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Abstract This paper presents a new framework for trajectory optimization using
comprehensive differential kinematics and dynamics theory, and also its applica-
tions and perspectives. For a robotic system with large degrees of freedom includ-
ing humanoid robots, numerical gradient computation is not practical in terms of
precision and time. Trajectory optimization is more and more demanded in different
fields not only for usual motion planning but also motion imitation, dynamic param-
eter identification and human motion understanding. The proposed theory is based
on the comprehensive motion transformation matrix (CMTM) that allows describing
variational relationship in differential kinematics and dynamics including velocity
and acceleration based on a simple chain product. This enables analytical gradient
computation of various physical quantities such as joint force or torque with re-
spect to trajectory parameters, which is beneficial to various optimization problems.
We overview the possible evolution brought by this technique and demonstrate its
advantages through examples of efficient optimization of dynamic motions for a
redundant robot and a humanoid under severe constraints. Also, we discuss the pos-
sibility of its integration in optimal control method.

1 Introduction

Optimization technique is becoming more and more important in many research
fields of robotics to plan and control the motion of various robots. Especially, an-
thropomorphic systems including humanoid robots and digital human models that
we have been working on, are attracting interests because of its widespread appli-
cation areas. Together with a motion planning method where geometric and kine-
matic path is first planned and then converted into whole-body trajectory by us-
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ing dynamic locomotion pattern generator and inverse kinematics (IK) for a loco-
manipulation task [36, 37], our group also tackled whole-body motion optimization
problem [18, 38, 30] that was still challenging at that time as it should take into
account many mechanical constraints such as joint or torque limit, as well as con-
straints like dynamic stability and unilateral contacts at the same time for a large
number of degrees of freedom (DOFs).

Whole-body motion optimization technique for anthropomorphic systems keeps
evolving for various purposes: dynamic multi-contact motions [16, 9, 32, 8], human
motion retargeting [29, 35, 23, 1], and dual-arm manipulation of a flexible object
with minimum deformation [25] by humanoid robots. The usage of trajectory op-
timization for anthropomorphic systems is not limited to humanoid robots, but can
be exploited for human motion analysis and understanding. Human motion sim-
ulation is one of the typical examples. Self-stable dynamic running motion for a
human figure has been generated by determining model parameters and actuation
input based on efficient optimal control techniques and stability optimization [19].
Musculoskeletal analysis [21, 11] of a digital human model is another typical ap-
plication. This study models the muscles as massless wires connecting links and
computes muscle tensions by minimizing the total energy and biologically modeled
muscle activities under dynamic constraints. Real-time visual feedback of muscular
activity was also proposed by introducing fast computation [20, 2].

According to recent progress in robotics and increasing requirements for di-
verse applications, we are facing more and more complex optimization problems
including dynamics, system identification, and motion generation and control. For
instance, optimization-based motion planning like CHOMP [26] and trajopt [27] al-
low continuous path refinement to obtain a collision-free path even the initial path is
in collision, based on covariant gradient techniques. The cost function can include
such indices like path smoothness, obstacle avoidance and other physical quantities
such as object orientation depending on the required task. Another illustrative ex-
ample is the generation of optimal persistent exciting (PE) trajectory for dynamics
parameter identification for humanoid robots [4, 12, 3]. The robot needs to move
sufficiently each of its links in a dynamic manner for better identification perfor-
mance, which is called the persistent exciting motion. It is necessary to minimize
the condition number of “regressor matrix” computed from the trajectory while sat-
isfying other constraints such as dynamic balance and mechanical limitations. Here
also, gradients of several physical quantities should be computed and it will become
intractable with numerical differentiation.

In those complex trajectory optimization problems, the cost function and the
constraints often involve combined physical quantities. The partial derivative of
any physical quantities with respect to the joint coordinates is therefore indispens-
able when evaluating the cost and constraints represented by the coordinates and
their derivatives, as well as forces in both Cartesian and joint space. Previous work
[24, 28, 29] can deal with part of those problems, but still needs improvements to
cope with free-floating and spherical joints for humans and humanoids, and to re-
duce computational cost as well.
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Concerning control issues, the optimization technique can be used to build a
controller to achieve the generated trajectory. Recently, control frameworks based
on quadratic programming (QP) for digital humans and humanoid including multi-
ple contacts with the environments [17, 31, 7, 32, 8], extending the model predictive
control (MCP) applied to simplified model of bipedal locomotion [13, 34]. The ba-
sic approach is to compute the control input to reduce the errors between the desired
tasks and their current state from sensors, anticipating the future for a finite horizon.
For those controllers to be applied to full whole-body model in real-time motion
generation, efficient analytical gradient computation is a critical issue as well.

