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Abstract

We present a nonrigid shape matching technique for es-
tablishing correspondences of incomplete 3D surfaces that
exhibit intrinsic reflectional symmetry. The key for solving
the symmetry ambiguity problem is to use a point-wise lo-
cal mesh descriptor that has orientation and is thus sensi-
tive to local reflectional symmetry, e.g. discriminating the
left hand and the right hand. We devise a way to com-
pute the descriptor orientation by taking the gradients of
a scalar field called the average diffusion distance (ADD).
Because ADD is smoothly defined on a surface, invariant
under isometry/scale and robust to topological errors, the
robustness of the descriptor to non-rigid deformations is
improved. In addition, we propose a graph matching al-
gorithm called iterative spectral relaxation which combines
spectral embedding and spectral graph matching. This for-
mulation allows us to define pairwise constraints in a scale-
invariant manner from k-nearest neighbor local pairs such
that non-isometric deformations can be robustly handled.
Experimental results show that our method can match chal-
lenging surfaces with global intrinsic symmetry, data in-
completeness and non-isometric deformations.

1. Introduction
Finding meaningful correspondences between two

shapes is an important task in computer vision and com-

puter graphics. If the correspondences between surfaces are

known, we can align 3D scans [12], morph two shapes, es-

tablish statistical models [2] and transfer various types of

information —such as textures, segmentations and even de-

formations [30]—from one surface to another.

Early approaches focused on a rigid case i.e., establish-

ing correspondences between two nearly isomorphic ob-

jects (two objects with almost the same shape). In this

case, because a mapping between two shapes can be param-

eterized by few parameters (rotation and translation), opti-

mization is achieved efficiently by the iterative closest point

(ICP) technique and graph matching algorithms [12, 33].

Figure 1. Comparisons of local descriptors. Although heat kernel

signatures (HKS) are multi-scale, they do not discriminate reflec-

tional symmetry pairs, e.g., the left hand and the right hand. Spin

images are also not discriminative. In contrast, the oriented local

depth maps can differentiate.

Establishing correspondences of two shapes undergoing

nonrigid deformations, however, can no longer be repre-

sented by simple parameters. Consequently, most of the

methods represent a correspondence using a point-to-point

(or part-to-part) match and must solve a large combinatorial

optimization problem. Existing techniques [5,19,25,29,37]

try to find correspondences by minimizing some structural

distortions that are defined as a point-wise cost (differences

of feature descriptors) [3,8,32], a pairwise cost (differences

of distances) [3, 13] and a high-order cost (triplets) [36].

Although many nonrigid matching techniques have been

proposed, this problem is still very difficult due to the fol-

lowing challenges: The first challenge is the symmetric am-
biguity problem, i.e., the ambiguity that arises when match-

ing the surfaces with intrinsic reflectional symmetry. The

second challenge is incompleteness of input surfaces. Real-

world 3D scans are incomplete and have holes/noises. The

third challenge is non-isometric deformations. Isometric as-

sumptions are often used in nonrigid shape matching but it
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is in general not the case that two surfaces that we would

like to match are isometric.

Previous work solves the symmetry ambiguity problem

by incorporating the distortion measures based on confor-

mal mapping [17, 19], high-order potentials [36] or sym-

metry information [20, 24]. However, these solutions are

only applicable to limited classes of surfaces i.e., genus-

zero closed surfaces (or, at least, holes of two surfaces must

be located at same places), which cannot be used for match-

ing real-world 3D scans that are incomplete. Several tech-

niques have been proposed to tackle the incompleteness

problem [8,13,32], which is typically accomplished by con-

structing a pairwise cost from the distance that is robust to

topological noises. However, this approach is only limited

to match surfaces that have undergone isometric deforma-

tion. The point-wise descriptors that have been incorporated

in nonrigid matching so far—such as spin images [15], cur-

vatures or heat kernel signatures [31]—is robust to data in-

completeness. Some of them are also invariant under isom-

etry and local scales [6]. However, they do not have orien-

tations such that they cannot evaluate local symmetries and

are not effective in discriminating global symmetry pairs.

