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Abstract— In this study, we present a human body shape
statistical model including elderly people, which is constructed
using principal component analysis (PCA) on 3D body scan
data of approximately 130 people. As a pre-process step, a
template human body mesh model is fitted to 3D scan data
using a coarse-to-fine surface registration technique based
on a conformal deformation method, in order to establish
correspondences between the scans of different subjects possibly
in different poses. To change body style by a small set of
parameters, such as “age”, “weight” and “height” or the easily
measurable anthropometric parameters like “shoulder width”,
the linear transformations between these attributes and the
first 10 principal component scores are obtained. We design a
simple user interface to use this deformation model to generate
different body styles easily. As a result, we were able to
produce and show body styles capturing the characteristics of
elderly people whose shoulders fell and back bent. Finally, as
an application, we used our deformation method to generate
different body types, performed forward dynamics simulations
in an assistive device setting and visualized the differences in
contact pressure distributions due to body shape changes.

I. INTRODUCTION

Modeling human body shape is an important problem
in many fields, such as virtual fitting for fashion industry,
computer animation and design of assist devices. A common
way to do this is to acquire 3D scans of human body surfaces
using laser range scanners and construct a statistical model
of human body shape from the resulting 3D scans.

The first work in this line of research was done by Allen
et al. [1] where the authors fit a template 3D body model
to Caesar dataset that contains a couple of thousand subjects
and used principal component analysis (PCA) to model the
space of human body shape. Later, several techniques are
proposed to extend the method of Allen et al. to handle
both body shape and pose variations (such as SCAPE
[2] and SMPL [3]) and even dynamic deformations (e.g.,
FAUST [8]).

One of the difficulties in the use of a statistical model
of 3D human body shape is that it is limited by the subjects
included in the dataset. For example, Caesar dataset, the most
common human body shape dataset, contains the subjects
whose ages are in the range of 18-65. In general, publicly
available dataset do not include children and elderly people.
Park and Reed built a statistical parametric body shape model
of children in ages between 3 and 11 years [7]. Recently
Hesse et al. [4] proposed a technique to capture body shape
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Fig. 1. Top: Some examples of young-age and elderly subjects from human
body shape dataset. Bottom: the numbers of subjects in the age ranges.

and pose of moving infants using a 3D vision sensor. On the
other hand, we focus on constructing a body shape model
including elderly people.

In this paper, we establish a statistical human model that
includes elderly people. Here we are not aiming at construct-
ing a large dataset. Instead we intend to extract characteristics
of elderly body shapes and investigate the effects when
incorporating elderly subjects in the body shape dataset. One
difficulty in doing so is that the poses of 3D scans are
different to each other as we combine the data which may be
acquired in different experiment settings. To solve this, we fit
a template mesh model to 3D scan data using a coarse-to-fine
surface registration technique that takes into account pose
variations. First, the pose is aligned using a skeleton based
deformation technique. Then, the correspondences between
the scans of different subjects are established finely based on
a conformal mapping deformation method. By performing
principal component analysis (PCA) and mapping PC scores
to a small set of parameters such as “age”, “weight” and
“height” or the measurable anthropometric parameters like
“shoulder width”, it is possible to easily change the body
shape with these parameters. We also designed a simple user
interface to perform deformation using this model. Finally
we showed an application of human body shape statistical
model to forward dynamics of human figures interacting with



Fig. 2. Overview of our coarse-to-fine surface registration. (a) Template, (b) marker placement definition, (c) skeleton fitting result, (d) surface registration
result, (e) final pose corrected result and (f) target 3D scan surface.

assist devices and visualized contact pressure distributions.

II. TEMPLATE FITTING TO WHOLE-BODY 3D SCANS

A. Data acquisition

Human whole-body 3D scans are acquired and collected
by AIST Digital Human Engineering Research Center. From
this dataset we used the 3D scans of N ≈ 130 male subjects
(including about 50 elderly over 65) where the ages of
the subjects are shown in Fig. 1 bottom. Note that mesh
smoothing is performed on the faces of 3D scans to remove
surface details to ensure protection of subjects’ privacy.

B. Coarse-to-fine surface registration

In order to construct a statistical model from 3D scans,
we establish correspondences between them—this is a pre-
processing step to know which points on one scan corre-
sponds to the points on different scans (e.g., the ear to ear
and the toe to toe). This process is done by fitting a generic
template human mesh model to 3D scans.