In this paper, we present a new framework of trajectory optimization and its
applications for anthropomorphic systems based on a comprehensive differential
kinematics and dynamics [5, 6]. After introducing the comprehensive motion trans-
formation matrix (CMTM), we show some useful formulae allowing computation
of Jacobians of physical quantities with respect to joint angles and its derivatives.
Examples of optimization for redundant manipulator with spherical joints and PE
trajectory for a humanoid are demonstrated to validate the effectiveness of the pro-
posed framework. Especially, the analytical gradient of zero moment point (ZMP)
[33] with respect to joint angles and their derivatives has never been shown and
used for dynamic humanoid motion optimization in previous work. Utilization of
the framework for optimal control is then discussed before concluding the paper.

2 New Optimization Framework using CMTM

This chapter outlines the new optimization framework using CMTM [5]. We will
briefly introduce its definition and derivation of useful analytical Jacobians for var-
ious physical quantities with respect to joint angles and its derivatives.

2.1 Optimization formulation

Here the trajectories of the generalized coordinates of a robot qqq are parameterized
by a vector aaa and time instance t, namely qqq(aaa, t). This parameterization can be
for instance Fourier series, polynomial interpolation, or B-splines, which allows
computation of their derivatives q̇qq and q̈qq with respect to aaa and t depending on the
implemented trajectory parameterization.

By defining a vector QQQ = [qqqT q̇qqT q̈qqT ]T , physical quantities yyy are expressed by us-
ing QQQ, such as the position, orientation, linear / angular velocity and acceleration
of each link coordinate, the joint torques and the constraint forces acting on the
joint coordinates. By combining those quantities we can compute the center of mass
(CoM) and their derivatives, or the ZMP that is a point where the horizontal compo-
nents of moments from the ground reaction force are zero. For j-th time instance t j,
let QQQj denote the coordinates together with their derivatives and yyyi, j the i-th physi-
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cal quantity at t j, where yyyi, j constituting YYY , the whole set of the evaluated quantities.
Based on this notation, the trajectory optimization problem can be formulated:

min
aaa

c(YYY ) (1)

subject to ∀ k gk(YYY )≤ 0

where c is the cost function to be evaluated and gk is k-th inequality constraint.
Equality constraints are omitted as they can be represented by two inequalities.

The optimization needs the gradient of the cost function and the constraints,
which is computationally expensive if we compute it numerically. The following
analytical gradient computation is therefore necessary for efficient optimization:

∂h
∂aaa

= ∑
i

∑
j

∂h
∂yyyi, j

∂yyyi, j

∂QQQj

∂QQQj

∂aaa
(h = c or gk) (2)

The gradient ∂h/∂ yyyi, j is derived according to the physical quantities involved in the
cost function or the constraints, and the partial derivative ∂ QQQj/∂ aaa can be computed
from the implemented trajectory parameterization. The term ∂ yyyi, j/∂ QQQ j is the partial
derivative of physical quantities of multi-body system with respect to the joint coor-
dinates and their derivatives. Its typical example is the basic Jacobian [15], which is
the partial derivative of the position and orientation of each link with respect to the
joint coordinates. In general, the derivatives of the velocities, the accelerations and
the joint torques with respect to qqq, q̇qq, q̈qq are required in order to compute ∂ yyyi, j/∂ QQQ j.

Although previous work [24, 28] formulate the analytical partial derivative of
Cartesian coordinates, their derivative, and joint torques with respect to the joint
coordinates and their derivatives, it should be extended for spherical joints, free-
floating base or other types of joints in order to be applied to anthropomorphic
systems, because the formulations are originally designed for fixed manipulators.
The computation complexity should also be improved for the partial derivative of
the variables of a link using recursive formula, as it is almost O (N2

J ), where NJ is
the number of DOF.

2.2 Comprehensive motion transformation matrix (CMTM)

Before introducing the new framework, we provide definitions of variables and no-
tations. The position and orientation matrix of the coordinate system of a rigid body
are ppp and RRR respectively. Let ωωω and ννν be the linear and angular velocity represented
by the local coordinate respectively, then the following relationship holds.

