
Online Replanning for Reactive Robot Motion: Practical Aspects

Eiichi Yoshida, Kazuhito Yokoi and Pierre Gergondet.

Abstract— We address practical issues to develop reactive
motion planning method capable of replanning the path online
when the environment changes during the execution. By intro-
ducing planning and execution threads running in parallel, the
robot can keep moving even during the replanning process as
long as the motion is safe. The proposed method can be applied
to discontinuous input of environmental changes that may occur
due to incomplete perception. We then address a roadmap reuse
method for efficient replanning to make use of the increasing
knowledge about the environment, by introducing working and
learning roadmaps. A general interface with robot motion
controller is also defined so that the method can be applied
to various types of robots. The proposed method is validated
through planning simulations with moving obstacles.

I. INTRODUCTION

Motion planning techniques for robotic systems have
become more and more efficient recent years. Especially,
probabilistic sampling-based motion planning methods have
had great success [1], [2] . These methods consist in build-
ing a graph called roadmap whose nodes are collision-
free configurations. There are mainly two roadmap building
method, diffusion (e.g. Rapidly-exploring random tree, RRT)
and sampling (e.g. Probabilistic RoadMap, PRM) [1], [2].
Based on this roadmap, a collision-free path from initial to
goal configurations are sought through graph search. Those
methods are now applied to complex robots like humanoids
[3], [4].

Initially those motion planning methods assume off-line
planning with static environments. There have been quite a
few efforts to improve the reactiveness of the method to face
dynamically changing environment (Fig. 1).

Fraichard et al. proposed a reactive navigation method
for car-like vehicles [5]. Quinlan and Brock et al. proposed
“elastic band” so that the planned path can reactively adapt
to moving obstacles [6], [7]. Those methods are classified as
“reshaping” that deforms the planned path rather than doing
further queries on the roadmaps. Since drastic changes of
the path topology in the roadmap are not assumed while
deforming, these are suitable for navigation path adaptation
of a vehicle for instance.

On the other hand, there have been increasing research
efforts on reactive “replanning” to cope with the cases where
the planned path is blocked due to dynamic changes of the
environment. Leven and Hutchinson proposed a method for
path planning in changing environments [8]. An obstacle-free

Eiichi Yoshida and Pierre Gergondet are with CNRS-AIST JRL (Joint
Robotics Laboratory), UMI3218/CRT and Kazuhito Yokoi is with Hu-
manoid Research Group, both belonging to Intelligent Systems Re-
search Institute, National Institute of Advanced Industrial Science and
Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan
(e.yoshida@aist.go.jp)

Fig. 1. Reactive path replanning

roadmap is constructed and encoded to workspace decom-
posed to cells, which is modified according to the environ-
mental changes. Sampling-based planning started being used
for online replanning in real-time applications. Ferguson et
al. proposed [9] replanning using RRT for dynamic environ-
ments by updating the tree when certain parts become invalid
due to the changes. They also introduced an “anytime” RRT
that rapidly provides initial solution and proposes plans with
guaranteed improvement [10]. Kuwata et al. applied RRT to
online replanning for urban vehicle driving. They improved
planning efficiency required for the real-time application by
introducing biased sampling, special heuristics for distance
computation and lazy check [11].

As other research efforts to cope with dynamic environ-
ments, Jaillet and Simeon proposed a method for computing
several alternative paths to be switched when one path
becomes impossible without replanning [12]. Van den Berg
et al. [13] proposed a method for “anytime” path replanning,
where planned paths are continuously modified to avoid
collisions with movable obstacles by modeling their future
configurations as a cylinder in state-time space. An efficient
method for extension is presented to deal with movable
obstacle with uncertainty with growing disks [14]. Recently
Nakhaei et al. proposed a navigation method for humanoid
robot by updating the roadmap in dynamic environment by
voxels measured by a vision system [15].

