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Abstract

This paper addresses motion planning of a homoge-
neous modular robotic system. The modules have self-
reconfiguration capability so that a group of the modules
can construct a robotic structure. Motion planning for self-
reconfiguration is a kind of computationally difficult prob-
lem because of many combinatorial possibilities of modu-
lar configuration and the restricted degrees of freedom of
the module; only two rotation axes per module. We will
show a motion planning method for a class of multi-module
structures. It is based on global planning and local motion
scheme selection that is effective to solve the complicated
planning problem.

1 Introduction

In recent years, the feasibility of reconfigurable robotic
systems has been examined through hardware and software
experiments [1]–[8]. This paper focuses on a homogeneous
self-reconfigurable modular robotic system that can adapt
themselves to the external environment by changing their
configuration. It can also repair itself by using spare mod-
ules without external help owing to homogeneity of the
module. Its various potential applications include struc-
tures or robots that should operate in extreme environments
inaccessible to humans, for instance, in space, deep sea, or
nuclear plants.

Hardware of reconfigurable modular robotic system is
classified into two types, lattice type [1]–[3] and linear type
[4]–[8] The former corresponds to a system where each
module has a fixed geometry of connections, and a group
of them can construct various types of static crystalline lat-
tices such as a jungle-gym. However, it is difficult for such
a system to generate some dynamic robotic motions. On
the other hand, the snake-like shape of the latter can gen-
erate dynamic motions, nevertheless self-reconfiguration is
difficult for them.

On software side of reconfigurable modular robot, there
have been a number of studies on lattice-type. We have also
developed several distributed methods for two-dimensional
and three-dimensional homogeneous modular robots [9,
10]. These methods enabled them to self-assemble and
self-repair in a distributed manner using local inter-module
communication. In contrast, most of other methods are

based on centralized planning. For instance, Kotay et. al
[11] developed a motion synthesis method for a class of
module groups. Ünsal et. al [12] reported two-level mo-
tion planners for a bipartite module composed of cubes and
links, based on heuristic graph search between module con-
figurations. These methods are dedicated to modules that
have sufficient degrees of freedom to move to every neigh-
boring lattice position.

Recently, we have developed a new type of modular
robotic system that can realize both static structure and dy-
namic robotic motion [13]. This has been realized by sim-
plified design of a module.

We have shown our recent module can form various
shapes such as a legged walking robot or a crawler-type
robot. However, its motion planning is not straightforward
because of restricted degrees of freedom and non-isotropic
spatial property of movability of a module. When a mod-
ule moves from one position to another, some combined
motions of other modules are usually required. The neces-
sary motion combination should be duly planned for each
particular local configuration. Due to these restrictions of
modules, it is difficult to find some generic law of motion
planning unlike ordinary lattice-type modules.

In this paper, we propose a two-layered motion planning
method for the purpose of generating a sequence of mod-
ule motions that allows a class of module clusters to trace
a desired trajectory. It consists of global flow planner and
local motion scheme selector. The former outputs possi-
ble module paths to realize the overall cluster motion. The
latter selects valid paths and comprises them by collect-
ing appropriate locally coordinated module motions based
on a rule database. These rules take account of restricted
module movability by associating appropriate pre-planned
motion schemes with various local configurations.

2 Hardware Overview and Module Model
Here, we give a brief overview of the hardware [13] and

its model for motion planning.

2.1 Hardware Design

The developed module consists of two semi-cylindrical
parts connected by a link (Fig. 1). Servomotors are em-
bedded in the link so that each of the parts can rotate by
180◦. Each module has six connecting surfaces (three for
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Fig. 1: A robotic module.

each part) that can attach and detach other modules by us-
ing magnets and shape memory alloy (SMA) actuator. The
connecting surfaces have also electrodes for power sup-
ply and serial communication. All the connected modules
can be supplied power from one module connecting to the
power source. Each module is equipped with a PIC micro-
processor that drives servomotors and SMA actuators.

2.2 Atomic Motion

Before introducing module model, it is helpful to explain
the atomic motions that are the simplest module motions of
one or two modules. There are three types of atomic mo-
tion, pivot motion, forward-roll motion and mode conver-
sion. Figures 2 and 3 show two atomic motions on a floor

 fixed 

Fig. 2: Forward-roll motion.

 fixed 
 fixed 

 released 

Fig. 3: Pivot motion.