In this paper, we propose a nonrigid matching algorithm

for establishing correspondences of incomplete 3D surfaces

in the presence of intrinsic symmetries. We overcome 1)

symmetry ambiguity, 2) data incompleteness and 3) non-

isometric deformations at the same time, which is not yet

achieved by others [17, 26, 32, 36] but is actually very im-

portant for non-rigid 3D scan registration, e.g., automati-

cally matching a template mesh to 3D scans with different

details, local scales and poses. The contributions of this pa-

per are the following:

• We propose the idea of using orientation-aware lo-

cal mesh descriptors [9, 22, 35] to match two surfaces

with intrinsic symmetry. To our knowledge, this is the

first work that uses this class of point-wise descriptors

to solve symmetry ambiguity during nonrigid shape

matching. Unlike triplet descriptors [17,36], this strat-

egy is more efficient and robust to data incompleteness.

• We propose a new way of computing descriptor orien-

tation by taking gradients of the average diffusion dis-

tance (ADD) field. Since ADD is smooth, invariant un-

der scale/isometry and robust to topological errors, the

descriptor orientation can be computed consistently for

two different surfaces.

• We propose a graph matching technique called itera-

tive spectral relaxation that combines spectral embed-

ding and spectral graph matching. The benefit of our

algorithm is its ability to attain global convergence

with the pairwise cost that evaluates local pairwise

matches only for K-nearest neighbors. Thus, it is

efficient. More important, unlike [13, 26, 32] which

evaluates geodesic distortions, this formulation makes

the pairwise cost robust to sampling inconsistency and

non-isometric deformations.

Note that, to handle data incompleteness, we use diffusion

distances for defining point-wise/pairwise constraints.

2. Background
Non-rigid surface matching can be formulated as a graph

matching problem that incorporates point-wise costs and

pairwise costs [11], which is a quadratic assignment prob-

lem (QAP). Here, we briefly review basics of graph match-

ing, QAP and previous relaxation techniques that are fre-

quently used in 3D shape matching. Please refer to e.g.,

[7, 38] for detailed surveys.

2.1. Graph matching and QAP

The goal of graph matching is to establish point-to-point

correspondences between point i = 1, 2, . . . , n on shape S1
and point k = 1, 2, . . . ,m on shape S2. Point-to-point cor-

respondences can be expressed with a permutation matrix,

X ∈ {0, 1}n×m [7]:

X(i, k) =

{
1 i corresponds to k
0 otherwise

(1)

s.t. X1m ≤ 1n,X
T1n = 1m (2)

The inequality in the above constraint is used for the case

when S1 and S2 are of different sizes. We assume n > m
throughout this paper.

Graph matching seeks for correspondences that mini-

mize some structural distortions or, conversely, that maxi-

mize some structural affinity measures. Let fi and gk be N
dimensional vectors that contain feature descriptor values of

point i and point k. Then, the point-wise affinity measure is

defined as:

Kp(i, k) = exp(−‖fi − gk‖/σp) (3)

Next, let d(i, j) and d(k, l) be distances between points

(i, j) on S1 and points (k, l) on S2. Then, the pairwise

affinity measure is defined as:

Kq(i, j, k, l) = exp(−‖d(i, j)− d(k, l)‖/σq) (4)

Here, σp and σq are scale factors.

Now that point-wise and pairwise affinities, Kp and Kq,

are defined, the graph matching problem is formulated as

QAP:

argmax
X

∑
i,k

Kp(i, k)X(i, k) (5)

+
∑
i,j,k,l

Kq(i, j, k, l)X(i, k)X(j, l)
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In the graph matching field, two major formulations for

QAP have been introduced: Lawler’s formulation and

Koopmans-Bekcmann’s formulation.

Lawler’s QAP Let us define a global affinity matrix K ∈
R

nm×nm that contains point-wise affinity Kp(i, k) at its

diagonal and the pairwise affinity Kq(i, j, k, l) at off-

diagonals , where its row a and column b correspond to i,j,k
and l as a = n(k − 1) + i and b = n(l − 1) + j. Then, the

entry of K is:

K(a, b) =

{
Kp(i, k) b = a
Kq(i, j, k, l) otherwise

(6)

With K, the problem Eq. 5 can be written as:

argmax
X

vec(X)TK vec(X) (7)

where vec(X) is a column vector of X, vec(X) =
[x11, x21, . . . xn1, x12, . . . xnm]T .

Koopmans-Beckmann’s QAP Let F ∈ R
n×n and G ∈

R
m×m be adjacency matrices whose entries are Fij =

d(i, j) and Gkl = d(k, l), respectively. The problem Eq.

