(k)) (5)

where λ is a small, positive, real number for stabiliz-
ing the learning process and ensuring that equation
Φff (θ,0) ≈ 0 holds. The second term on the right-
hand side of Equation (5), d(k − 1), is used to com-
pensate the influence of the disturbance noise d(k−1)
included by e(k). We call the following term the mod-
ified feedback error signal.

Φ∗
fb(θ(k), e(k)) = Φfb(θ(k), e(k)) + d(k − 1). (6)

If the joint angle vector changes according to Equa-
tion (1) and ∆θ(k− 1) is small enough, the change of
the hand position is approximated as follows:

∆x(k − 1) = f(θ(k)) − f(θ(k − 1))
≈ J(θ(k − 1))∆θ(k − 1). (7)

The updated hand position error e(k + 1) is approxi-
mated by

e(k + 1) = e(k) +∆xd(k) −∆x(k)
≈ efb(k) + eff (k) − J(θ)d(k − 1) (8)
efb(k) = e(k) − J(θ(k))Φfb(θ(k), e(k)) (9)
eff (k) =∆xd(k) − J(θ(k))Φff (θ(k),∆xd(k)).

(10)

When Ψfb(θ) is an appropriate coordinate transfor-
mation gain of the feedback controller, the error sig-
nal for the feed-forward controller ∆Φff (θ,∆xd) =
Φ′

ff (θ,∆xd)−Φff (θ,∆xd) can be approximated as:

∆Φff (θ(k − 1),∆xd(k − 1))
≈ −λΦff (θ(k − 1),∆xd(k − 1))

+Ψfb(θ)efb(k − 1) +Ψfb(θ)eff (k − 1)
+(Im −Ψfb(θ)J(θ))d(k − 1). (11)

The feed-forward controller is updated by the above
error signal. The third term on the right-hand side of
Equation (11) can reduce the error of the feed-forward
controller eff =∆xd−J(θ)Φff (θ,∆xd). The learn-
ing result J(θ)Φff (θ,∆xd) ≈ ∆xd is obtained. Sec-
tion 4 show its derivation.

3 A Novel Learning Model for the
Feedback Controller

3.1 Feedback Controller Learning by Dis-
turbance Noise

We proposed the learning model of the human in-
verse kinematics solver based on the assumption that
the feedback controller tries to compensate for the dis-
turbance noise in the control loop [7]. If the output
of the feed-forward controller Φff (θ(k),∆xd(k)) and
the output of the feedback controller Φfb(θ(k), e(k))
is precise enough, e(k+1) ≈ −J(θ(k))d(k) is obtained
according to Equation (8). One role of the feedback
controller is to compensate for disturbance noise. To
compensate for d(k) at time k + 1, the output of the
feedback controller should be −d(k). The proposed
learning model based on the disturbance noise can be
expressed by

Φ′
fb(θ(k), e(k)) = −d(k − 1). (12)

The error signal for the hand position feedback con-
troller ∆Φfb(θ, e) = Φ′

fb(θ, e) − Φfb(θ, e) can ex-
pressed as follows:

∆Φfb(θ(k), e(k)) = −d(k − 1) −Φfb(θ(k), e(k))
= −Φ∗

fb(θ(k), e(k)). (13)

The feedback controller is updated by the above error
signal. The right-hand side of Equation (13) is the
product of a negative sign and the modified feedback
error signal. Fig. 2 shows the conceptual diagram of
the learning model (12). The dotted line shows the
error signal for learning the feedback controller. The
learning result is expressed by

Φfb(θ, e) ≈ J+(θ)e (14)

J+(θ) = RdJ
T (θ)(J(θ)RdJ

T (θ))−1. (15)

4188



J+(θ) is the pseudo-inverse matrix (Moore-Penrose’s
generalized inverse matrix) of J(θ). The derivation
of the above result will be illustrated in Section 4.
The feedback controller expressed in Equation (14)
can appropriately perform the coordinate transforma-
tion from visual to joint angle coordinates.