Helper

Fig. 4: Mode conversion from pivot to forward-roll.

tiled by the modules: forward-roll and pivot motions, the
simplest basic motions where their orientation of rotational
axes are in different directions. To generate these motions,
the module should fix one of the two parts to other mod-
ules (in these cases the module-tiled floor), whereas the
connection of the other part should be released. The fixed
part alternates for the pivot motion as shown in Fig.3. The
module is said to be in pivot mode or forward-roll mode
if it can perform one of these motions. Mode conversion
is a two-module motion to convert from one mode to the
other, where a helper module is required as illustrated in
Fig. 4. By combining modules in both forward-roll mode
and pivot mode, a variety of three-dimensional structures
are possible.

2.3 Model description

Each semi-cylindrical part of a module is distinguished
as p1 and p2 in the model description. The position and
orientation of the module m are uniquely determined by
specifying the position and orientation of one part and the
rotation angles of the servomotors. Let Σm be the local co-
ordinate system fixed on the part p1 of module m as shown
in Fig. 1, where zm is the rotation axis and ym is the di-
rection from the part center to the arc top. The axis xm is
uniquely determined by zm and ym. Let Σ0 be the abso-
lute coordinate system here. We describe the position and
orientation of module m as follows:

• the central position pm(x, y, z) of p1 with respect to
Σ0,

• the orientation of basis vectors zm and ym of Σm with
respect to Σ0,

• the rotation angles of each part (θ1, θ2).
In the following, we assume that both parts of modules

move only on orthogonal-lattice grid and that the rotation
angles (θ1, θ2) are limited to 0◦ or ±90◦ for simplicity. A
unit length of the lattice grid is defined as the length be-
tween the two rotational axes of a module. A module there-
fore occupies two adjacent points in the grid.

We also denote the connection faces as Ciz+, Ciz− and
Ciy (i = 1, 2 for p1, p2) according to Σm. The state of a



connecting face, S(face), takes either of the following:

T(ID) Connecting to module ID
T(*) Connecting to a module but ID not specified
F No module connected

The connection state of a module is written as [S(C1z+),
S(C1z−), S(C1y)], [S(C2z+), S(C2z−), S(C2y)].

For example, Fig. 5 shows the initial configuration of two
modules shown in Fig. 4, which is described as follows.

ID 1 pm(−1, 0, 0) zm(0, 1, 0) ym(0, 0, 1)
(θ1, θ2) = (−90◦, 0◦),
connection state: [F, F, T(*)], [T(2), F, F]

ID 2 pm(−2, 1, 0) zm(0, 0, 1) ym(0, 1, 0)
(θ1, θ2) = (0◦, 0◦)
connection state: [F, T(*), T(1)], [F, T(*), F]

2.4 Motion description

When a module makes a motion, one of the parts should
be attached to another module to keep the connectivity. We
call this fixed part a base part. Module motion is described
using module IDs, base parts, rotation angles and the num-
ber of carried modules and their IDs if any.

A motion sequence is a collection of these motions. For
instance, the motion sequence in Fig. 4 consists of four
steps and is described as follows.

step 1
ID 1 base p1 rot(90, 0) carry 1 ID 2
ID 2 base p1 rot(0, 0) carry 0

step 2
ID 1 base p1 rot(-90, 90) carry 1 ID 2
ID 2 base p1 rot(0, 0) carry 0

step 3
ID 1 base p1 rot(90, -90) carry 1 ID 2
ID 2 base p1 rot(0, 0) carry 0

step 4
ID 1 base p1 rot(-90, 0) carry 1 ID 2
ID 2 base p1 rot(0, 0) carry 0

In step 1, there are two moving modules, and the module
ID 1 rotates by (θ1 = 90◦, θ2 = −0◦) with base part p1 and
carries another module ID 2, which does not make rotation,
and so on.
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Fig. 5: Description of initial configuration in Fig.4.

Fig. 6: A cluster composed of two layers of pivot mode
modules with two converter modules.

3 Motion Planning Architecture

We deal with the motion planning for a particular class
of module clusters (Fig. 6). The cluster is a chain of rectan-
gular prisms composed of two layer of pivot mode modules
where the lengths of the prisms are variable. A couple of
forward-roll mode modules called converters are attached
to a side of the cluster. The converter modules are used to
change the rotation axes of the pivot modules. The connec-
tivity condition of the whole cluster is satisfied by placing
the modules of each layer so that the directions of ym axis
are orthogonal.