5 can alternatively be written as [7, 33]:

argmin
X

‖XFXT −G‖2 + ω‖Xf − g‖2 (8)

where f and g are n × N and m × N matrices containing

N -D feature descriptor values. In addition, ω balances the

constraints.

2.2. Relaxation techniques

The problem Eq. 5 is NP-hard and is highly expensive

to solve with an exact optimal algorithms like branch-and-

bound. Thus, many approximation techniques have been

proposed. Among them, we focus on spectral relaxation

techniques that are commonly used for 3D shape matching:

spectral graph matching [18] and spectral embedding [33].

Spectral graph matching [18] This algorithm is a relaxed

version of Lawler’s QAP (Eq. 7). It relaxes the constraint

on permutation matrix X to ‖vec(X)‖2 = 1, which results

in maximization of Rayleigh quotient:

argmax
X

vec(X)TKvec(X)

vec(X)T vec(X)
(9)

Thus, X is given by the eigen vector corresponding to the

largest eigen value of K, which defines scores for corre-

spondences. The eigen vector is then binarized with the

Hungarian algorithm.

The advantage of this approach is its global convergence.

In the context of nonrigid shape matching in 3D, Huang et

al. [13] and Kim et al. [17] used this strategy to compute

confidence scores of matching. The difficulty of using

this method is memory requirements and computational

costs for construction and eigen decomposition of K. The

complexity for constructing K is O(n2, n2); for instance,

when matching 100 points to 100 points, it will reach 108.

Spectral embedding [33] This algorithm is a relaxed ver-

sion of Koopmans-Beckmann’s QAP (Eq. 8). It relaxes

constraints on permutation matrix X, such that X is ap-

proximated as an orthogonal matrix, XTX = XXT = I.
Under this assumption, Eq. 8 is reduced to a linear assign-

ment problem that establishes correspondences between the

eigen vectors of F and G. However, due to numerical ap-

proximations, sign flips and ordering switches of the eigen

vectors occur [14,21]. Let U and V be the eigen vectors of

F and G 1. Let S and O be matrices containing signs and

ordering of eigen vectors. Then, we can rewrite Eq. 8 as:

argmin
X,S,O

‖XV −USO‖2 + ω‖Xf − g‖2 (10)

Further, if we express S and O using a single orthonormal

matrix, R = SO, this leads to:

argmin
X,R

‖XV −UR‖2 + ω‖Xf − g‖2 (11)

Equation 11 is solved via an ICP-like alternating opti-

mization approach [21, 23, 26]. Given an initial guess of

correspondences, orthonormal matrix R and permutation

matrix X are iteratively obtained until convergence. The

first step obtains R with X fixed:

argmin
R

‖V′ −UR‖2 s.t. RTR = RRT = I (12)

where V′ = X0V with X0 indicating the permutation ma-

trix computed in the previous step. To solve Eq. 12, R is

approximated as R∗ = V′UT and then ortho-normalized

with SVD. The second step obtains X with R fixed:

argmin
X

‖XV −U′‖2 + ω‖Xf − g‖2 (13)

where U′ = UR0 with R0 indicating the orthonormal ma-

trix computed in the previous step. This is actually a linear

assignment problem. Thus, X is computed with the Hun-

garian algorithm.

The advantage of this technique is that it is efficient and

requires a small memory space. The drawback of this ap-

proach is that it is local, i.e., it requires a good initial guess

or otherwise it will be trapped by local minimum. Fur-

thermore, ortho-normalization of R is too weak to achieve

1Note that recent techniques [21, 23, 26] perform eigen decomposition

on the Laplace-Bertrami operator, instead of on a dense adjacency matrix.

This is due to the fact that the Laplace-Bertrami operator is sparse and can

be efficiently computed.
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Figure 2. Gradient vectors of average diffusion distances (ADD)

are isometric invariant and smooth.

isometry because R = SO is usually nearly diagonal when

deformation is close to isometry. For this reason, the sparse

modeling approach [26] further constrains R to be approx-

imately diagonal. However, this approach limits the robust-

ness to non-isometric deformations.

