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Abstract— A promising new application area for humanoid
robots is in the area of assistive device testing. Humanoid robots
can facilitate the experimental evaluation of assistive devices
by providing repeatable, measurable, human-like motion while
removing the difficulties and potential safety hazards associated
with human trials. To ensure that the humanoid robot is
providing a valid test platform, the robot must move in a
similar way as a human while wearing the assistive device.
This challenge is made difficult due to the inherent variability
in human motion. In this paper, we propose an approach for a
quantitative comparison between human and robot motion that
identifies both the difference magnitude and the difference loca-
tion, and explicitly handles both spatial and temporal variability
of human motion. The proposed approach is demonstrated on
data from robot gait and sagittal plane lifting.

I. INTRODUCTION

Recent research in robotics has expanded the use of robots
beyond traditional industrial environments, into service and
human home settings. Humanoid robots are well suited
to these expanded applications, particularly for performing
tasks currently performed by humans, due to their human like
shape and motion capability [1]. Recently, several researchers
[2], [3] have proposed the use of humanoid robots for
evaluating assistive devices such as back braces and supports.
Humanoid robots may be well suited to this application,
as they can be used to reduce the need for expensive and
potentially dangerous human trials, accelerate the design
process and provide more extensive feedback.

In recent years, a wide variety of assistive devices have
been proposed for assisting humans in their everyday life,
both by academic researchers and industry. Potential ap-
plications include assisting the elderly or the disabled [4],
[5], [6], preventing or reducing workplace injuries [7]. Two
particular examples that are amenable to humanoid robot
testing include walk support devices [4], [5], [2] and load-
lifting assistive devices [8], of particular interest for reducing
lower-back injuries, which are of significant concern in
many occupations, such as transportation, agriculture and
caregiving [9], [10].
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Miura et al. [3] propose an approach for using the HRP-
4C robot to evaluate a torso-brace type assistive device
which aims to reduce the torso torque during lifting. In the
paper, human motion data of a participant lifting an object
is first collected. The human motion data is converted to
joint angles using inverse kinematics. The obtained joint
angle trajectory is modified to ensure postural stability using
the dynamics filter with preview control of Zero Moment
Point (ZMP), fixing the ZMP in a single point relative to
the ankle throughout the motion. The generated motion is
compared to the human motion in terms of the angle of the
torso and the relative angle between the torso and the upper
leg to verify reproduction accuracy. An analytical model
of the assistive device is also developed. The generated
motion is performed on the humanoid robot, both wearing
and not wearing the assistive device. The results show that
torque at the torso is reduced when wearing the assistive
device, however, the analytical model does not predict the
experimental results accurately. This paper highlights the
benefit of using robot experimental data rather than analytical
models alone. However, the proposed approach does not take
into account the possibility that the human may change their
movement strategy as a result of wearing the device. The
comparison metric between the human and the robot motion
is also manually selected (only two joint angles).

In order to enable this new application, the robot must be
able to perform the movement in the same manner as the hu-
man, and therefore a quantitative comparison between robot
and human motion is required. This comparison is made
difficult due to the temporal and spatial variability of human
motion. Even when performing the same movement under
the same conditions, human motion will exhibit variability,
both in terms of the path traversed to complete the motion
and in terms of the exact timing along the path. In addition,
it may not be sufficient to compare the motion only in the
affected joint (i.e., the torso for back bracing), as the addition
of the brace may cause the human to adapt their movement
in joints away from the intervention site [11].

In this paper, we propose an approach for motion compar-
ison between the human and robot motion that is capable of
capturing both the spatial and temporal variability of human
motion, and can perform whole body comparison of the
movements. The proposed approach is based on a stochastic
dynamic modeling of human and robot movement, and a
distance measure evaluated at each degree of freedom of
the movement. The proposed approach is validated on two
datasets: a gait movement and lifting movement datasets.
Results show that the proposed approach is able to identify
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differences in the motion profile between the robot and the
human which may impact assistive device evaluation.