ṘRR = RRR [ωωω×] (3)

ννν = RRRT ṗpp (4)

where skew operator is represented as follows:
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[xxx×] �
[

0 −x(3) x(2)
x(3) 0 −x(1)
−x(2) x(1) 0

]
(5)

The 6×6 transformation matrix of position ppp and orientation RRR is defined as follows:

AAA(ppp,RRR)�
[

RRR [ppp×]RRR
OOO3 RRR

]
(6)

where OOOn and EEEn are n× n zero and identity matrices respectively. Linear and an-
gular velocities are concatenated and defined as the following vector:

υυυ �
[
νννT ωωωT

]T
(7)

Here, we introduce the operator for linear and angular velocities as follows:

[υυυ • ]�
[
[ωωω×] [ννν×]
OOO3 [ωωω×]

]
, υυυ1 • υυυ2 � [υυυ1 • ]υυυ2 (8)

This operator satisfies several important axioms like bilinearity, alternativity, and
Jacobi identity. For the sake of explanation, we utilize variation δααα instead of υυυ in
the following formulations. The variation of AAA can be written as:

δAAA = AAA[(δααα) • ] (9)

Let us now define the following new 18× 18 ‘comprehensive motion transfor-
mation matrix (CMTM)” XXX as follows:

XXX(AAA,υυυ , υ̇υυ) �
[

AAA OOO6 OOO6
AAA[υυυ • ] AAA OOO6

1
2 AAA

(
[υ̇υυ • ]+ [υυυ • ]

2
)

AAA[υυυ • ] AAA

]
(10)

We here define the following variation of 18 dimensional vector:

δxxx �
[
δαααT δυυυT δ υ̇υυT ]T

(11)

Vector δxxx is the concatenated vector of the variation of standard 6 dimensional coor-
dinates, velocities, and accelerations. Although δxxx is usually utilized in the standard
formulations of differential kinematics, the differential operation of CMTM XXX will
be discussed by newly defining the variation of 18 dimensional vector:

δξξξ �
[
δαααT δζζζ T δηηηT

]T
� SSSδxxx (12)

where,

SSS(υυυ , υ̇υυ)�

⎡⎣ EEE6 OOO6 OOO6

−[υυυ • ] EEE6 OOO6

− 1
2

(
[υ̇υυ • ]− [υυυ • ]

2
) − 1

2 [υυυ • ]
1
2EEE6

⎤⎦ (13)
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Matrix SSS transforms variation δxxx into that of new vector δξξξ , and note that the in-
verse matrix of SSS always exists.

Let us also define the following new matrix and operator:

[δξξξ • ] �
[
[δααα • ] OOO6 OOO6
[δζζζ • ] [δααα • ] OOO6
[δηηη • ] [δζζζ • ] [δααα • ]

]
, δξξξ 1

• δξξξ 2 � [δξξξ 1
• ]δξξξ 2 (14)

Operator [ • ] also shows the similar features as operator [×] and [ • ] in Eq.(5) and
Eq.(8). By introducing the new vector and operator, the variation of XXX can be written
in the similar form as Eq.(9), and we can have:

δXXX = XXX [(δξξξ ) • ] (15)

The similarity between Eq.(9) and Eq.(15) plays an important role when introduc-
ing the Jacobians of physical quantities with respect to joint angles and its deriva-
tives, which is detailed in [5].

Concerning the robot dynamics, inertial properties of a rigid body consist of
mass m, CoM ccc, and inertia tensor IIIc. They can be summarized as the following
6×6 matrix:

MMM �
[

mEEE3 m [ccc×]T

m [ccc×] IIIc +m [ccc×] [ccc×]T

]
(16)

Defining the inertial forces of a rigid body f̂ff and the moment around its coordinate
nnn represented in global frame, let us define 6-axis force fff represented by the local
coordinate as follows:

fff �
[
RRR f̂ff

T
RRRnnnT

]T
(17)

The equations of motion of a rigid body, and its variation can be written as:

fff = MMMυ̇υυ − [υυυ • ]
T MMMυυυ (18)

δ fff = MMMδ υ̇υυ −DDDδυυυ = HHHδxxx (19)