The goal of planning is to let the cluster trace a certain
given three-dimensional trajectory in the lattice grid cor-
recponding to the center of mass of the four-module block
(Fig. 7). For instance, the paths are given as a route that a
plant inspection robot or a planetary explorer should trace.
This allows the module cluster to move into narrow space
or to climb over the obstacle. The planner should generate
appropriate motion sequence that realizes the cluster mo-
tion guided along the desired trajectory.

The module’s non-isotropic geometrical property makes
it difficult to obtain the motion sequence straightforwardly.
Since a module has only two parallel rotation axes, its
three-dimensional motion usually requires a combined co-
ordinated motion sequence of other surrounding modules.
If this motion sequence is not carefully planned, the resul-
tant sequence may not be possible for many reasons such
as inappropriate orientation of rotation axes, collision be-
tween modules, or loss of connectivity during the motion.
This kind of coordinated motion sequence must be care-
fully chosen in each case of particular local configuration.
For example in Fig. 8, the motion of module #1 to the target

Given trajectory

Module cluster
Planned motion

Fig. 7: Planning of cluster motion.
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Fig. 8: A coordinated motion sequence by 3 modules.

position requires coordinated motions such as module #3’s
turning a connection face, or module #2’s carrying mod-
ule #1. We have not found any generally applicable law
for planning these motion sequences, so some database of
rules to look up is necessary.

In this paper, we take a two-layered approach to cope
with the complexity of the planning problem. The upper
layer decomposes the planning problem into subproblems
solvable by the lower layer. The lower layer is designed
to solve simple planning problems based on a database of
rules for each local configuration.

More precisely, the upper and lower layer are called the
global flow planner and the local motion scheme selector
respectively. As shown in Fig. 9, the global flow planner
searches possible module paths and motion orders to pro-
vide the global cluster movement, called flow, according to
the desired trajectory. This is realized as a motion of a mod-
ule group, a block, such that the tail block is transferred to-
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Fig. 9: Planner architecture.

ward the given heading direction. The local motion scheme
selector verifies if the paths generated by the global plan-
ner are valid for each member module of the block based
on rule database. If a given path from the global planner
turns out to be valid, the selector updates the motion plan
by adding a set of local reconfiguration motion sequences
called motion schemes. Otherwise it tries another possible
module path generated by the global planner. The selector
copes with the non-isotropic property of module movability
by associating the coordinated motion with the correspond-
ing local configuration. Note that this is a centralized plan-
ning method assuming that all the information of modules
in the cluster is available.

In the following planning method, we give the following
assumptions:

(1) One module can lift only one other module.
(2) Only one motion scheme is allowed at a time.
(3) At least two converter modules are assumed in the

whole cluster.
(4) The flow direction should go straight at least by two

unit lengths.

The first assumption comes from the limited torque capac-
ity of the hardware. The remainders are introduced to sim-
plify the planning problem.

4 Cluster Flow and Global Planner

The input to the global planner is the desired trajectory
of the cluster. The cluster flow is defined as the trace of
block motion, where the tail block is removed and put at
the other end as the new head, as shown in Fig. 10. By
one block motion, the head of the cluster moves by two
unit length on the lattice grid. While there are several way
of generating this kind of a block motion, we adopt simple

Tail

Flow direction

New head

<Initial state> <Final state>
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Head

Modules moving on the side of cluster

Block

Target
position

Fig. 10: Example of block motion.
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motion schemes sending modules one by one towards the
head. The modules move using forward-roll and some co-
ordinated support motions on the side of the cluster (Figs. 8
and 10).

The output of the global planner are the possible paths
Pmi (i = 0, 1, . . . , NP ) for each member module m in
the tail block and its motion orders Oi (i = 0, 1, . . . , No),
where NP and No are the numbers of candidate paths and
orders respectively.

The paths are derived by tracing lattice positions as
Pmi = (pmi0 , pmi1 , . . . , pmin

) on the side of the cluster,
starting from the initial position until the module reaches
one of target positions next to the current head block
(Fig. 11). A module may have multiple target positions
and paths, and their number varies depending on the clus-
ter configuration. After the tail block motion is completed,
it becomes a new head block. Then the next tail will be sent
to the head, and so forth.