The overview of our registration approach is depicted in
Fig. 2. To establish correspondences, a template mesh model
(Fig. 2 (a)) was fitted to 3D scan data (Fig. 2 (f)). Since 3D
scans are coming from different experiments and their poses
are possibly different to each other, we take a coarse-to-fine
approach that first aligns skeletal pose (Fig. 2 (c)) and then
shape (Fig. 2 (d)). The final mesh is obtained by transforming
back the deformed mesh to the rest pose (Fig. 2 (e)).

A template mesh is modeled as a triangle mesh that
contains n and m triangle faces. The positions of the
template, v1 . . .vn, are denoted by a n × 3 vector, v =
[v1 . . .vn]T. In this work the number of vertices is approx.
8000 vertices. The registration is expressed as a set of 3× 4
affine transformation matrices Xi that are associated with
each vertex of the template mesh, X = [X1 . . .Xn].
Conformal deformation We use the as-conformal-as-
possible deformation approach [10] to deform a template
model in both skeleton fitting and fine-scale shape defor-
mation. This method attains angle-preserving mappings and
constrains the transformations of the model as similarity
transformations (scale + rotation) locally as much as possi-
ble, which allows us to fit the model to the target geometry
in a flexible way while preserving the mesh structure with

Fig. 3. Measurement items.

less distortions. The cost function is defined as follows:

E(X) = wASAPEASAP(X) (1)
+wClosestEClosest(X)

+wMarkerEMarker(X)

where EASAP constrains deformation as-similar-as-possible,
which equivalently achieves conformal mappings, and
EClosest penalizes distances between the closest points of
template and target surface. The closest points from the
model and the target 3D scanned points are found by the
nearest neighbor search based on kd-tree. EMarker is the
positional constraint anatomical landmarks, which attracts
the template mesh vertices corresponding to the landmarks
toward the measured landmarks. Here we provide approxi-
mately 60 anatomical feature points for marker correspon-
dences (Fig. 2 (b)). The energy is minimized using the
alternating optimization technique where the first step op-
timizes the vertex positions with fixed transformations and
the second step optimizes affine transformations with fixed
vertex positions.
Pose alignment Since the pose of the subject is different
from that of the template, it needs to be aligned before sur-
face registration (Fig. 2 (c)). To do so, we use skinning (aka.,
skeletal subspace deformation or linear blend skinning). Each
vertex in the dense mesh is assigned skinning weights and its
deformed position is computed from bone transformations.
Instead of assigning an affine transformation to each vertex
we define it at each skeletal joint.



Fig. 4. The cumulative ratio of variance [%] for the first 50 principle
components. It reaches approx. 92% at 10 PC and approx. 99% at 50 PC.

Skinning computes vertex positions from the joint trans-
formations. Let us define the joint positions of the skeleton as
jk. The linear transformation and the translation associated
with jk is denoted by Tk and tk, respectively. Let j0k be the
joint position of the skeleton in the rest state. The deformed
vertex is obtained as follows:

v̄i =

c∑
k=1

w
(k)
i [Tk(v0

i − j0k) + j0k + tk] (2)

where c is the number of joints in the skeleton. w(k)
i is a

weight for vertex i, controlling how much vi is influenced by
jk. Consequently, given scan-template correspondences C =
{(v1,pidx(1)) . . . (vn,pidx(n))}, where idx(i) is the index of
the scan point that is matched with vertex i, we can define
the correspondence energy by minimizing the skinned vertex
position v̄i and the closest points as:

EClosest =
∑
i∈C
‖v̄i − pidx(l)‖2 (3)

Fine-scale deformation After aligning skeletal poses by op-
timizing the affine transformations of skeletons, we perform
surface registration by optimizing affine transformations as-
signed to vertices (Fig. 2 (d)). Finally, the pose of registered
surface is transformed back to the rest pose (Fig. 2 (e)).