In this research, we address practical issues of a reactive
replanning method that can cope with frequent environmental
changes including discrete ones like sudden appearance of
obstacles. Once a path is planned, it is executed in one thread.
Future collisions are checked based on the planned path
when environmental changes are detected during the path
execution. If any collision is anticipated, then the replanning
process is activated in parallel as another thread, while
the execution is still in progress. As soon as a collision-

free path is replanned, the updated path is passed to the
execution thread to execute it immediately. By allowing the
motion execution during replanning, unnecessary stop can
be avoided: if the colliding obstacles are removed during
the replanning, the robot can keep moving by discarding the
replanning. In the worst case where the replanning does not
finish before the robot arrives at the anticipated colliding
point, the execution thread makes the robot stop safely and
wait for the replanning to finish. The planning scheme is also
flexible enough to allow the goal configuration to be changed
at any time. Petti and Fraichard [16] proposed partial motion
planning for simultaneous planning and execution divided
into synchronous processes. On the other hand, in this
paper we first obtain the path to the goal and deal with
environmental changes by replanning and safe execution in
an asynchronous way.

The replanning is performed by using incremental
roadmap update to reuse those previously constructed. We
introduce two kinds of roadmap, working and learning
roadmaps. The learning roadmap stores the information
about the environment over the whole planning time, whereas
the working roadmap is kept compact by adding only the part
involved in the current replanning problem.

The contribution of the paper consists of the practical
implementation issues on reactive planning: continuous plan-
ning and execution in parallel, replanning based on roadmap
reuse, and a general interface with robot motion controller
are integrated into a reactive planning system.

In this paper, first the reactive planning framework is
described including execution and planning threads that can
run in parallel to meet the reactiveness requirements for
the desired planner in Section II. Then in Section III we
present a method for roadmap reuse for efficient replanning.
Valid collision-free edges in the roadmap are stored and
updated continuously throughout the planning process. After
addressing a general interface to the robot controller and the
perception in Section IV, we validate the proposed method
by planning simulations in Section V.

II. STRUCTURE OF REPLANNING SYSTEM

In this section we present the specifications for the planner
we aim to devise for the reactive replanning and introduce a
framework including two parallel threads for path execution
and planning.

A. Specifications

By assuming that changes have been detected during the
robot motion, the following specifications are required so
that the planner can replan the path.
• In the event of environmental changes, if collisions

are anticipated on the planned path being executed,
the planner starts replanning immediately. As soon
as another collision-free path is obtained again, it is
executed.

• During the path replanning, the robot continues its mo-
tion unless it approaches obstacles within the specified
safety distance. The path is executed in such a way that

it decelerates when approaching the obstacle and makes
a complete stop at a safety distance.

• There may be a case where the anticipated collision
on the path is removed during the replanning. In this
case, the replanning is canceled and the robot continues
executing the original path without stopping.

B. Planner structure

Figure 2 illustrates the state transition diagram of a planner
structure that satisfies the aforementioned specifications. It
has the feature of having two “threads” that are running
simultaneously in order to allow the robot to do planning
during its execution of the previously planned motion.

In Fig. 2, the texts in box correspond to the “states” of
the planner. The states make transition from one to another
when “signals” are received by the thread or when some
internal states change. The shadowed texts show the signal
emission. There are two types of signal: the one is the signal
exchanged between the threads, and the other is that received
from the outside. The former includes those signals such as
“Query”, “Finished”, “Canceled”, “Path found”. The signals
of the latter type from outside are “Start”, “Stop” and “Geo.
change” (Detection of environment changes).

The planner should cope with unexpected environmental
changes, such as displacement of obstacles after starting
the motion or appearance of newly detected obstacles. We
assume that those environmental changes can be detected
by visual or range sensors equipped to the robot or those
embedded in the environment. The location and geometry
of the obstacles detected from those sensors will be utilized
for replanning. Modification of the goal configuration during
path execution can also be handled as an environmental

���������	
���
�����	����	
���

��������	
��
��� �������
�	
��
���

	
�������

��������
��

�����

��������

���
�

	���������
���������
����

�������	
�

�
������

������
��������������������

�
��������
��

�����

�����
��

�
���
���
�

��
��

�	
��

��
�
�
�

������

��
���
�

�������

��
������
�
�
���������
������

 �������

!���������

�������	
�

Fig. 2. State transition diagram of replanning. The replanning is performed
by parallel threads of Execution and Planning that exchange signals. The
states are shown in the boxes and the signal emissions are indicated by shad-
owed boxes. The italic texts depict the signal reception and corresponding
state transition.

change in a broad sense. We can therefore apply this frame-
work to the cases where the goal configuration is frequently
updated based on perception.