After learning the feedback controller, d(k) should
be small enough to control the hand precisely. How-
ever, when d(k) is 0, Φfb(θ, e) slowly converges on 0
by the learning rule (12). To avoid this drawback, we
will exploit feedback error learning [6] for the learning
of the feedback controller.
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3.2 Feedback Controller Learning by
Feedback Error Learning

We can use the feedback error signal for learning
the feedback controller, as well as the feed-forward
controller, given by

Φ′
fb(θ(k − 1), e(k − 1)) = Φfb(θ(k − 1), e(k − 1))

+Φ∗
fb(θ(k), e(k)). (16)

Fig. 3 shows the conceptual diagram of the learning
model (16).

The error signal for the feedback controller is ex-
pressed as follows:

∆Φfb(θ(k − 1), e(k − 1)) = Φ∗
fb(θ(k), e(k)). (17)

∆Φfb(θ, e) can be approximated as follows:

∆Φfb(θ(k − 1), e(k − 1))
≈ Ψfb(θ)efb(k − 1) +Ψfb(θ)eff (k − 1)

+(Im −Ψfb(θ)J(θ))d(k − 1). (18)

The first term on the right-hand side of Equation (18)
can reduce the error of the feedback controller efb =
e−J(θ)Φfb(θ, e). If Φfb(θ, e) satisfies Φfb(θ,0) = 0
and the learning is started from a good initial sta-
tus of the feedback controller, the learning result
J(θ)Φfb(θ, e) ≈ e is obtained. However, the learn-
ing signal based on the feedback error signal is effective
only if the feedback controller is accurate enough. It is
difficult for this learning model to explain the human
learning capability.

3.3 Learning based on Disturbance Noise
and Feedback Error Signal

The right-hand side of Equation (17) is the product
of a negative sign and the right-hand side of Equation
(13). The difference of the time of the input signal
to Φfb(θ, e) produces similar learning results. To ex-
plain the human learning function in the cases that
the feedback controller is inaccurate and to keep the
feedback gain in the cases that the disturbance noise
is infinitesimal, the error signals defined in Equation
(13) and Equation (17) can be used simultaneously at
time k. The proposed novel error signal can be ex-
pressed as follows:

∆Φfb(θ(k − 1), e(k − 1)) = Φ∗
fb(θ(k), e(k))

−Φ∗
fb(θ(k − 1), e(k − 1)). (19)

The desired output signal for Φfb(θ(k − 1), e(k − 1))
can be expressed as follows:

Φ′
fb(θ(k − 1), e(k − 1)) = −d(k − 2)

+d(k − 1) +Φfb(θ(k), e(k)). (20)

The above signal can be calculated as the linear combi-
nation of the control signals. To satisfy Φfb(θ,0) ≈ 0,
even using a general learner, Equation (20) should be
modified as follows:

Φ′
fb(θ(k − 1), e(k − 1)) = −d(k − 2)

+d(k − 1) +Φfb(θ(k), e(k))
−λfbΦfb(θ(k − 1), e(k − 1)) (21)

where λfb is a small, positive, real number. Fig. 4
shows the conceptual diagram of the proposed learn-
ing model. The learning model is only a little more
complex than the models presented in Fig. 2 and Fig.
3.
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When d(k) is not 0 and λfb is small enough, we
obtain the same learning result as in Equation (14).
The derivation of the learning result will be illustrated
in Section 4. When d = 0, Rd goes to 0 and J+(θ)
cannot be calculated. However, the coordinate trans-
formation gain of Φfb(θ, e) does not also go to 0.

4 Derivation of Learning Result

4.1 Learning Model of the Neural Net-
works

The models proposed in this paper can serve as
general learners which are C1 class functions of the
input vector. However, since it is difficult to show the
convergence properties of the proposed learning model
briefly [10], we will show them by using the learners
which have a limited structure as follows:

Φfb(θ, e) = Ψfb(θ)e (22)
Φff (θ,∆xd) = Ψff (θ)∆xd (23)

where Ψfb(θ) ∈ Rm×n and Ψff (θ) ∈ Rm×n are co-
ordinate transformation gains that have learning pa-
rameters W fb ∈ RNfb and W ff ∈ RNff respectively.
For simplicity, we will show the convergence of

P ff (θ) = J(θ)Ψff (θ) (24)

instead of Ψff (θ). Here, the change of Ψ(θ) =
(ΨT

fb(θ), P T
ff (θ))T is considered.