The order of applying motions is defined as Oi

(oi1, oi2, oi3, oi4) where oij is ID number of member mod-
ule. It should be decided in such a way that the connectivity
of whole cluster is maintained. For instance, consecutive
motions of the two modules in the upper layer of the tail
block in Fig. 11 are not allowed because when the two up-
per modules are moved the connectivity condition of two
lower modules is violated.

5 Motion Scheme Selector
Based on the output of the global planner, appropriate

motion schemes should be selected to achieve the planned
block motion, considering connectivity and collision avoid-
ance. The motion scheme selector does this job using a
database of rules. In the following, after outlining the se-
lection procedure, we will detail rule description, matching,
and validity check of module paths.

5.1 Selection procedure

According to the motion order Oi (i = 0, 1, . . . , No)
given from the global planner, the selector verifies the va-

lidity of possible paths Pmj (j = 0, 1, . . . , NP ) of each
member module m in the block, in increasing order of trav-
eling distance. Namely, the path with the shortest length is
first tried, next the second shortest, and so on. Each rule
includes a motion scheme associated with an initial config-
uration that is described as a connectivity graph (Fig. 12a).
Among the rules that matches the current local configura-
tion, a motion scheme that gives the largest forward move-
ment is selected. The motion scheme of the selected rule
is stored in the temporary motion sequence T . If all the
motions of the member modules are correctly determined,
the planner updates the motion plan S by appending the
output sequence T to it. Otherwise, the selector tries next
possibilities of P or O.

5.2 Rule description

A rule Rk (k = 1, 2, . . . , NR) in the database is com-
posed of a if-condition part and a then-action part,
where NR is the total number of rules. The former is a con-
nectivity graph Gk that describes a local connection state to
be matched to the current local configuration of the mov-
ing module. The latter corresponds to a motion scheme Mk

written in the form of motion sequence.
Figure 12b illustrates the graph description of local con-

figuration. In the connectivity graph Gk, a node is assigned
to each module. The node includes such data as a tempo-
rary ID number, rotation angles and the states of the six
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connecting faces. To make the rules applicable to various
cases, we introduce a wild card state “*” (don’t care) that
matches all the states.

An arc in the connectivity graph denotes the connection
to other modules and specifies the relative direction of z
and y axes of connecting module m, such as [(z(m), y(m)].
The top node of a connectivity graph corresponds to the
module to be matched to the current local configuration. In
the rule database, sufficient number of rules are required to
realize various module motions. These rules are currently
hand-coded.

5.3 Rule matching

To find a motion scheme of a module m for the given
path Pmj , the selector searches rules that matches the local
configuration of m.

Let Gm be the current connectivity graph of module
m. Matching between Gm and rule templates Gk (k =
1, 2, . . . , NR) proceeds from the top node down to the con-
necting nodes. During the matching process, the con-
nection states and rotation angles are compared for cor-
responding nodes, as well as the connecting directions in
each arc. The graph matching succeeds if all the nodes and
arcs turned out to be compatible. All the matching possi-
bilities are tested for each rule, such as mirrored configu-
rations and configurations where the parts p1 and p2 are
swapped. The selector makes a list of all the matched rule
Rk to check the validity as described next.

5.4 Validity check of a module path

Suppose that Nf rules were found that match to the
current configuration Gm. For each rule Rk (k =
1, 2, . . . , Nf ), the validity of associated motion scheme Mk

is checked. If there exist valid motion schemes, then the se-

lector chooses the one that gives the largest forward move-
ment for the path Pmj .

The validity check is performed from two aspects, colli-
sion avoidance and connectivity of total cluster. By apply-
ing the motion scheme Mk to the module m, collision can
be detected by calculating the sweeping area of its motions.
Similarly, the connectivity is examined during the motion
by tracing the connected modules from module m in the
cluster.

When more than one rules are found valid, one of the
motion schemes is selected based on some additional crite-
ria, such as the maximum traveling distance along the path.

5.5 Typical motion schemes

In order to implement the motion scheme selector, we
extracted several fundamental motion schemes as follows.