The initial state is “Idle” before starting by receiving the
signal “Start”.

C. Execution Thread

At the “Update Problem” state, the Execution thread keeps
track of the current status of the robot, the environment and
the collision with the obstacle for the planned path if any.
If no collisions are detected, the states transit to “Execute”
to execute the path. Even if “Geo. Change” is received due
to environmental changes, it is ignored and the execution
continues as long as the executed path is collision-free. This
avoids repetitive activation of replanning each time changes
occur that do not affect the path execution.

If collisions are expected, the Execution thread computes
the remaining distance along the path until the collision and
sends “Query” signal to the Planning thread. Let us denote
the path by P (s) which is parameterized between an interval
[0, S]. When a collision is anticipated along the current path
at s2 and the robot is currently at P (s0)(s0 < s2), the
Execution thread chooses a point s1 ∈ [s0, s2] of starting
deceleration such that the robot has sufficient time to stop
before s2. Then it executes a trajectory until s1 normally and
starts the stopping motion if replanning is not finished before
arriving at s1. This trajectory is continuous path execution
followed by a safe stopping trajectory, which can be regarded
as a contingency plan [17].

If the replanning is successful, the Execution thread goes
to the state “Update Traj.” to update the path to be executed
as described later in Section III. Then the robot does not stop
at s1 to execute the updated collision-free path.

By allowing the robot to execute the path until the an-
ticipated collision, unnecessary suspension of the execution
can be avoided. Thanks to this mechanism, if the obstacles
with which collisions are anticipated are removed during the
motion, the replanning is canceled to go on the originally
planned path.

D. Planning thread

Initially, the Planning thread stays at the state “Wait for
Problem”. Then when it receives the “Query” signal from the
execution thread, it starts replanning and goes to “Planning”
state. The state “Planning” ends when the planning thread
receives “Canceled” or “Geo. change” signal, or when the
replanning succeeds, as explained later in Section V. Then
the thread goes back to “Wait for problem” state except the
first case where the replanning itself is canceled.

III. REPLANNING BY REUSING ROADMAP

A. Continuous roadmap update

For reactive replanning, it is important to manage the
roadmap efficiently to reflect the dynamic environmental
changes. In previous researches also, the static roadmap are
updated online [8], [13], [10], [11].

In our case, we allow the roadmap have several connective
components. In other words, the roadmap can include some
isolated connective components which will be eventually
connected to other connected components as the roadmap
building progresses. When the roadmap should be updated
due to motion of obstacles, managing connectivity property
when deleting the nodes becomes very cumbersome. There-
fore, rather than making this difficult operation, a long-term
learning roadmap to be reused, denoted Rdmlearn here, is
maintained throughout the planning process including the
roadmap building. This roadmap Rdmlearn is created once
at the initialization stage before starting whole planning and
execution processes.

Each time the replanning is requested, the working
roadmap Rdmcrnt for replanning is cleared. Before starting
the planning, the function PrefillRoadmap() is called to
extract the valid collision-free edges as the list EnrichEdges
from the learning roadmap Rdmlearn as shown in Fig. 3. This
function runs rapidly because there is no search.

The planning thus starts with this list EnrichEdges and
the empty working roadmap Rdmcrnt. In sampling-based
planning methods like PRM and RRT, the roadmap is grown
by adding nodes through sampling in the configuration space.
The planning proceeds by repeating an incremental proce-
dure that executes a stepwise basic roadmap construction
operation, e.g. find one valid edge to add the roadmap as
described later in Section V.

We aim to enrich the working roadmap Rdmcrnt for
the new environment by adding the edges in EnrichEdges.
However, addition of all the collision-free edges to the
roadmap at the beginning is not practical because applying
collision checking to all the edges at a time is a relatively
costly operation. Thus this roadmap enrichment operation is
implemented as a step function EnrichRoadmapStep() that
is called at each call of the incremental planning process
as described in Fig. 4. This helps the planner have a well-
explored working roadmap rapidly by keeping it compact at
the same time.