II. MOTION COMPARISON APPROACH
A. Motion Modeling

To compare the robot movement with the human move-
ment, we adapt the approach originally proposed by Choudry
etal. [11], [12] for comparing human movements. Here, each
movement is modeled by a Hidden Markov Model (HMM)
[13], which models the temporal evolution of the movement
as a stochastic process. The HMM modeling approach is
illustrated in Figure 1. Each HMM A\ is composed of three
parameters:

A= (m, A, B)

where 7 is the initial state probability vector, A is the
state transition matrix, and B is the probability distribution
function. For modeling individual movements, left-to-right
HMMs are used so that m; = 1. Each element a;; of the state
transition matrix describes the probability that the model
will transition to state j at time ¢ given that the model was
previously in state ¢ at time ¢ — 1. The probability distribution
function for each state 7 is defined as a multivariate Gaussian:

bi = N (i, Xs)

where p; and ¥; are the mean and covariance, respectively.

Fig. 1: HMM Modeling of Movement Data

To model each movement, a set of training motion se-
quences are required. The parameters for the model \ are
initialized, assuming all the states are of equal duration, and
initializing the probability distribution function parameters
by computing the means and variances of equally sized
windows distributed over the length of the sequences, as
proposed in [14]. The Baum-Welch algorithm [13] is then
used to train the model from the data.

B. Motion Comparison

Given two movement models, \; and \,, the distance
between them can be computed based on the Kullback-
Leibler (KL) divergence:

1
D(A1, A2) = T[log P(O'|\1) —log P(O*A2)] (1)
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where O! is an observation sequence generated from A,
P(OJ\) is the probability that an observation sequence O
was generated by model A, and T is the length of the
observation sequence. P(O|)) is computed via the forward
algorithm [13]. The KL distance is not symmetric, a sym-
metric distance can be obtained by computing the average
of the distance obtained with respect to each model:

D(A1,22) + D(Aa, A1)
2

The KL distance performs a computation of the distance
between two movements incorporating information both
about the distance between prototypical movements from
each set of exemplars, and the variability of the movement
exemplars. For example, for a movement with very small
variability, an observation sequence that deviates from the
prototypical movement will result in a low probability that
the movement is generated by the model, P(O|\), resulting
in a larger distance. On the other hand, a movement which
has large variability during execution will generate large
P(OJ\) for a larger variety of movements.

The KL distance described above provides a single, scalar
measure of distance between two movements. To identify
which body segment or joint is contributing to the overall
difference between two movements, excluded DoF analysis
[11] or included DoF analysis [12] can be applied. We use
the included DoF analysis in this paper. In this approach,
two HMM motion models are selected, and the KL distance
is computed for each DoF separately. This analysis can be
carried out each for a single DoF, or for groups of DoFs. The
DoF or group of DoFs that results in the largest distance is
the DoF that is the most different between the two motion
models.

Dy(A1,A2) = 2

C. Comparison Between Robot and Human Movements

In this paper, we wish to compare movements performed
by the human demonstrator and similar movements per-
formed by the humanoid robot, in order to quantitatively
evaluate the effectiveness of the motion re-targetting ap-
proach, and determine whether the robot’s motion effectively
models the human movement such that it can be used to
evaluate assistive devices. The approach described above is
general and can be applied to any time series data. For
the comparison between human motion and robot motion,
different signal sources can be considered: Cartesian data
of the locations of the joints or limbs, joint angle data of a
kinematic model, or force torque data. To enable force torque
data comparison, forces/torques of the human at each joint
must be estimated from motion capture, EMG and contact
force data [15], based on a dynamic model of the body [16]
and an appropriate muscle model [17].

Due to the difficulty in accurately estimating joint torques
from kinematic measurements and/or EMG data, in this
paper we focus on the first approach. Specifically, we com-
pare the human and the robot motion data by comparing
trajectories of the Cartesian locations of the joint centres of
the robot and the human. This comparison enables a direct



comparison between the measured data of human motion
and robot motion. In this case, the distance metric (Eq. 2)
describes the distance between the human and the robot time
series data in terms of Cartesian values. The distance metric
is a unitless value that incorporates both spatial and temporal
differences between two sets of time series. For a single DoF
comparison, if there are no temporal differences, a distance
value of 1 indicates that the time series, represented as a
set of key poses along the trajectory, are separated from
each other by one standard deviation in Cartesian space.
The standard deviation is computed from the variability in
the human and robot movement observed from multiple
demonstrations of the same task.

