Experiment of Self-repairing Modular Machine

E1ICHI YOSHIDA, SATOSHI MURATA, KOHj1 TOMITA,
HARUHISA KUROKAWA and SHIGERU KOKAJI

Mechanical Engineering Laboratory, AIST, MITI, 305-8564 Japan

Abstract. A self-assembling and self-repairing mechanical system is experimen-
tally studied to demonstrate its effectiveness. We developed a 2-D model of au-
tonomous mechanical units capable of dynamic reconfiguration and inter-unit com-
munication. Self-assembly and self-repair experiments have been carried out using
a distributed algorithm developed under the constraints of the system's homogene-
ity and locality of information. In experiments, more than ten units successfully
configure themselves and recovered from a fault. Besides the research of the 2-D
model, a model of 3-D system is also designed.

Key Words. Distributed Autonomous Machine, Homogeneous Mechanical System,
Self-assembly, Self-repair

1 Introduction

We have been developing a distributed mechanicat system composed of many iden-
tical autonomous units. The key issues to build such a hyper-distributed mechanical
system are homogeneity of both hardware and software, locality of information and
dynamic reconfigurability. Owing to its homogeneous structure, our system can
realize self-assembly and self-repair functions.

It can be used as a versatile self-maintainable machine, which can work as a mo-
bile robot, as well as a static structure in hazardous environments.

Many studies have been made on reconfigurable mechanical systems. Polypod
(Yim, 1994) and Tetrobot (Hamlin and Sanderson, 1996) are mobile robots with
variable structures. CEBOT (Fukuda et al., 1989) and a modular robot (Chirikjian
et al., 1996) are capable of reconfiguring dynamically.

In contrast to the above studies, our approach is characterized by its strict homo-
geneity in both hardware and software, such that the whole system is flexible and
robust against faults. Another important point is the simplicity of the hardware and
the usage of local communication.

This paper focuses on hardware experiments to confirm self-assembling and self-
repairing capability using a hardware system composed of 20 mechanical units
called “fracta.” Based on a distributed algorithm, self-assembly and self-repair func-
tions are validated by a series of experiments.

The extension of the concept of modular machine to 3-D space is under way. We
will give a brief account of its current stage of development.

>

120

2 Unit Hardware

We built a system with twenty units whose structure is shown in Figure 1. The unit
is mainly composed of actuation part using electro- and permanent magnets and
information processing part using a microcomputer.

A unit has three-layered structure, with three pairs of permanent magnets (ar-
ranged with 120 degrees) in the top and the bottom layer and three electro-magnets
(rotated by 60 degrees from outer layers) in the middle. By changing the polarity of
an electro-magnet, it is attracted into, or repulsed from the gap between outer layers
of another unit. Two units change their connection by an appropriate sequence of
electro-magnet operations. A unit can connect with maximum six units. The unit is
also equipped with serial optical channels for local bilateral communication.

3 Self-assembly and Self-repair Algorithm

In self-assembly and self-repair, each unit has the same software and decides its
movement only according to local information. Under these constraints, we have
been developing a difference-based algorithm (Murata et al., 1994) and a nucleation
algorithm (Tomita et al., 1996). The latter, however, needs rather large amount of in-
formation processing, and does not suit the current stage of hardware development.
Thus we extend the difference-based algorithm to enable self-repair function.

In the algorithm, all the units are assumed to be connected and synchronized in

communication. The synchronization is realized by a simple distributed method
(Kokaji et al., 1996).

information processing part
(CPU, control circuit)

communication part

faats electro-magnet
(optical communication channel) g

(connecting arm -- male)

permanent magnet
(connecting arm -- female)

Figure 1 Autonomous mechanical unit “fractum”

121

3.1 Connection Types

The “connection type” of a unit is introduced to describe the global configuration. A
unit can be formally described as a hexagon with six possible bonds. The connection
of a unit is classified into 12 connection types shown in Figure 2. The link between
two types denotes that they are transferable by a single step of unit motion. The
notion of “distance” between two types is defined as the number of links between
them.

A “movable unit” is a unit which can rotate without carrying other units and keeps
the whole system connected after the movement. A unit with connection type “e”
“0”, or “e” is movable.

3.2 Self-assembly Algorithm

The algorithm consists of the following three procedures. Each unit
(i) calculates such measures as
o “difference” between the current state and the goal.
o “irritation” which increases during deadlock state.
(ii) estimates the average difference around the unit using a diffusion process
through the inter-unit communication.
(iii) if the unit has relatively large difference, it moves towards the direction to
make it smaller.
A “step” of the algorithm is composed of above (i)—(iii) procedures. In the algo-
rithm, this step is iterated by each unit in parallel.