HHH �
[
OOO6 DDD MMM

]
(20)

by introducing a matrix DDD [5].
Here we also define the variables of kinematic chain: qqqi is nJi set of joint variables

(angles) where nJi is the number of DOF of joint i; in the same way, ψψψ i denotes the
joint velocity variables. We can define the following variation of 3nJi dimensional
vector consisting of the variations of joint variable, velocity, and its derivative:

δ χχχ �
[
δqqqT δψψψT δψ̇ψψT

]T
(21)

and the relationship between δxxxp(i)
i and δ χχχ i is summarized as follows [5]:
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δxxxp(i)
i = GGGiδ χχχ i =

[
KKKi

T δqqqT KKKi
T δψψψT KKKi

T δψ̇ψψT
]T

(22)

where p(i) and KKKi are the index of a root-side link connected to link i, and 6× nJi

constant selection matrix specifying the axes of the DOF of the joint i respectively.
For example, if joint i1 has z-axis rotational joint and joint i2 has a spherical joint,
the corresponding matrices are followings:

KKKi1 =
[
0 0 0 0 0 1

]T
, KKKi2 =

[
OOO3 EEE3

]T
(23)

2.3 Analysis on Arbitrary Jacobian

As a result of differential analysis [5], we can derive the following differential rela-

tionship between the variation δξξξ j of link j and those of root-side links δξξξ p(k)
k as

follows:

δξξξ j = ∑
k∈P( j)

XXX j
k δξξξ p(k)

k (24)

where P(i) is the set of all root-side links recursively connected to link i, including
i, and XXX j

k denotes the relative matrix XXX of link j with respect to k. The coefficient
matrix of Eq.(24) means the Jacobian matrix with respect to δξξξ , and each block

matrix is equal to relative CMTM XXX p(k)
k .

By utilizing Eq.(12), the following equation is obtained.

δxxx j = ∑
k∈P( j)

SSS j
−1XXX j

kSSS
p(k)
k δxxxp(k)

k = ∑
k∈P( j)

X̂XX
j
kδxxxp(k)

k (25)

The next transformation can be performed with Eq.(22) as follows:

δxxx j = ∑
k

JJJ( j,k)δ χχχ p(k)
k (26)

JJJ( j,k) � s( j,k)X̂XX
j
kGGGk (27)

where, s( j,k) is equal to 1 when k ∈ P( j), and otherwise is equal to 0.
This is analogous to the basic Jacobian [15] as shown in the Fig.1:

δααα j = ∑
k∈P( j)

AAAj
kδααα p(k)

k (28)

The Jacobian of link internal forces can also be derived as follows:

δ fff j = LLL jδ χχχ all = ∑
k

LLL( j,k)δ χχχk (29)
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δα

δξ

δα

δα

δξ

δα

δξ

δξ

δα

δξδ δξδ δξ

Fig. 1 The relationship between basic Jacobian and the variance defined with CMTM. The new
framework can also be applied to free-floating and spherical joints.

where

LLL( j,k) = HHH jJJJ( j,k) (30)

In the same way, the variation of the joint constraint force fff p( j)
j of link j can be

computed as:

δ fff p( j)
j = NNN jδ χχχ all = ∑

k

NNN( j,k)δ χχχk (31)

where

NNN( j,k) =

⎧⎪⎨⎪⎩
ĤHH jJJJ( j,k) (k ∈ P( j))

AAAj
k

−T
(

ĤHHkJJJ(k,k)− [ fff p(k)
k •̂ ]TTTGGGk

)
(k ∈ C ( j))

OOO6×18 (others)

(32)

ĤHH j = HHH j + ∑
k∈C( j)

AAAj
k

−T
ĤHHkSSSk

−1XXXk
jSSS j (33)

TTT � [EEE6 OOO6 OOO6] (34)

operation [ •̂ ] �
[

OOO3

[
f̂ff×

][
f̂ff×

]
[nnn×]

]
, [ f̂ff 1 • ]

T f̂ff 2 = [ f̂ff 2 •̂ ] f̂ff 1 (35)

where C(k) is the set of leaves-side links connected to link k, and C (k) is the set of
all leaves-side links recursively connected to link k.

Before computing Jacobian NNN( j,k), matrix ĤHH j for all the links needs to be com-

puted in advance according to recursive formula Eq.(33). After updating ĤHH j for all
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links, matrix NNN( j,k) for any j and k can be directly computed by Eq.(32). Those
computation can be performed with the computational cost O(NJ) [5].