Let rs[S] be the row string of the matrix S. For
simplicity, we assume that W fb and W fb are func-
tions of θ and the change of the coordinate trans-
formation gains by the learning can be expressed as
follows:

Ψ(l+1)(θ) = Ψ(l)(θ) + η∆Ψ(θ)
∆Ψ(θ) = (∆ΨT

fb(θ),∆P T
ff (θ))T

rs[∆Ψfb(θ)] = rs[∆Φfb(θ, e)eT ]Ωfb (25)

rs[∆P ff (θ)] = rs[J(θ)∆Φff (θ,∆xd)∆xT
d ]Ωff

(26)

where Ωfb ∈ Rnm×nm and Ωff ∈ Rnm×nm are posi-
tive definite matrices defined as:

Ωfb =
Nfb∑
j=1

(
∂rs[Ψfb(θ)]

∂Wfb(j)
)T (

∂rs[Ψfb(θ)]
∂Wfb(j)

) (27)

Ωff =
Nff∑
j=1

(
∂rs[Ψff (θ)]

∂Wff(j)
)T (

∂rs[Ψff (θ)]
∂Wff(j)

).(28)

η is an appropriate positive real number.
Let’s consider the following matrix function.

F (θ,Ψ) = (F T
fb(θ,Ψ), F T

ff (θ,Ψ))T (29)
F fb(θ,Ψ) = E[∆Ψfb|θ] (30)
F ff (θ,Ψ) = E[∆P ff |θ]. (31)

where E[t(θ)|θ] is the expected value of a scalar, a
vector, or a matrix function t(θ) when the input vector
is θ. Let G(θ,Ψ) be the Jacobian defined as follows:

G(θ,Ψ) =
∂rs[F (θ,Ψ)]T

∂rs[Ψ]T

=
[

Gfb/fb(θ) Gfb/ff (θ)
Gff/fb(θ) Gff/ff (θ)

]
. (32)

Let Ψ+(θ) be the learning result of Ψ(θ) on which
Ψ(θ) finally converges by learning. If the equation

F (θ,Ψ+(θ)) ≈ 0 (33)

is satisfied and the real components of all the eigen-
values of G(θ,Ψ+(θ)) are negative, the learning result
Ψ(θ) ≈ Ψ+(θ) is obtained when the initial status of
Ψ(θ) is appropriate [10]. When d(k) is not 0, we can
obtain the following learning result by using Equation
(12) or (21):

Ψ+(θ) = (J+T (θ), IT
n )T . (34)

Let eΨ(θ) be the error matrix of the coordinate trans-
formation gain defined as

eΨ(θ) = (eT
Ψfb(θ), eT

Pff (θ))T

= Ψ+(θ) −Ψ(θ). (35)

For simplicity, we will use ∆Ψ#(θ,Ψ) defined as

∆Ψ#(θ,Ψ) = (∆Ψ#T
fb (θ,Ψ),∆P #T

ff (θ,Ψ))T

(36)

∆Ψ#
fb(θ,Ψ) = E[∆Φfb(θ, e)eT |θ] (37)

∆P #
ff (θ,Ψ) = J(θ)E[∆Φff (θ,∆xd)∆xT

d |θ].
(38)

The relationship between ∆Ψ#(θ,Ψ) and F (θ,Ψ) is
as follows:

rs[F fb(θ,Ψ)] = rs[∆Ψ#
fb(θ,Ψ)]Ωfb (39)

rs[F ff (θ,Ψ)] = rs[∆P #
ff (θ,Ψ)]Ωff . (40)
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4.2 Feed-forward Controller Learning

First, the convergence properties of the feed-
forward controller learning expressed in Equation (5)
is shown. For simplicity, d(k) is assumed to be a Gaus-
sian noise vector. Since d(k) has no correlation with
∆xd(k),

E[e(k − 1)∆xd(k − 1)|θ] = O(eΨ) (41)

is obtained. O(eΨ) is the sum of first and higher order
terms of eΨ in each equation. If λ and is small enough,