3.2.1 Goal description We describe the goal formation using the connection
types. Let us consider a 10-unit triangle shown in Figure 3. Any unit with the goal
type “K” is connected to 4 units whose types are {o, K, K, s}. This situation is
expressed in a “statement” K{o, K, K, s}. In this example, the goal shape is written
as a collection of all such statements:

o{K, K}
K{o,K,K, s} (D
s{K, K, K, K, K, K}

o O
YI ><@

P x|
® —H—R

ol —ll —“’I b AVAVAY,
@> N / BOLER
o & VAAATa

\

&

€

Figure2 Connection types and their Figure 3 Description of 10-unit
relationship triangle

122

Connection types of statements in (1) are sorted in increasing order of the number
of connecting units. Although there are cases where this description is not unique,
it suffices as long as the goal shape is not too complicated.

3.2.2 Calculation of difference In every iteration step, each unit decides its cur-
rent connection state in the form of “statement” through local communication. Then
each unit evaluates the sum of distances between the types of its current state and
each of the goal statements. The “difference” of unit 7 at ¢-th step diff(i, t), is given
as the minimum of these sums. Namely, each unit evaluates the difference from the
closest goal statement.

3.2.3 Diffusion process To make the group of the units converge to the desired
goal configuration, it is desirable for a unit which has relatively larger difference
to get a larger priority to move than neighbors. We therefore introduce the follow-
ing diffusion process. A diffusion variable z (3, ¢) represents the average difference
around the unit ¢. It is calculated as follows!.

o(i,t+1) = z(5,t) + K&(i,t) — L, 2(,0) = diff(4,0) [initial state]
——————

2
Ax(i,t) @
where #(i,t) : “flux” of z(i,¢) inthewniti (= Y {z(j,) - z(i,1)})
J € neighbors of 2
K : diffusion coefficient

L leak constant (effective for movable units only)

If z(1,t) < 01in (2), itis reset to zero. The diffusion variable K affects the velocity
of the diffusion, and L helps to converge to goal by decreasing whole diffusion
variables in the system.

3.24 Moving strategy A unit is activated to move clockwise or counterclock-
wise by the following condition that the ratio of difference to diffusion variable
(estimated average) is larger than an activation threshold G:

Ge(i,t) < diff(i, t) 3

This makes units having relatively large difference move. The motion is stochastic
in such a way that the direction which gives smaller difference after the movement
is chosen with larger probability.

If the goal configuration is accomplished, the differences become zero in all of
the units and no more motion will be made.

3.2.5 Introduction of irritation Sometimes the self-assembly process is trapped
in a deadlock state. The right two configurations in Figure 4 are in deadlock because
all the movable type “o” units have the difference 0 with proper neighbors {K, K}.

!Suppose that each unit has a water reservoir connected to neighbors with pipes. Then, the water lev-
els will converge to an average level as water flux passes through the pipes. This water level analogically
corresponds to the local average difference.

123

o K. K)

K(@© KK s
K(KK s, s)

s (KKK K, s s)

deadlock

Figure 4 Examples of deadlock

To dissolve deadlock, we add another variable called “irritation” irr(¢, t). If Az (i, t)
in (2) remains smaller than a certain value, namely z (i, t) becomes stable, irr(s,)
is augmented according to:

ire(i, ¢ + 1) = irr(s, ¢) + max(|2(3, 1), |diff(i, ¢) — (5, 1)|))

In particular, when non-movable units are in deadlock, z (4, t) approaches zero with
non-zero diff(s,¢) or z(i,¢). Consequently, irr(s,¢ + 1) increases continuously
(Yoshida ez al., 1997).

If the inequality in (5) is satisfied, then z(¢, t) is increased largely in proportional
to |diff(¢,t) — x(¢,¢)| and irr(s, t) is reset to zero in those units.

ire(, t) > Ly (5)

Since non-movable units in deadlock supply a flux continuously, Z(1,t) increases in
also movable units. Then the irritation irr(z,) in such movable units increases by
evaluating (4), while z (4,) remains stable, namely, Az ~ 0 in (2) due to the leak
constant L.

By adding, therefore, a new activation condition (5) for movable units, deadlock
states can be dissolved in a local way.