3 Applications

This section presents examples of application of the proposed framework, first op-
timization of dynamic collision-free motion of redundant robot arm composed of
spherical joints and next whole-body PE trajectory for dynamic parameter identifi-
cation of a humanoid robot [6].

3.1 Dynamic collision-free motion for redundant robot

We applied the proposed optimization framework to a redundant serial robot ma-
nipulator composed of five spherical joints in a complex environment cluttered

(0, 0, 1)

0.00[s] 0.16[s] 0.33[s] 0.50[s]

0.67[s] 0.83[s] 1.00[s] 1.16[s]

1.33[s] 1.50[s] 1.67[s] 1.83[s]

2.00[s]

(0, 1, 0)(1, 0, 0)

yx
z

Fig. 2 Snapshots of the generated motion of the redundant robot in a cluttered environment. Start-
ing from the initial position [0 0 1], the target end-effector positions (bottom-right) at [0 1 0] and
[1 0 0] were achieved without collision to obstacles (video in the supplementary material).
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with non-convex obstacles and no gravity. Each link has the identical physical

properties: for link i, pppp(i)
i = [0 0 0.2] [m], mi = 3.0 [kg], ccci = [0 0 0.1] [kgm],

IIIci = diag([11.2 11.2 2.4]) ∗ 10−3 [kgm2] with its base spherical joint is fixed at
[0 0 0]. As shown on the bottom-right in Fig.2, starting from ppp0

e = [0 0 1] at t = 0.0,
the end-effector of the manipulator should pass through the points ppp1

e = [0 1 0] at
t = 1.0 [s], before stopping at ppp2

e = [1 0 0] at t = 2.0 [s] with zero joint velocities and
accelerations. Six square-shape hollow obstacles composed of four cylinders whose
diameter and length are 0.1 [m] and 0.4 [m] are placed such that their center is at
the distance of 0.4 and 0.8 from the origin along each of x, y and z axes.

The trajectory of spherical joints is parameterized by using B-splines as in [29],
expressing their joint angles with an angle-axis vector. During the movement, the
joint torque limitations are considered; |τ1,k|< 0.1 [Nm] and |τ j,k|< 20.0 [N] (2 ≤
j ≤ 5), which means the torque of the base spherical joint is limited to a very low
value. In order to avoid collisions and self-collisions, constraints on the distance
from joint k to the closest obstacle dk and to the link l should also be satisfied;
dk ≥ 0.15 and ||pppk − pppl || ≥ 0.1(k �= l) so that a sphere of diameter 0.1[m] around
the joint does not collide.

All the constraint conditions were taken into account according to penalty func-
tion method. The optimization itself was solved by quasi-Newton method [10] by
utilizing the proposed framework. As shown in Fig.2, the end-effector successfully
passed through the targeted positions without colliding obstacles. As can be seen in
Fig.3 showing the resultant joint torque of the base spherical joint, the torque of all
the axes satisfy the desired limitations, which has been difficult with conventional
optimization methods.

-0.1
0

0.1

-0.1
0

0.1

0 0.5 1 1.5 2
-0.1

0
0.1

X

Y

Z

Time [s]

Jo
in

t t
or

qu
e 

[N
m

]

Fig. 3 Resultant joint torque trajectories of the base spherical joint. The torque limit of small value
of ±0.1[Nm] is satisfied throughout the motion.
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3.2 Optimization of humanoid PE trajectory for identification

In order to optimize the PE trajectory for dynamic parameter identification of a hu-
manoid robot, the condition number of the “regressor matrix” obtained from joint
trajectory should be minimized while maintaining dynamic constraints. Although
we showed an analytical framework to optimize the condition number in our previ-
ous work [3], the stability was considered only statically by using the CoM, which is
conservative and may limit the identification performance. In the resultant motions,
both feet were placed to the ground as the dynamic stability condition becomes too
severe to be satisfied only by the CoM condition. This limitation makes it difficult
to generate dynamic leg motions by standing on one leg for better identification.