III. STATISTICAL BODY SHAPE MODEL AND LOW
DIMENSIONAL PARAMETRIZATION

A. Principal component analysis (PCA)

To construct a statistical body shape model, we use the
whole body shape dataset that is a collection of 3D models in
mutual correspondences established in the previous section.
The models are compressed into a low dimensional basis
using principal component analysis (PCA). In order to con-
struct a PCA body model, the three coordinates of vertices
for subject j is stacked into a column vector as:

sj = [x1,j , y1,j , z1,j . . . xn,j , yn,j , zn,j ]
T (4)

sj is assembled for all individual to get shape matrix S ∈
R3n×N . PCA is applied on S to obtain mean shape m and
a set of eigenvectors U. Note that we perform PCA on the
covariance matrix of S without standardization because it
preserves scale and, in our problem, input data have the

Fig. 5. User interface and body shape deformation results.

same unit and similar scale [1]. Reconstruction of the vertex
position of a body shape from eigenvectors is achieved as:

sj = Uwj + m (5)

where wj is the weight of principal components (PC scores)
for subject j. In Fig. 4, we showed the cumulative ratio of
variance for the first 50 principle components. It reaches
approx. 92% at 10 PC and approx. 99% at 50 PC. Since
more than 90% of the original data is explained by the first
ten components and the variance is already close to zero
when reaching to around the 7th components, we decided to
keep the first ten principal components.

B. Body shape deformation with a small set of parameters

Altering PC scores directly is however not intuitive to
change body shapes for a practical use. We therefore provide
two ways for deforming body shape using a small set of
parameters: 1) general attributes, such as age and height,
and 2) anthropometric parameters which can be measured
using a ruler and anthropometer.
Deformation with general attributes In order to change
the body type by three parameters “age”, “weight” and
“height”, a linear transformation between these attributes



Fig. 6. Different body types generated by our method. By reproducing the body form of the elderly using this method, we were able to generate a style
capturing the characteristics of elderly people whose shoulders fell and the back was bent (the first column vs the second column).

and the principal component scores are obtained by linear
regressions following Allen et al. [1].

Let a = [a1, a2, a3, 1]T be an attribute vector containing
“age”, “weight” and “height”. Suppose we have the linear
mapping M ∈ R10×(3+1) that maps attribute vector a to
PC scores w. Given attribute vector a, the new weight w̃ is
computed by w̃ = Ma. The new body shape is then obtained
by substituting w̃ into Eq. 5, i.e., s̃ = Uw̃ + m. Using M,
we can thus easily change body shape by an arbitrary set of
general attributes.

Our remaining task here is to obtain linear mapping M
from the set of attributes and PC scores obtained from the
body shape dataset. Let A ∈ R(3+1)×N and P ∈ R10×N

be the matrices containing general attributes and principal
component scores for all the subjects, respectively. The linear
mapping M is then calculated as M = PA+ where A+ is
the pseudo inverse of A.
Deformation with anthropometric parameters Here,
to deform body shape with anthropometric parameters we
propose a method that is inspired by the subspace linear
deformation model [5] using the PCA body model as a
subspace. In this way, the body model can be deformed
more exactly than linear regressions by imposing length
constraints directly on the body model. To make a method
computationally efficient, we use linear constraints, which
means that a set of measurement parameters must be parallel
(or perpendicular) to the canonical coordinate frame. Note
that, using non-linear deformation model like mass spring
systems [6], this method can be extended to use measurement
items that are not parallel to the canonical frame.

Considering also the ease of measurement we chose the
measurement items as in Fig. 3, i.e., height (h), shoulder
width (ws), waist width (ww), waist thickness (tw) and crotch
height (hc), which can be calculated as the distance between
the following point:

h = zhead (6)
ws = yLSHO − yRSHO

ww = yLIC − yRIC

tw = xnavel − xL3

hc = zCrotch

where the definition of the landmarks are defined in Fig.
3. Let e be a vector containing the measurement items, e =
[h,ws, ww, tw, hc]. Then, Eq. 6 can be rewritten in the matrix
form as: e = Gs = G(Uw + m), where G ∈ R5×n is an
incident matrix containing 1 and -1. Consequently, we can
obtain the new coefficients w̃ in a least squares sense so that
the body shape conforms with the measurement parameters,
by solving the following normal equation:

w̃ = (GTG)−1GT (e−Gm) (7)

By taking advantage of the fact that the directions of the
measurement items are parallel to the canonical coordinate
frame axes, Eq. 7 can be solved linearly, which is efficient.
Again, the new body shape is obtained by solving Eq. 5 with
w̃.

IV. RESULTS AND APPLICATIONS

A. Interactive body shape deformation using GUI

In Figs. 5 and 6, we show different body types generated
by our method. As a result of reproducing the body form
of the elderly using this method, we were able to produce
a body style capturing the characteristics of elderly people
whose shoulders fell and the back bent (Fig. 5 (a)).