∆P #
ff (θ,Ψ) = J(θ)E[∆Φff (θ, e)∆xT

d |θ]
≈ J(θ)Ψfb(θ)

ePff (θ)E[∆xd∆xT
d |θ] + O(e2

Ψ) (42)

is obtained by using Equation (8) and Equation (11).
Therefore,

F ff (θ,Ψ+) ≈ 0 (43)

is established. The real components of all the eigen-
values of the following matrix

Gff/ff (θ,Ψ+) = −(In ⊗ E[∆xd∆xT
d |θ])Ωff (44)

are negative where ⊗ is a 2-operand operator that
indicates the Kroneker product. Gff/fb(θ,Ψ+) =
∂rs[F ff (θ,Ψ)]T /∂rs[Ψfb]T is 0. If Ψfb(θ) converges
on J+(θ), P ff (θ) approximately converges on the
n × n identity matrix In. Therefore, the feedback
controller learning is essential.

4.3 Feedback Controller Learning

4.3.1 Learning based on Disturbance Noise

Here, the convergence properties of the feedback con-
troller learning expressed in Equation (12) is shown.
The error signal for the feedback controller can be ap-
proximated by

∆Φfb(θ(k), e(k))
≈ −(Im −Ψfb(θ)J)(d(k − 1) +Ψfb(θ)e(k − 1))

+Ψfb(θ)ePff∆xd(k − 1). (45)

By using Equation (8) and (45), ∆Ψ#
fb(θ,Ψ) can be

expressed as:

∆Ψ#
fb(θ,Ψ) ≈ (Im −Ψfb(θ)J(θ))RdJ

T (m
¯

θ)

+ΨfbePffE[∆xd(k − 1)eT (k)|θ]
−Ψfb(θ)J(θ)eΨfb(θ)

E[e(k − 1)eT (k − 1)|θ](J(θ)eΨfb(θ))T

= (Im −Ψfb(θ)J(θ))RdJ
T (m

¯
θ) + O(e2

Ψ). (46)

Equation (33) is clearly satisfied.

Gfb/fb(θ,Ψ+) = −(Im ⊗ (J(θ)RdJ
T (θ)))Ωfb (47)

is obtained. Since the real components of all the eigen-
values of Gfb/fb(θ,Ψ+) and Gff/ff (θ,Ψ+) are neg-
ative and Gff/fb(θ,Ψ+) is 0 as shown in Equation
(42), the real components of all the eigenvalues of
G(θ,Ψ+(θ)) are negative. Therefore, Equation (14)
is obtained by the learning based on the disturbance
noise.

4.3.2 Learning based on Disturbance Noise
and Feedback Error Signal

Here, the convergence properties of the feedback con-
troller learning expressed in Equation (21) is shown.
By using Equation (8) and Equation (19),

∆Ψ#
fb(θ,Ψ) ≈ (Im −ΨfbJ)

(RdJ
T +ΨfbE[e(k − 1)eT (k − 1)|θ])

+O(e2
Ψ(θ))

= (Im −Ψfb(θ)J(θ))(Im +Ψfb(θ)J(θ))

RdJ
T (θ) + O(e2

Ψ(θ)) (48)

is obtained. Equation (33) is clearly satisfied.

Gfb/fb(θ,Ψ+) = −((Im + J+(θ)J(θ))T

⊗(J(θ)RdJ
T (θ)))Ωfb (49)

is obtained. Since the real components of all the eigen-
values of Gfb/fb(θ,Ψ+) and Gff/ff (θ,Ψ+) are neg-
ative, the real components of all the eigenvalues of
G(θ,Ψ+(θ)) are negative. Therefore, the learning re-
sult expressed in Equation (14) is obtained by the pro-
posed learning method.

When d(k) is 0, the learning result has not been
obtained yet. However, since E[e(k − 1)eT (k − 1)|θ]
in Equation (48) does not go to 0 even when d(k) is
0, Ψfb(θ) does not also go to 0. The feedback con-
troller Φfb(θ, e) still keeps the coordinate transforma-
tion function.