3. Symmetry-aware surface matching

Our algorithm takes two triangle meshes M1 and M2

as inputs, where M2 is a surface that have undergone non-

rigid deformation from M1. M1 and M2 consist of nM1

and nM2 vertices, respectively. We assume that the mesh is

a single component having no isolated pieces, but it can be

incomplete and can contain holes. Also, M1 and M2 may

exhibit intrinsic symmetry.

The goal is to match these challenging input surfaces

semantically correctly and produce dense correspondences

between them. Using the notations in Section 2.1, our tasks

are thus to define f , g, F and G in a proper way and to

devise an efficient matching algorithm to solve Eq. 5.

Our algorithm starts from sampling to reduce possible

matches (Section 3.1). We employ the farthest point sam-

pling strategy based on the diffusion distance that is robust

to topological noises. We next compute an oriented local

descriptor at sample points (Section 3.2). This is the key

to solving the symmetric ambiguity problem. Finally, we

match the points based on an efficient graph matching algo-

rithm (Section 3.3 ).

3.1. Sampling

To reduce the number of possible matches, we select sev-

eral hundred (typically 200–300) of points from the original

mesh vertices. Following Raviv et al. [27] who achieved

symmetry detection of surfaces with topological noises, we

employ the farthest point sampling technique based on the

diffusion distance [10] to accommodate incomplete sur-

faces. As opposed to the geodesic distance, the diffusion

distance is robust to noise and topological short-circuits.

3.2. Feature description

Once we have obtained sample points, we compute a

local descriptor at every point. We propose to discrimi-

nate global symmetry pairs based on a the orientation-aware

mesh descriptor that is sensitive to local symmetry.

The descriptors that are used in previous nonrigid shape

matching techniques [3,8,13,23,32], e.g., spin images [15],

Gaussian curvature and heat kernel signature [31], do not

have orientations. Thus, these descriptors are not sensitive

to local symmetry e.g., the left hand and the right hand as

depicted in Fig. 1. In contrast, recent techniques [9, 22, 35]

compute a dominant angle or principal axis from local ge-

ometry and align histogram bins to it. Our key observation

is that these oriented descriptors can distinguish global re-

flectional symmetry pairs based on local symmetric infor-

mation as depicted in Fig. 1.

Robust descriptor orientation In this paper, we extend

the descriptor based on the local depth map [9, 22]. The

problem of these descriptors when applied to nonrigid shape

matching is that the computations of the principal axis using

PCA become unstable, due to local deformations. To allevi-

ate this problem, we compute the orientation by taking gra-

dients of a global scalar field that is isometric-invariant and

that is stable under local geometric changes. For this, we

use an average diffusion distance field (ADD) [10]. ADD

is a scalar field whose values are low at the center of the

segment and high at the extrema points (Figure 2). Since

the diffusion distance is isometric invariant, so is ADD. By

using a sufficient high value for the time factor of the dif-

fusion distance, we can make ADD smooth and robust to

local geometric changes.

Once we have computed the orientation, we obtain

local depth maps. At each sample point, we com-

pute the local depth map of 50 × 50 pixels as follows:

the view point is lo-

cated at the position dis-

tant from point i by some

distance α in the direc-

tion of the surface nor-

mal; the view direction

is the opposite direction

of the surface normal; the

view-up direction is the

normalized gradient vec-

tor of ADD. To construct a descriptor, we convert each local

depth map to a column vector. To achieve scale-invariance,

we normalize the sizes of the input surfaces by the scale fac-

tor that normalizes one of the surfaces’ bounding-box diag-

onal to 2. In addition, we achieve multi-scale descriptions

by computing local depth maps at three different α values

and concatenate three depth maps into one vector.

419241964196



Figure 3. The pairwise affinity is computed from the edges emanat-

ing from a vertex and its K nearest neighbor points. By exploiting

the sparsity of the matrix we can reduce memory requirements.

3.3. Matching

We feed local descriptors into a graph matching frame-

work that incorporates pairwise constraints. To achieve

this efficiently, we propose an algorithm called iterative

spectral relaxation that fuses spectral graph matching [18]

and spectral embedding [33]. Due to the ability of this

algorithm to preserve global consistency of the graph, we

can make the pairwise affinity matrix sparse such that

we can achieve global convergence while maintaining

efficiency.