PrefillRoadmap(Rdmlearn, EnrichEdges)

1: for i = 0 to Rdmlearn.numNodes() do
2: Nstart ← Rdmlearn.node(i)
3: for j = 0 to Nstart.numOutGoingEdge() do
4: E ← Nstart.outGoingEdge(j)
5: Nend ← E.endNode()
6: if ¬Nstart.isDeadEnd() AND ¬Nend.isDeadEnd()

then
7: EnrichEdges.add(E)
8: end if
9: end for

10: end for

Fig. 3. A procedure extracting interested edges from learning roadmap

EnrichRoadmapStep(Rdmcrnt, EnrichEdges)

1: addFlag ← false
2: for i = 0 to EnrichEdges.size() do
3: Er ← EnrichEdge[i]
4: Nr

start ← Er.startNode(i)
5: Nr

end ← Er.endNode(i)
6: if Nr

start ∈ Rdmcrnt OR Nr
end ∈ Rdmcrnt then

7: if Rdmcrnt.addEdge(Er) == success then
8: addFlag ← true
9: EnrichEdges.erase(Er)

10: // The edge was successfully added

11: break
12: end if
13: end if
14: end for
15: if addFlag == false then
16: // Add an edge anyway even if isolated

17: for i = 0 to EnrichEdges.size() do
18: Er ← EnrichEdge[i]
19: if Rdmcrnt.addEdge(Er) == success then
20: addFlag ← true
21: EnrichEdges.erase(Er)
22: break
23: end if
24: end for
25: end if

Fig. 4. Function for one-step enrichment of the roadmap during planning

B. Online replanning using the roadmap

As we mentioned in Section II, the planning thread runs
during the motion execution and then the replanned path is
executed as soon as a solution is found.

Here we explain how the updated roadmap is utilized for
replanning. Figure 5 shows how actually it works. When
environmental changes are detected and the “Geo. change”
signals is received, the execution thread estimates the impact
point s2 where the collision will occur along the path P (s)
being executed and s1 to start safe stopping motion (Fig. 5a).

Thus the replanning is made to find a collision-free path
from the configuration P (s2) to the goal configuration by
using the quickly enriched working roadmap (Fig. 5b). If a
collision-free path P ′(s) is found before reaching s1, then the
Planning thread sends “Path found” signal to the Execution
thread that goes to “Update Traj.” state. The Execution thread
then adds a short collision-free connecting edge between a
configuration before s1 on P (s) and another on P ′(s). To
smooth transition from the current path to the replanned one,
a path optimization is applied (for example, adaptive shortcut
optimization [18]) to the whole replanned path (Fig. 5c). As
soon as the optimization finishes, the Execution thread start
executing the resulting replanned path (Fig. 5d).

If the replanning does not finish before reaching s1,
the robot makes a stop at s2 safely and the execution is

C
obst

C
obst

Goal
Goal

C
obst Goal C

obst
Goal

(a) Estimating impact (b) Replanning with reused roadmap

(c) Path optimization from
 a configuration on the path

(d) Executing replanned path

Current configuration

s
1

P(s)

s
2

P'(s)

Fig. 5. Replanning the path with the anticipated collision.

suspended until the replanning is completed. If a timeout is
defined for replanning, the planning is canceled and waits
for another request.

In this way, reactive replanning is performed in an efficient
way by reusing the continuously updated roadmap.

C. Limitations

One of the difficult situations for the proposed method
occurs when obstacles move continuously. In this case, a
motion history can be used for a conservative collision check.
Let us denote the position of obstacle i observed at k th
sampling time tk by pobs

i (tk) and the observation sampling
period by T . By estimating its velocity vobs

i (tk) over past N
sampling time, we use the geometry of the obstacle grown by
vobs

i (tk)T . If an obstacle moves continuously, the Execution
thread keeps receiving the “Geo. change” signal. As the
replanning process is not started as long as the trajectory
is collision-free, the path execution is not influenced. If
the obstacle motion updates the estimated impact point s2

continuously, the replanning is triggered frequently. Since the
replanning process runs in parallel with execution, the path
execution is not influenced either as long as the replanning
finishes before arriving at s2.

However, even though the roadmap reuse accelerates the
replanning process, it may happen that the replanning does
not finish before reaching the newly estimated impact point
due to rapid obstacle motion, which means collision avoid-
ance is not guaranteed. In this sense the proposed method is
more suitable for the environmental changes that are discrete
and gradual with respect to the robot motion and the planning
capacity. To tackle such a case of continuously moving
obstacles, we will need to combine the proposed method
with reactive path deformation like elastic bands [6], [7].