(1) rolling on a side of a cluster (Fig. 12)
(2) carrying a module by right-angle on a plane (Fig. 13)
(3) converting the rotational axis of a module (Fig. 14)

Figure 12 shows a rule corresponding to a simple motion
scheme of the rolling on a side of the cluster. Figures 13
and 14 illustrate how a module configuration changes in the
latter two motion schemes. Suppose that the initial cluster
is put on x-y plane, the direction change between x and y
axes is done by alternating the layers (Fig. 13). The con-
verter modules are used when the desired flow requires a
change of the rotational axis of the module (Fig. 14).

Although the correctness of the planner has not been
proven yet, we observed most of the cases were solved
in simulations where the planner were applied to clusters
composed of different number of robots. We believe that
the proof can be done by checking necessary and sufficient
rules are provided for the cluster flow. After the correct-



ness of the planner is shown, the planning of cluster flow
can be reduced to a simple planning problem of module
blocks which can be regarded as a “meta-module.”

5.6 Planning Results

The motion planner can generate simple three-
dimensional paths for various sizes of clusters. There are
approximately thirty rules in the current development. Fig-
ure 15 shows some snapshots taken from planned motion
of a cluster of 22 modules starting from a configuration on
a plane. The cluster first changes its flow direction on the
horizontal plane, then moves in a vertical direction.

6 Hardware Experiments
This section presents an example of cluster motion of

block structure to show the planned motion can be achieved
by hardware modules.

Figure 16 shows the experimental setup. Please refer to
the related paper [14] for the details of hardware imple-
mentation. The motion is planned in the host PC and then
converted into low-level control commands of servomotors
and SMA actuators by the simulator software. These con-
trol commands are distributed to the microprocessor of ap-
propriate modules through a serial bus line by way of elec-
trodes on the connecting faces. The power is also supplied
all the modules throughout inter-module connection from
one module connected to the power source.

In this experiment, eight-module cluster flow motion is
executed. The generated plan was modified so that some
motions are made in parallel to reduce the execution time,
whereas the original motion plan transfers the modules one
by one on the side of the cluster. The total motion steps

x y

z

Desired flow
direction

Current direction

90 horizontal

90 vertical

Fig. 15: Simulated plan of motions in different flow direc-
tions from initial configuration on a plane.

 Modular Robot 

 Controller PC 
 Simulation display 

 Power supply 

 Cable for power
 and control signals 

Fig. 16: Experimental setup.

were 23 steps. As shown in Fig. 17, the cluster motion has
been achieved to demonstrate the validity of the planned
motion.

7 Discussions

This section discusses the future direction of the plan-
ning method by addressing such issues as parallel module
motions and generalization of applicable classes.

Let us begin with considering the assumptions given in
Section 3. The assumption (2) of allowing only one mod-
ule at a time is introduced for simplicity of the planning.
However, a cluster of modules can perform parallel mo-
tions preserving connectivity and collision avoidance. We
are now on the way to increase concurrency of motion by
merging several concurrent motion sequences. To relax the
latter two assumptions, more than two converter modules
must be generated from block member modules. This may
require more general global planning that is also related to
the next issue.

Generalization of applicable classes of clusters is an-
other important issue. Although the currently developed
method applies to only a particular class, we believe that
the basic framework of the two-layered approach is effec-
tive for other classes. For the global planner, we need to
devise a method to narrow the search space according to
the problem. We also intend to develop a global planner
that can deal with wider classes of structure, using some
powerful searching method such as genetic algorithm. On
the other hand, the motion scheme selector is less problem-
dependent owing to its locality. However, the rule database
should be refined to be more complete by adding more rules
since classes for the database are currently limited. Practi-
cally, it is very difficult to construct such a large database
by coding all the rules manually. Automatic rule acquisi-
tion will be required to archive this goal. We are thinking of
extending the database based on some evolutionary meth-
ods, and also generating more complex rules including rule
hierarchy.
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8 Conclusions
This paper discussed motion planning of a self-

reconfigurable modular robot designed to generate both
static structure and dynamic robotic motions. We proposed
a two-layered motion planning, global flow planner and lo-
cal motion scheme selector. The former part provides the
possible paths and motion orders to realize the flow of the
cluster. The latter combines a series of motion schemes
based on a rule database to make the flow.

In spite of the limited class of applicable structures, our
approach will be effective for other classes by refining the
global planner and extending the rule database. We are also
aiming to implement the motion planner to the hardware
modules. By equipping modules with some external sen-
sors, the module cluster can move around in unknown en-
vironments with bumps or walls, adapting its shape to the
outside world.
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