3.3 Self-repair Algorithm

The above algorithm can be accommodated to “self-repair” function by introduc-
ing an extended goal description. This extension makes it possible to express goal
shapes including spare units (Yoshida et al., 1997).

In adding a spare unit to the goal of 10-unit triangle, we introduce descriptions
with priorities shown in Figure 5. We give the first priority to the original triangle
shape and the second to the shape with a spare unit. In this example, up to three
spares can be included by slightly modifying the description.

This simple method allows units first to build the structure with spare units, and
to repair themselves if some of units are removed. Computer simulations showed
the effectiveness of the introduced algorithm.

4 Self-assembly and Self-repair Experiments

Using the developed hardware setup, self-assembly and self-repair experiments have
béen conducted. The algorithm presented so far is a high-level control which de-

124

o{K, K}
K{o, K, K, s} Prority 1
s{K,K,K,K,K,K} | [original shape]
g o{¢g f}
spare unit A%X%z%&? e{o, K, f}
%&WA%VA%@ K(o,K.f, s} Prority 2
%‘;%%% f% & Ie(’ ; Sé) [with a spare unit]
o¢ KK s

s {K,K, K, K, K, f}

Figure 5 Description with priorities for self-repair

cides whether a unit moves or not and the direction of the motion. In the real mech-
anism, a unit's motion requires other units' local cooperation. We have developed
a low-level control which consists of map generation, collision avoidance and coil
drive (Tomita ef al., 1996) and integrated it with the upper-level algorithm.

In the following experiments, a step time including these two control levels is
23.25[sec]. The most time-consuming part in the step time is the control of electro-
magnets. They should be controlled by an appropriate sequence with sufficient in-
terval, so that undesired motion may not occur. It is also necessary that resultant
connection type after the motion should not be unstable “e” type. The control se-
quence consists of 18 steps, each of which takes 1.0[sec].

The pictures in Figure 6 are taken from one of the experiments. Starting from a
two-line configuration, 11 units form a 10-unit triangle with one spare unit based on
the proposed self-assembly algorithm. This goal shape remains stable as long as all
the units are working without faults.

The 1000 simulations of this self-assembly resulted in the success ratio 98.3%
with the average convergence time 57.7 steps. Figure 6 (left column) shows snap-
shots taken from the shortest case of 6 steps.

To verify the self-repair capacity, a simulated fault is given to one of the 11 units
by cutting its electric power source (except for “s” type unit). Each unit sends out a
“OK” signal to its neighbors at the beginning of each step while working properly.
The fault can be detected if a unit does not receive the expected “OK” signal. In
this case, the unit reverses the polarity of the corresponding electro-magnet to cut
off the faulty unit,

Then self-repair process proceeds automatically. Even though total units in the
system has changed, the global self-repair process is launched thanks to its dis-
tributed characteristics of the algorithm. We can see the original 10-unit triangle is
constructed in the right column of Figure 6.

We examined the self-repair capacity by giving the simulated fault to each of 10
units except the center “s” type. As a result, self-repair completed successfully in
all of these 10 experiments and the average self-repair time was 2.2 steps.

The experiments demonstrate that a mechanical system consisting of many iden-

tical hardware and software can maintain themselves using self-assembly and self-
repair functions in a distributed manner.

i

125

‘cutting off the
: defective unit

{
{

. iself-repair using ' -

defective unit
(power source cut)

Self-assembly experiment Self-repair experiment
Figure 6 Experiment of self-assembly and self-repair

126

5 Development of 3-D System

We are currently attempting to extend the concept of our self-assembling modular
machine to 3-D space. This section outlines its present developments stage.

5.1 Design of 3-D Unit

The difficulty of design lies in how both geometric complementarity and system
homogeneity are satisfied in 3-D space. A solution we reached is illustrated in
Figure 7. The unit has six connecting arms in three orthogonal axes which can
rotate independently. Only one DC motor of 7[W] is used as power source in a unit
to realize compact implementation. Its torque is delivered by controlling solenoids
and electro-magnetic clutches. We confirmed that a unit generates enough power to
lift another unit.

The motion of units is basically made by a pair of them. Consider two connected
units (shaded) on a plane A made by 4 units in Figure 8 (a). Unit Y moves to
the position in Figure 8 (b) when unit X rotates about axis b—b after releasing the
connection to Z. By repeating this elementary step motion, various 3-D structures
can be configured without external help.