Another limitation concerns complex dynamic constraints
of the robot, including time constraints. If we include exact
dynamics in planning, it is too computationally expensive.
One of the reasonable solutions is two-stage planning like
in [4] where replanning can be performed fast enough with

a simpler geometric model using appropriate tolerance. In
this case, estimation of deviation due to the dynamic motion
from the nominal path is important for collision avoidance.

IV. INTERFACE WITH MOTION CONTROLLER

For the proposed replanning method to be generally ap-
plicable to various robots, we define a general interface in
Table I. Their corresponding functionalities in the robotic
system are illustrated in Fig. 6. The functions of starting
and stopping the path execution, and of getting the current
execution state and the configuration, are required to perform
replanning and path modification according to the situation.
The function of traveled distance computation is used to
estimate the anticipated colliding point. The interface for
the detection of environmental changes is also defined for
internal or external perception systems. The environmental
changes detection is the trigger of the replanning process.

V. IMPLEMENTATION AND PLANNING EXAMPLE

A. Stepwise Planner Implementation

The proposed replanning method presented in Fig. 2 has
been implemented and tested to verify its effectiveness. In
order to make the planner thread reactive and to run in
parallel with the execution, the planner is implemented in
an incremental manner so that using the function StepPlan()
shown in Fig. 7.

After initializing by calling PrefillRoadmap() in Fig. 3,
the planner repeats this stepwise planning that corresponds

TABLE I
THE INTERFACE OF REPLANNING METHOD WITH MOTION CONTROLLER

bool execute(Path) Execute the path
void stop() Stop the execution

safely with deceleration
bool isMoving() Return true if moving
config getCrntConfig() Get the current config.
double getCrntDist() Get the traveled distance

on the path
bool getGeoChange() Return true in case of

environmental changes

Motion planner

Path execution

•Replanning
•Roadmap building

Robot controller

Motion
command

Robot hardware

External / internal
sensors

Detecting changes
getGeoChange()

execute(Path)
stop()

getCrntConfig()
getCrntDist()
isMoving()

Current
status

Robot status
•Trajectory generation
•Motion control

Fig. 6. The functionality of the interface defined in I in the robotic systems
including motion controller.

to an incremental expansion of the working roadmap Rdmcrnt
in RRT or PRM. At each of this stepwise planning proce-
dure, the roadmap update EnrichRoadmapStep() in Fig. 4
is called to make use of the learning roadmap Rdmlearning.
This “atomic” implementation is suitable for the proposed
replanning method with parallel threads since the planning
can be reactively activated and interrupted through exchanges
of signals. For example, if the signal “Geo. Change” is
received during planning, the planning is canceled because
the roadmap used in the current working roadmap does
not reflect the newest environment any more. This stepwise
planner has been implemented by using motion planning
software library KineoWorksTM [19].

The proposed planner is implemented on RT (Robot Tech-
nology) Middleware which has been proposed as software
platform [20] as a software unit called an RT Component.
RT Middleware encourages the modularization and the reuse
of software in the robotic field. Other software modules com-
municating with the motion planner, like the robot controllers
and sensor systems to detect the environmental changes in
Fig. 6, can also be implemented as RT Components.

B. Planning results

We here employ an iterative sampling-based motion plan-
ning method based on RRT, which is an iterative method
based on the automatic tuning of obstacle penetration tol-
erance [21]. In this method, the thinned obstacles are used

motionPlanner(startCfg, goalCfg)

1: Rdmlearn ← ∅
2: while waitingProblem == true do
3: if received(“Query”, startCfg, goalCfg) then
4: // start planning for a problem

5: initPlan() // initialization

6: PrefillRoadmap(Rdmlearn, EnrichEdges)
7: solved ← false; Rdmcrnt ← ∅
8: while ¬solved AND ¬received(“Geo. Change”)

AND ¬received(“Canceled”) do
9: // one step planning

10: solved ← StepPlan(Rdmcrnt, startCfg, goalCfg,
solPath)

11: UpdateRoadmap(Rdmcrnt, Rdmlearn)
12: EnrichRoadmapStep(Rdmcrnt, EnrichEdges)
13: end while
14: endPlan() // ending operation

15: if solved == true then
16: // send the solution path if success

17: SendToExecThread(solPath)
18: else if received(“Canceled”) then
19: waitingProblem = false
20: end if
21: end if
22: end while

Fig. 7. Motion planning with incremental planning framework

to make the planning easier. Then the obstacles are grown
gradually towards the original size by decreasing the allowed
penetration for path deformation to keep the robot can stay
away from them. In the course of this iterative method,
the working roadmap is sometimes reset when the thinned
obstacle is grown.