III. EXPERIMENTS

The proposed approach is tested on two datasets, a gait
dataset [18] and a lifting dataset [3]. For each dataset, pre-
processing is applied to extract the individual movement
segments and generate comparable time series Cartesian data
for comparison. The approach described in Section II is then
applied to perform a quantitative analysis of the differences
between the robot and human movement.

A. Datasets

1) Gait Dataset: In this dataset, one female human
demonstrator performed two walking movements at different
speeds, one at 0.83 and one at 1.15 sec/step. Each walking
movement consisted of five strides. The movement of the
human demonstrator was recorded using the Vicon motion
capture system, using the marker locations shown in Figure
2. The movement of the human demonstrator was re-targetted
to the HRP-4C humanoid robot [19] using the approach
proposed in [18], as illustrated in Figure 3. Joint angles of
the robot while performing the movement were collected.
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Fig. 2: Marker Locations and Frame Assignment
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Fig. 3: Illustration of the gait dataset [18].

2) Lifting Dataset: In this dataset, a male human demon-
strator performs a sagittal lifting movement, lifting a weight
from the ground to waist height. The weight is distributed
evenly between the two hands, with 3kg carried at each hand.
The movement of the human demonstrator was recorded
using the Vicon motion capture system, using the marker
locations shown in Figure 2. Three movement repetitions
were recorded. The movement is re-targetted on the HRP-
4C humanoid robot using the approach proposed in [3]. The
robot performs the movement while wearing the ”Smart Suite
Lite” assistive device [8], designed to reduce lower back
loading, and wearing 1kg weight wrist straps at each wrist.
Joint angles of the robot while performing the movement
were collected. The data collection and re-targetting process
is illustrated in Figure 4.
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Fig. 4: Illustration of the Lifting dataset [3]
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B. Data Preprocessing

1) Segmentation: For the gait dataset, the data consisted
of multiple strides in sequence. This data was first segmented
to extract individual strides. The segmentation was carried
out automatically by considering the trajectory of the right
toe. The Cartesian data of the right toe was first low pass
filtered and then differentiated to compute the velocity. The
velocity signal was scanned to find negative to positive veloc-
ity crossings (i.e., time instances where the velocity changed
from negative to positive). Each stride was extracted as the
data segment between two adjacent negative to positive zero
velocity crossings. The same segmentation procedure was
applied to both the human and the robot data. The automated
segmentation was manually validated to remove spurious



incomplete segments due to noise; only complete, correctly
segmented strides were used for subsequent analysis.

2) Forward Kinematics and Data Alignment: For the
Cartesian data comparison, the Cartesian locations of the
joint centres of the following joints were considered: torso,
left and right knee, hip, ankle, toe, shoulder, elbow and wrist.
Two types of analysis were performed: 3 DoF analysis, where
the Cartesian data (X,y,z) of each joint is considered as a
group, and 1 DoF analysis, where each Cartesian dimension
(i.e., the x, y, and z direction) is considered separately.
For the human gait dataset, for one of the strides (normal
speed walking), the human demonstrator was at the edge
of the capture space, and some of the markers were not
visible. This stride was excluded from subsequent analysis.
For the robot data, joint locations were computed using the
forward kinematics of the robot. For multi DoF joints (e.g.,
hip, shoulder), the average of the axis centres of the 1DoF
components was computed.

For the human data, the measured Cartesian positions were
rotated and translated to align the data into the robot-centered
frame and the locations of the joint centres were computed
by averaging the locations of the lateral and medial markers
for the knee, ankle, elbow and wrist. For the gait dataset,
the data was additionally scaled in the z-direction based on
the ratio of the robot to human right shoulder height with
respect to the hip centre in the first frame. This scaling was
applied to account for the difference in height between the
human demonstrator and the robot.