Iterative spectral relaxation (ISR) Instead of alternating

Eq. 12 and Eq. 13 like the spectral embedding approach,

we alternate Eq. 12 and Eq. 9. We solve Eq. 9 with U and

V plugged into the diagonal of K:

K(a, a) = exp(−‖fi − gk‖/σp) + exp(−‖Vi −U′
k‖/σe)

(14)

where a = n(k − 1) + i. Here, we compute U and V from

the Laplace-Bertrami operator. Let Φ and Ψ be M × nM1

and M × nM2
matrices containing the first M dimensional

Laplace eigen basis of M1 and M2. Then, U and V are

defined as Ui = Φidx(i) and Vk = Ψidx(k) where idx(i)
and idx(k) is indices of sample points.

The advantage of ISR is that it can achieve (near-) global

convergence while reducing memory requirements. This

is due to the latter term of Eq. 14 that maintains global

consistency of the graph. Thus, we only need to evaluate

affinities for local edges near sample points and therefore

we can make K sparse. To find point pairs for establishing

local edges, we search K nearest neighbor points around

point i in terms of the diffusion distance (Fig. 3). We then

construct edges that emanate from i to K nearest neighbor

points. If edge i-j and edge l-k are in the local edge set, we

set K(a, b) to 1, otherwise 0:

K(a, b) =

{
1 k ∈ KNN(i) ∩ l ∈ KNN(j)
0 otherwise

(15)

where KNN(i) is a set of K nearest points of point i.
This rather rough binary representation allows us to robustly

Figure 4. Matching steps.

match points on M1 and M2 that are not uniformly sam-

pled. In addition, it is robust to non-isometric deformations.

The idea of combining ICP and graph matching is

presented in the deformable graph matching paper [38].

Although we are largely inspired by [38] and combines

graph matching and ICP, our algorithm is different from

theirs in several aspects. First, our target is nonrigid 3D

shape matching, as opposed to 2D image matching. Sec-

ond, we perform ICP in high-dimensional spectral space as

in [21, 23, 26], as opposed to performing in standard Euclid

space. Third, our aim of fusion is to reduce complexity of

QAP and to provide constraints on nonrigid transformation,

as opposed to incorporate global transformation (rotation,

similarity, etc.) into graph matching.

Matching steps Based on ISR, our matching technique

proceeds as follows: initial matching, coarse matching and

dense matching (Fig. 4). For the initial matching, we solve

a graph matching problem with a standard spectral relax-

ation (Eq. 9), ignoring Laplacian eigen vectors. The coarse

matching refines the resulting correspondences found in the

initial matching and alternates Eq. 12 and Eq. 9 for 10

times. We empirically determined K as K = 20 at the

initial matching and K = 10 at the coarse matching. The

relatively large K at the initial matching produces globally

consistent results at the cost of local accuracy. Finally, we

obtain dense correspondences by performing ICP in M di-

mensions [23] using Laplacian eigen vectors only.

3.4. Algorithm Summary

Our algorithm is summarized as follows:

Step 1: Sampling We perform the farthest point sampling

based on the diffusion distance. The number of sampling is

set to n = m = 250 in this paper.

Step 2: Feature description We compute local depth im-

ages at the sample points. The scale factor α, which deter-

mines a view position for local depth projection, is set to

0.05, 0.1 and 0.3.

Step 3: Initial matching We solve Eq. 9 without the

Laplacian eigen basis. We choose to use K = 20 for con-

structing the pairwise affinity matrix. We set the scale factor
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Figure 5. Coarse matching results. Randomly selected points from

among 250 points are shown.

as σp = 1.

Step 4: Coarse matching We alternate Eq. 12 and Eq. 9

for 10 times. We choose to use K = 8. We set parameters

to σp = 1 and σe = 1.

Step 5: Dense matching We perform ICP in M dimen-

sions. We set M = 100 in this paper.

4. Results
We tested our technique on TOSCA [4], SCAPE [3], an-

imal [30] and multi-view reconstruction [1,16,34] datasets.

For the meshes in the multi-view reconstruction datasets,

we sub-sampled them to around 20k vertices. The scans

used in this paper typically contain 10-100 holes. We quan-

titatively evaluated our algorithm based on the protocol

proposed in Surface Correspondence Benchmark [17] and

compared the results with other state-of-the-art methods.