B. Evaluation of body shape reconstruction techniques

In Fig. 7, we visualized the reconstruction error using the
first 10 PC scores. We measured the distance between the
deformed template and reconstructed shape at each vertex.
Mostly, the average reconstruction error is below 10 mm.
Occasionally, there are regions with large errors over 50 mm,
which is probably due to pose differences of the left and
right hands, as the PCA reconstruction usually symmetrizes
the shape.

We also evaluated the results obtained using the defor-
mation method based on general attributes (Fig. 8). In this
case, the control parameters are only three: “age”, “height”
and “weight”, which is very challenging problem. As can
be seen from Fig. 8, large errors are found around hands
and feet, as this deformation model cannot change the arm
and leg length independently. However, considering the error
range of reconstruction results using the first 10 PC scores



Fig. 7. PCA reconstruction error. We measured the distance between the deformed template and reconstructed shape using 10 PC scores at each vertex.
For each body model, the left and right are the visualization of the error for the front and back side, respectively. The numbers below are the mean error
[mm] and maximum error [mm] are also shown.

Fig. 8. Reconstruction errors of deformation results by general attributes. We measured the distance between the deformed template and reconstructed
shape using the deformation method based on “age”, “height” and “weight”. The numbers below are the mean error [mm] and maximum error [mm] are
also shown.

(Fig. 7), we believe that the results are in the acceptable range
for our application i.e., to roughly make the characteristics of
elderly people’s body shape visible and to perform forward
dynamics simulations in an assistive device setting.

C. Application to forward dynamics simulation

As an application, we applied our body shape deforma-
tion technique to generate forward dynamics simulations of
different body types. We performed simulation of a sling lift
assistive device in contact with a human body model, where
the sheet is modeled using simple mass spring systems. This
device is designed to support transfer, for example, from a
bed to a wheel chair.

For the forward dynamics model we used the method
presented in [9]. Here the skeleton is modeled as an open-
loop tree structure with the root joint at the hip. We describe
a pose of the skeleton using the generalized coordinates q,
which includes joint angles of the skeleton, the absolute
position and orientation of the root joint.

To apply the simulation technique to different body types,
we alter physical properties of segments according to body
deformation based on a simple approximation model. Once
the body shape has been changed, the mass, center of mass
(COM) and inertia of segments are modified. We approxi-
mate deformation with anisotropic scalings of segments (sx,
sy and sz) and apply the changes in physical properties



Fig. 9. Simulation results of a simple model of sling lift assistive
device in contact with a human body model. We performed simulations
by varying height (160cm and 170cm) as well as shoulder width and waist
width/thickness (Slim and Thick&Wide). Contact force estimation results
are shown under the visualizations of human figure model.

as follows. Let m, c and I be the original mass, COM
and inertia of segments, respectively. Then subject specific
physical properties m̃, c̃ and Ĩ can be calculated as:

m̃ = m · Ṽ /V = m · sx · sy · sz (8)

c̃ =

sx 0 0
0 sy 0
0 0 sz

 c (9)

Ĩ =

 s2x · Ixx sx · sy · Ixy sx · sz · Ixz
sy · sx · Iyx s2y · Iyy sy · sz · Iyz
sz · sx · Izx sz · sy · Iyz s2z · Izz

 (10)

where V and Ṽ are the volumes of a segment before and
after deforming a body shape.

Fig. 9 shows simulation results on different body types
and visualizations of their contact force estimations. Here,
we performed simulations by varying height (160cm and
170cm) as well as shoulder width and waist width/thickness
(Slim and Thick&Wide). Contact force estimation results
among different body types show visual differences between
them. For example, the estimated contact forces of the body
model with height 160cm are concentrates around knee. This

is probably because the body is not well supported by the
buttocks due to its short legs (especially short thighs). Also,
the estimated contact forces of the slim body model are
higher at the knees and buttocks than that of the thick and
wide body model, since the body surface area contacting with
the sheet is smaller. Note that the results resembles with the
tactile sensor measurements [9].

V. CONCLUSION

We presented a statistical body shape model that includes
elderly people using PCA. As a pre-processsing step, the
coarse-to-fine registration technique is proposed to establish
correspondence between 3D scans. We also introduced the
body deformation model using a small set of parameters
and a simple graphical user interface to change body shapes
easily. The proposed body deformation method was applied
to forward dynamics simulation of an assistive device inter-
acting with a human model to examine different body types.
In future work, we would like to address the modeling of
material properties such as skin tissue and joint stiffness.
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