For the lift dataset, data was additionally normalized for
each joint to remove the average starting offset, such that
each trajectory represented the joint movement from the
average starting position.

IV. RESULTS
A. Gait Dataset

For the gait dataset four motion types were compared. Two
of the motion types were generated by the robot (referred to
as Robotl and Robot2) and the other two were generated by
a human ( referred to as Humanl and Human?2). The data for
each of these 4 motions were used to train HMM models and
the KL-distance between each of the models were computed
(shown in Table I).

TABLE I: Distance Matrix for the Gait Dataset

Humanl Human2 Robotl Robot2
Human1 0 0.31 0.24 0.24
Human2 0.31 0 0.35 0.35
Robotl 0.24 0.35 0 0.0037
Robot2 0.24 0.35 0.0037 0

Visual inspection of the data indicates that the Robot1 and
Robot2 movements are very similar to each other with low
variation. This is confirmed by Table I, where the Robot1-to-
Robot2 distance is the smallest in the table. This also meets
expectations since it is expected that the robot movement
will contain much lower variance than human movement.

Comparing the two human datasets, Human1l and Human2
have similar gait features but the Human2 stride is about 2
times longer in duration than the Humanl1 stride. In principle
if the stride is exactly the same but slower, the HMM models
and distance computation should be able to account for
this difference and identify the two motions as being very
similar, which is confirmed by our analysis. In order to look
at the differences in more detail an Included-DoF analysis
was performed, shown in Figures 5 and 6. In the Included-
DoF analysis, we re-computed the distances between the
movements considering either the 3DoF position of each
joint separately (multi-DoF analysis), or considering each
(x,y,z) direction separately (1 DoF analysis).
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Fig. 5: Included-Multi-DoF Analysis for Humanl vs Hu-
man?2 for the Gait Data
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Fig. 6: Included-Single-DoF Analysis for Humanl vs Hu-
man?2 for the Gait Data

The included-DoF analysis between Humanl and Human2
indicates that distances are progressively increasing going
from the hip to the toe joints as well as when going from the
shoulder to the wrist. This trend appears to be symmetric on
the left/right side joints and appears to be due to differences
in the x-axis direction. The differences are due to differences
in the gait appearance as a result of differences in gait speed
(for the slower Human2 motion the stride is slightly larger
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and the amplitude of the swinging of the arms is lower).
One exception is the wrist where the human2 motion appears
to have an asymmetry between the positioning of the left
and right wrist, as can be seen from Figures 7 and 8. One
hypothesis could be that the slower walking is not as natural
to the human demonstrator, which may prevent natural and
symmetric arm swinging.
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Fig. 8: Right Wrist Trajectories for the Gait Data

We next compared Humanl motions against the Robot
motions (the choice of robot motion does not matter as they
were nearly identical). The graphs indicate large differences
in the wrist which can be traced to differences in the z-
axis. This difference is due to different heights at which the
wrist is held between the human and the robot during the
gait stride (mostly an offset difference). This difference is
due to the re-targetting strategy [18], where the wrist is held
further away from the body than the human movement to
avoid self-collisions.
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Fig. 9: Included-Multiple-DoF Analysis for Humanl vs
Robotl for the Gait Data
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Comparing the human and the robot data for the lower
body, differences are observed in the toe, ankle and hip, with
much less difference in the knee. This is as expected, as
the goal of the walking re-targetting strategy is to emulate
knee extended (human-like) walking [18]. The difference in
the y-axis at the hip is due to an offset in marker locations
- the robot’s hip is measured at the joint center while the
human hip is measured at the surface of the body. At the
toe, the magnitude of the movement is different between
the robot and the human, with the robot having a slightly
larger forward stride (x-axis). In the y-axis, there are also
differences between the time the robot and the human reach
peak displacement in the toe trajectory, while the overall
trajectory shape is the same.