Wide range of models Figures 5, 8 and 9 show the ability

of our method to match a wide range of models. Our match-

ing technique can establish dense correspondences even

when the models contain holes and inconsistent bound-

aries (Fig. 9). Furthermore, our method is robust to non-

isometric deformations (Figs. 8 (a), (b) and 9) and local

geometric changes such as garment motions (Fig. 8 (c)).

Our technique almost can produce correct correspondences

even for the shapes with different topologies (Fig. 8 (d)).

Comparisons In Fig. 6, we compare our technique with

the coarse-to-fine technique (C2F) [28]. C2F produces a

result with the right arm and the left arm flipped, whereas

our method generates a correct result.

Figure 7 quantitatively compares our method (SAM)

with Blended Intrinsic Maps (BIM) [17], Mobius Voting

[19], GMDS [5] and Heat kernel map matching (HKM)

[25]. We also compare the results obtained using our

method but with different local descriptors: single-scale lo-

cal depth maps (Single-scale), local depth maps using PCA

orientations [22] (PCA orientation) and spin images [15].

Note that, in this comparison, we do not allow symmetric

flips when computing geodesic errors. As can be seen in

Fig. 7, our result is comparable to BIM and Mobius Voting

which are robust to the presence of symmetries. Overall,

BIM is slightly better than our technique. This is probably

Figure 6. Comparison to C2F [28]. C2F technique produces a

result with the right arm and the left arm flipped, whereas our

method generates a correct result.

Figure 7. Quantitative comparisons. The graph shows geodesic

errors on SCAPE dataset. SAM is the proposed technique

(Symmetric-aware matching).

because BIM uses the global distortion measure based on

conformal map. Our method sometimes picks inconsistent

correspondences and produces partially wrong results. The

advantage of our technique over BIM is that we can handle

incomplete surfaces. We also remark that the advantages

of our formulation over the sparse modeling approach [26]

are that ours is symmetry-aware and robust to non-isometric

deformations (see Fig. 9).

The result obtained using the ADD gradients as descrip-

tor orientations is significantly better than the result using

using PCA orientation (Fig. 7 SAM vs SAM (PCA orien-

tation)). Also, multi-scale description is shown to be effec-

tive. The result using spin images is the worst within our

results, because this descriptor cannot discriminate global

symmetry pairs.

Performance We implemented the prototype of our algo-

rithm in Matlab with partially written in C/C++. On an Intel

Core i7 3.4GHz 64-bit workstation, the overall algorithm

takes approximately 2 min on a 50k mesh (Table 1). For

250 sample points, the number of nonzero values in K was

50M and 8M for the initial matching and the coarse match-
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Table 1. Timings (in seconds).
#V #n Sample Feature Init Coarse Dense Total

8k 100 0.5 1.7 1.4/0.5 0.2/0.7 8.8 13.8

8k 250 1.1 4.2 9.3/5.2 1.1/10.0 9.4 40.3

50k 100 3.6 8.2 1.3/0.6 0.2/0.8 65.0 79.7

50k 250 8.8 19.5 9.2/6.5 1.1/9.8 68.0 122.9

#V – number of vertices; #n – number of sample points; Sample – tim-

ing for sampling; Feature – timing for computing globally-aligned local

depth map; Init – timing for initial matching; Coarse – timing for coarse

matching (The left value is the timing for constructing K and the right is

the time for graph matching); Dense – timing for dense matching.

ing (resp.), which was approximately 1/80 and 1/600 of the

dense pairwise affinity matrix.

Limitations Because our technique heavily relies on local

geometric information, it is difficult for our method to han-

dle the models without surface details. Our method would

fail if the surfaces lack local reflectional symmetry informa-

tion or have many repetitive structures.

5. Conclusion
We presented a nonrigid shape matching method for es-

tablishing incomplete 3D surfaces in the presence of in-

trinsic symmetry. The key idea for matching shapes that

exhibit intrinsic reflectional symmetry is to incorporate an

orientation-aware local mesh descriptor that is sensitive

to local reflectional symmetry. To solve QAP efficiently,

we proposed the iterative spectral relaxation technique that

fuses spectral embedding and spectral graph matching. This

formulation improves robustness to non-isometric deforma-

tions because pairwise constraints can be defined in a scale-

invariant manner.

In the future, we would like to apply our technique to

other applications such as image matching, symmetry de-

tection, etc. It would be interesting to incorporate a fac-

torization algorithm of a global affinity matrix for further

improving efficiency.
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