Figures 8 and 9 show an example for a replanning problem
using a robot manipulator arm, with and without environmen-
tal changes. In Fig. 8, the arm is required to move from the
initial (a) to final (d) configurations by avoiding collisions
with fixed (wall) and moving (bar-shape) obstacles.

During the execution of path planned, the position and
orientation of the movable bar-shape obstacle are changed
from those of Fig. 8, as shown in Fig. 9(a). If the previously
planned path is executed, the arm configuration like Fig. 8(c)
becomes invalid by the moved object. We assume some
sensor components that detect this environmental change and
send the “Geo. Change” signal to the execution thread to
make the replanning process start. As can be seen, another
path avoiding the displaced obstacle is planned as shown in
Fig. 9(b),(c) to avoid collisions and to achieve the initially
defined goal Fig. 9(d).

In the accompanying movie, the obstacle is manually
moved to prevent the robot from executing the path toward
the goal configuration. We can observe that the planner is
capable of finding alternative paths online.

Figures 10 and 11 depict the time evolution of the roadmap
size (the number of edges) and the activation of the Execution
and Planning threads for abrupt displacement or appearance
of the obstacles in the similar environment. In Fig. 10,
each time the obstacle is moved discretely, the replanning

starts in parallel with the execution that continues until the
robot enters in the safety distance. The execution is not
suspended in Fig. 11 because the obstacle disappears before
the completion of replanning which was canceled right after
the disappearance.

We can also observe the increase of the roadmap size of
the working and learning roadmaps. The drastic decrease of
the size of the working roadmap occurs when the planning
finishes with either success or cancellation, and also when
the iteration loop of the iterative planning [21] is renewed.
After finishing planning, it takes some time to start execution
to optimize the connected path of transition and replanned
paths in Fig. 5c.

From those planning results, we demonstrated the capabil-
ity of online replanning and also the planner can cope with
sudden displacement and appearance that may happen due
to limited capacity of perception system.

VI. CONCLUSIONS

We have proposed an online replanning and execution
method for reactive collision avoidance in changing environ-
ments. By introducing two threads of execution and planning,
the planner can generate alternative paths reactively without
unnecessary suspension of path execution. The goal config-
uration can also be modified during path execution thanks to
the reactiveness of the proposed framework. To make use
of the knowledge accumulated during the replanning, we
employ a mechanism for roadmap reuse. After introducing
the general interface with the planner, we have conducted
simulations to demonstrate that the planner can replan the
motion online and also can deal with discrete environmental

(a) Initial configuration (b) (c) (d) Goal configuration

Fig. 8. Motions without environmental changes

(a) Obstacle moved during execution (b) Executing replanned path (c) (d) Goal configuration

Fig. 9. Planning results with environmental changes

��

���

����

����

����

����

����

�� �� ��� ��� ��� ��� ���

�
	

�

�

��

��
��

�
��

��������

��
�����
������

���
�����
������

�

	����
���� ������ ��������

! ������

"#��	����

�������
����$�������%�����

Fig. 10. Time evolution of the number of edges in roadmaps and the
time chart of activation of the Execution and Planning threads for abrupt
displacement of obstacles.

��

���

���

���

���

���

�	�

�� �� �� �	 �
 ��� ��� ���

�
�

�
��
��
��
��
�
��

��������

������������

�������������

 !������

"#�$�%���

&
�%�$!��

�''�����$� (���''�����$�

Fig. 11. The case of abrupt appearance and disappearance of an object.

changes.
The proposed method has limitations in continuously mov-

ing obstacles and robot motions with high dynamic effects.
To make the proposed system more robust against this
situation, we will investigate the combination with reactive
path deformation and efficient usage of two-stage planning
with appropriate estimation of dynamics. We will also study
the close and efficient interaction with external perception
system and verify the effectiveness of the proposed method
with real robot hardware.