B. Lifting Dataset

For the lift data set we are comparing human motions
against robot motions. From visual inspection the robot
motions have fairly low variation between each other whereas
the human motions have slightly higher temporal variation
between each other. From the Included-DoF analysis (Figure
11 and 12) we find the largest magnitude differences are in



the upper body. This is to be expected as the re-targetting
approach [3] focused more closely on tracking the lower
body (torso and thigh incline angles). For the most part
the differences in the upper body are due to differences in
magnitude of the trajectory, as can be seen in Fig. 13 for the
left wrist.
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Fig. 11: Included-Multiple-DoF Analysis for Human vs
Robot for the Lift Data
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There are also smaller but non-negligible differences in
the lower body movements. Significantly for the analysis of
assistive device testing, there are differences in the magnitude
of chest movement, with the robot’s movement being lower
in magnitude in both the X and Z directions. Finally, smaller
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differences are detected in the toe, ankle and knee trajectories
in the forward (X) direction (Fig. 14), with the human and
robot motions having similar range but a different temporal
profile. These differences might be significant when utilizing
the robot as an assistive device evaluator, as differences in the
trajectory profile might result in different loading patterns.
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Fig. 14: Ankle Trajectories for the Lift Data

V. DISCUSSION

The analysis above indicates that differences may persist
between human and robot motion, even when robot motion
is designed to emulate human movement. Particularly when
only a subset of the joints are used for emulating human
movement, it is likely that unintended differences may occur
in the remaining joints. These differences may be important
during assistive device evaluation, as they may lead to move-
ment and loading patterns differences between the human
and the robot.

The proposed approach provides a scalar quantification
of the difference between human and robot motion. This
quantification may be useful for designing strategies that
minimize the difference between human and robot motion. It
should be noted that the difference between human and robot
motion can be due to differences between the human and
humanoid anatomy, kinematic and dynamic constraints, and
other factors in addition to the re-targetting strategy, in which
case even the optimum re-targetting strategy may not reduce
the distance to zero. As the anatomy and kinematic structure
of HRP-4C is close to the human one (within 10% of average
Japanese young women [19]), the influence of anatomic and
kinematic factors is reduced, making it easier to identify
differences due to re-targetting and control strategies.

An important aspect of assistive device evaluation is the
human adaptation to the assistive device. To ensure that the
humanoid robot accurately evaluates the assistive device, the
humanoid should correctly imitate both movement without
the use of the device, initial use of the device, and ex-
pert (adapted) use of the device. An important role of the
evaluation is the static supportive effect for load-supporting
devices. Since it is difficult to quantitatively evaluate the
torque applied to the lower back for humans with EMG or
other physiological measures, evaluation through a humanoid
can provide an important guideline. The development of
adaptation models is an important area of future work. The
proposed approach can be used to evaluate the validity of
the adaptation model.



In the current paper, we analyze differences between
human and robot movements in Cartesian space. When
using Cartesian data, scaling to account for differences in
height between users and the robot must be applied. In
this work, we applied a simple approach, based simply
on a single scale factor in the vertical (z) axis based on
the difference between the human model and the robot. A
more complete approach that incorporates the avoidance of
self-collisions, is the work of Nakaoka and Komura [20].
While the analysis in Cartesian space developed here reveals
differences between movements, further research is needed
to understand how differences between movements influence
differences in loading patterns.

VI. CONCLUSIONS AND FUTURE WORK

Humanoid robots are a promising technology for eval-
uating assistive devices, as they can repeatably wear and
test the devices without introducing the difficulties and
safety considerations of human trials. However, to produce
reliable evaluation results, the humanoid motion must be
demonstrated to be comparable to human motion. This paper
proposed an approach for comparison between human and
robot motion, considering simultaneously the spatial and
temporal characteristics of the full body motion and taking
human variability into account. The analysis on replicative
movements carried out to date demonstrates the importance
of considering the full body motion during the analysis,
as methods which consider imitation based only on a few
ad-hoc selected joints may introduce unintended differences
between the human motion and the robot motion, which may
impact the validity of the evaluation of the assistive device.

In future work, we hope to examine the validity of the
proposed approach for joint angle and torque data, and to de-
velop re-targetting strategies which minimize the difference
between human and robot movement patterns. The evaluation
of on-going adaptation will also be considered.
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