5.2 Self-assembly of 3-D System

A self-assembly algorithm for 3-D units is being developed in parallel with the
hardware development. We present here the current status of development.

We classified the connection types of 3-D unit in 1-neighborhood system in cubic
lattice as shown in Figure 9. We neglect rotational transformations in this classifi-
cation.

Assuming that a unit rotates by 90 [deg] at one step, a unit with type C1 has
maximum two reachable positions. Other than C1, types C21 and C31 are also
regarded as movable here.

Here, a 3-D self-assembly algorithm is used which is derived from the difference-
based 2-D algorithm.

(b)

Figure 7 Schematic view of 3-D

unit Figure 8 Typical motion of 3-D units

127

Valence | 2 3 4 5 6
Type

C1 C20 C30 C40 Cs Cc6
1 Lol 4
Cc21 C41

C31

Figure 9 Connection types for 3-D units

We simulate a simple self-assembly to construct a box with twelve units from the
initial ladder configuration. Similarly as the 2-D algorithm, the goal description is
simply written as:

C31{C31, C31, C41})
C41{C31, C31, C41, C41}

Units calculate the probability of moving to each of reachable positions based on
Markov Random Field (MRF) according to the calculated difference (Geman and
Geman, 1984). Using a kind of simulated annealing method, units move uniformly
to every reachable positions in earlier steps, and less frequently as time elapses.

Figure 10 shows a graphical view of a simulation sequence. In this example,
the system succeeded in self-assembly in 70 steps. Construction of more complex
structure will be tackled in our future work.

40 steps ‘: 70 steps (éompleted)

Figure 10 Self-assembly simulation of 12 units

128

6 Conclusions

We presented experimental research on self-assembly and self-repair of a distributed
mechanical system. A 2-D model of identical units called “fracta” is used as hard-
ware which realizes dynamic reconfiguration and inter-unit communication. Based
on a distributed algorithm that allows a group of units to transform themselves into
a desired shape, we demonstrated the self-assembly and self-repair functioned suc-
cessfully. This experimental results confirmed the hardware feasibility of the self-
repairing distributed mechanical system and opened its way to applications such as
long-running explorer or surveillant in hazardous environments.

As a further challenge, we are now on the way to 3-D system. We designed a
prototype unit and confirmed its basic function of reconfiguration capacity. A self-
assembly algorithm is being implemented as well, whose potential effectiveness was
shown by computer simulations. The self-assembly algorithm is being refined for
robustness and adaptability.

7 REFERENCES

Chirikjian, G., A. Pamecha and I. Ebert-Uphoff (1996). Evaluating efficiency
of self-reconfiguration in a class of modular robots. J Robotic Systems
12(5), 317-338.

Fukuda, T, S. Nakagawa, Y. Kawauchi and M. Buss (1989). Structure decision
method for self organizing robots based on cell structure — CEBOT. In: Proc.
IEEE Int. Conf. Robotics and Automation. pp. 695-700.

Geman, S. and D. Geman (1984). Stochastic relaxation, gibbs distributions, and
the baysian restoration of images. IEEE Trans. Pattern Analysis and Machine
Intelligence PAMI-6(6), 721-741.

Hamlin, G. J. and A. C. Sanderson (1996). Tetrobot modular robotics: Prototype
and experiments. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS'96). pp. 390-395.

Kokaji, S., S. Murata, H. Kurokawa and K. Tomita (1996). Clock synchronization
algorithm for a distributed autonomous system. J. Robotics and Mechatronics
8(5), 317-338.

Murata, S., H. Kurokawa and S. Kokaji (1994). Self-assembling machine. In: Proc.
IEEE Int. Conf. Robotics and Automation. pp. 441-448.

Tomita, K., S. Murata, E. Yoshida, H. Kurokawa and S. Kokaji (1996). Reconfigura-
tion method for a distributed mechanical system. In: Distributed Autonomous
Robotic System 2 (H .Asama et.al, Ed.). Springer.

Yim, M. (1994). New locomotion gates. In: Proc. IEEE Int. Conf. Robotics and
Automation. pp. 2508-1524.

Yoshida, E., S. Murata, K. Tomita, H. Kurokawa and S. Kokaji (1997). Distributed
formation control for a modular mechanical system. In: Proc. IEEE/RSJ Int.
Conf. Intelligent Robot and Systems (IROS'97).

	File0185.PDF.pdf
	File0186
	File0187
	File0188
	File0189
	File0190
	File0191
	File0192
	File0193
	File0194