ACKNOWLEDGMENTS

The authors thank to Etienne Ferré and Ambroise Confetti
of Kineo CAM, and Florent Lamiraux of LAAS-CNRS for

their precious support for the software developments. This
work has partially been supported by NEDO Project on
Development of Software Platform for Robot Intelligence
and Japan Society for the Promotion of Science (JSPS)
Grant-in-Aid for Scientific Research (B), 21300078, 2009.

REFERENCES

[1] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementation. MIT Press, 2006.

[2] S. LaValle, Planning Algorithm. Cambridge University Press, 2006.
[3] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, , and Inoue,

“Dynamically-stable motion planning for humanoid robots,” Au-
tonomous Robots, vol. 12, no. 1, pp. 105–118, 2002.

[4] E. Yoshida, C. Esteves, I. Belousov, J.-P. Laumond, T. Sakaguchi,
and K. Yokoi, “Planning 3D collision-free dynamic robotic motion
through iterative reshaping,” IEEE Trans. on Robotics, vol. 24, no. 5,
pp. 1186–1198, 2008.

[5] T. Fraichard, M. Hassoun, and C. Laugier, “Reactive motion planning
in a dynamic world,” in Proc. of the IEEE Int. Conf. on Advanced
Robotics. IEEE, 1991, pp. 1028–1032.

[6] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in Proc. 1993 IEEE Int. Conf. on Robotics and Automa-
tion, 1993, pp. 802–807.

[7] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” Int. J. of Robotics Research,
vol. 21, no. 12, pp. 1031–1052, 2002.

[8] P. Leven and S. Hutchinson, “A framework for real-time path planning
in changing environments,” Int. J. of Robotics Research, vol. 21,
no. 12, pp. 999–1030, 2002.

[9] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts,” in Proc.
2006 IEEE Int. Conf. on Robotics and Automation, 2006, pp. 1243 –
1248.

[10] D. Ferguson and A. Stent, “Anytime rrts,” in Proc. 2006 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2006, pp. 5369 – 5375.

[11] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion
planning for urban driving using rrt,” in Proc. 2008 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2008, pp. 1681–1686.

[12] L. Jaillet and T. Simeon, “Path deformation roadmaps: Compact graphs
with useful cycles for motion planning,” Int. J. of Robotics Research,
vol. 27, no. 11-12, pp. 1175–1188, 2008.

[13] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in Proc. 2006 IEEE Int.
Conf. on Robotics and Automation, 2006, pp. 2366–2371.

[14] J. van den Berg and M. Overmars, “Planning time-minimal safe paths
amidst unpredictably moving obstacles,” Int. J. of Robotics Research,
vol. 27, no. 11-12, pp. 1274 – 1294, 2008.

[15] A. Nakhaei and F. Lamiraux, “Motion planning for humanoid robots
in environments modeled by vision,” in Proc. 8th IEEE-RAS Int. Conf.
on Humanoid Robots, 2008, pp. 197–204.

[16] S. PETTI and T. FRAICHARD, “Partial motion planning framework
for reactive planning within dynamic environments,” in Proc. of the
IFAC/AAAI Int. Conf. on Informatics in Control, Automation and
Robotics, 2005.

[17] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under
kinodynamic constraints,” in Proc. 2007 IEEE Int. Conf. on Robotics
and Automation, 2007, pp. 704–710.

[18] D. Hsu, J.-C. Latombe, and S. Sorkin, “Placing a robot manipulator
amid obstacles for optimized execution,” in Proc. 1999 Int. Symp. on
Assembly and Task Planning, 1999, pp. 280–285.

[19] J.-P. Laumond, “Kineo CAM: a success story of motion planning
algorithms,” IEEE Robotics & Automation Magazine, vol. 13, no. 2,
pp. 90–93, 2006.

[20] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon,
“RT-middleware: Distributed component middleware for RT (robot
technology),” in Proc. 2005 IEEE/RSJ Int. Conf. On Intelligent Robots
And Systems (IROS2005), 2005, pp. 3555–3560.

[21] E. Ferré and J.-P. Laumond, “An iterative diffusion algorithm for
part disassembly,” in Proc. 2004 IEEE Int. Conf. on Robotics and
Automation, 2004, pp. 3149–3154.