5 Numerical Simulations

5.1 Coordinate Transformation Learning
of 3 DOF arm

Numerical simulation experiments were performed
in order to evaluate the performance of the proposed
model. The inverse kinematics of a 3 DOF arm moving
on a 2 DOF plane were considered. The relationship
between the joint angle vector θ = (θ1, θ2, θ3)T and
the hand position vector x = (x, y)T was defined as:
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x = x0 + L1 cos(θ1) + L2 cos(θ1 + θ2)
+L3 cos(θ1 + θ2 + θ3) (50)

y = y0 + L1 sin(θ1) + L2 sin(θ1 + θ2)
+L3 sin(θ1 + θ2 + θ3). (51)

The range for θ1 was (−30◦, 120◦); the range for θ2

was (0◦, 120◦); and the range for θ3 was (−75◦, 75◦).
L1 was 0.30 m, L2 was 0.25 m and L3 was 0.15 m.

Random straight lines provided the desired trajec-
tories for the hand. T was 20 and γ is 1.0. The track-
ing control trials expressed as Equation (3) with online
incremental learning were performed. The simulation
used two artificial neural networks with four layers.
The first layer had 5 units and the forth layer had 3
units. The other layers had 15 units each. The first
layer and the forth layer consisted of linear units. The
second layer and the third layer consisted of sigmoid
units. It is highly unlikely that the human nervous
system utilizes the back-propagation learning method.
However, since the choice of the learning method of the
neural networks is not essential for the evaluation of
the proposed learning model, back-propagation learn-
ing was used.

When the hand position error grew larger than
0.2m, or two joints reach their joint limits, the trial
was regarded as a failure and tracking control was
given up. The standard deviation of each component
of d(k) was 0.05. Learning based on Equations (5)
and (21) was conducted 20 times in one tracking trial.
1,000 tracking trials were conducted to estimate the
RMS (Root Mean Square) error. λ and λfb were set
at 0.001.

The solid line with white circles shows RMS Error (m).
The dashed line with black boxes shows percentage of
successful trials (%).

Fig. 5: Learning Process of 3-DOF Arm Controller

Fig. 5 shows the progress of the proposed learning
model. The percentage of the successful tracking trials
increases and the RMS error decreases as the number
of trials increases. Fig. 6 illustrates an example of

tracking control to a straight line by the controller
after 2 × 107 learning trials.

In order to evaluate the influence of having no dis-
turbance noise, d(k) was set at 0 and learning con-
tinued for 107 more trials. The RMS error became
1.40×10−2(m). The performance of the controller de-
teriorated only slightly. When the learning rule (12)
was used, the percentage of successful trials decreased
25% and the RMS error increased 4.5×10−2. The pro-
posed learning model can keep the coordinate trans-
formation function when d(k) is 0.

0.5

0.5
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y

0

0123456789
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Fig. 6: One Example of Tracking Control

5.2 Coordinate transformation learning
of a 7 DOF arm

We performed simulations of the coordinate trans-
formation learning of the feedback controller of a
human-like 7-DOF arm as shown in Fig. 7. The arm
length was 0.755m

L1

L2

L3

L4

Fig. 7: tele-existence Slave ARm II (telesar II)
In order to accelerate the learning, neural networks

that have a structure suitable for the coordinate trans-
formation as shown in Equation (22) were used. The
desired output signal for the coordinate transforma-
tion gain of the feedback controller Ψ′

fb(θ) was ex-
pressed as follows:

Ψ′
fb(θ) = Ψfb(θ) +

(Φ′
fb(θ, e) −Φfb(θ, e))eT

0.05 + |e||Φ′
fb(θ, e)| (52)

Ψff (θ) was also updated in the same manner de-
scribed in the above equation.

The first layer of the coordinate transformation
gains had 7 linear units and the forth layer had 21
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units. The other layers had 25 sigmoid units each.
16384 tracking trials were conducted to estimate the
RMS error. λ and λfb were set at 0.01. Fig. 8 shows
the progress of the proposed learning model. We con-
cluded that the proposed learning model succeeded in
the coordinate transformation learning of the 7-DOF
arm.

Fig. 8: Learning Process of 7-DOF Arm Controller

6 Conclusions

A learning model of coordinate transformation of
the hand position feedback controller based on distur-
bance noise and the feedback error signal was proposed
and tested in this paper. The desired output signal of
the proposed learning model can be calculated by the
linear combination of the control signals. The pro-
posed model is capable of coordinate transformation
learning without using a forward model or complex
signal switching. Modified learning models consider-
ing the time delay in the vision system will be reported
in the near future.
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