To solve this issue, we here derive analytical computation of Jacobian of the
ZMP based on the proposed framework to use it as the dynamic stability constraint
in the trajectory optimization. The joint torque τττ j, a nJi dimensional vector, can be
obtained as:

τττ j = KKK j
T fff p( j)

j (36)

Its variance can be be extracted from the corresponding component of NNN( j,i) as fol-
lows:

δτττ j = N̂NN jδ χχχ all = ∑
i

N̂NN( j,i)δ χχχ i (37)

N̂NN( j,i) � KKK j
T NNN( j,i) (38)

The total external forces acting on the kinematic chain are equivalent to fff p(W )
W

where index W means the world coordinate is connected to floating base link 0. By
redefining FFFex � fff p(w)

w , we can obtain ZMP of FFFex projected, for example, on x-y
plane.

FFFex �
[
Fex(1) · · · Fex(6)

]T
(39)

pppZMP �
[−Fex(5)/Fex(3) Fex(4)/Fex(3) 0

]T
(40)

Jacobian matrix of pppZMP can therefore be easily computed by utilizing NNN(W,i) as
follows:

δ pppZMP = ∑
i

(
ZZZNNN(W,i)

)
δ χχχ i (41)

ZZZ �

⎡⎢⎢⎣
0 0

Fex(5)

Fex(3)
2 0 − 1

Fex(3)
0

0 0 − Fex(4)

Fex(3)
2

1
Fex(3)

0 0

0 0 0 0 0 0

⎤⎥⎥⎦ (42)

We have derived a dynamically stable optimal PE trajectory on one leg by con-
straining the ZMP inside the area of 4 [cm] and 1 [cm] around the center of the
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0.0[s] 0.4[s] 0.8[s] 1.2[s] 1.6[s] 2.0[s]

2.4[s] 2.8[s] 3.2[s] 3.6[s] 4.0[s] 4.4[s]

Fig. 4 Snapshots of optimized one-leg PE trajectory for dynamic parameter identification. The
humanoid robot HRP-4 can successfully perform resultant whole-body motion by also exciting the
free leg (video in the supplemental material).

standing foot in front and lateral direction. The trajectory is parameterized by B-
Spline by using physical properties from the robot CAD model. We also added
constraints on forces and torque applied on the ankle so that the horizontal forces
Fex(1),Fex(2) and torque Fex(6) stay within ±20[N], ±20[N], ±4[Nm] respectively
to avoid slipping. As shown in snapshots in Fig.4, the humanoid HRP-4 [14] suc-
cessfully performed the optimized PE trajectory on dynamic simulator Choreonoid
[22], which validates the feasibility. Note that this one-leg dynamic motion cannot
be generated with the previous method [3] considering only CoM for stability.

4 Discussions: Controller based on Proposed Framework

The formulation using CMTM can potentially extend the arguments on conventional
generic trajectory tracking control in such a way that they include velocity and ac-
celeration. We believe that various Jacobians derived by CMTM can be applied to
whole-body cooperative control currently using the basic Jacobian in future devel-
opments. The proposed framework of trajectory optimization has high affinity to
Model Predictive Control (MPC) or Receding Horizon Control that determines con-
trol input for a finite horizon. It optimizes the integrated evaluation function of the
state variables or control inputs on the finite horizon, based on discrete equations
describing system equation and its time integral.

MPC has been applied to walking motion control for humanoid robots by re-
searchers as Kajita and Wieber [13, 34, 8]. By approximating the whole-body dy-
namics as a concentrated mass model, those studies have been investigating a linear
system equation whose state variables are the CoM position, velocity and accelera-
tion using the CoM jerk as the system input. Constraints related to ZMP and other
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state variables are also taken into account in case of humanoid to guarantee its bal-
ance condition. In above studies on locomotion, the input jerk is determined based
on the evaluation function to minimize the tracking error of state and the jerk itself.

Just like mapping Cartesian states into joint angles through basic Jacobian as
is often the case in position-based tracking control, the state variables on velocity,
acceleration and ZMP can also be mapped in the same way by using the proposed
framework. Since the jerk is regarded as the variance of acceleration, it may be
used as trajectory parameter aaa, or the optimization problem of MPC may be formu-
lated as the evaluation function Eq.(1) itself in the presented trajectory optimization
framework.

In general, the solution of the evaluation function should satisfy the necessary
condition that the gradient of the extended Lagrangian function should be equal
to zero. The derivation of analytical gradient therefore plays an important role to
determine the control inputs and to investigate the system stability [34]. The most
advantageous feature of the proposed comprehensive framework is its capability to
analytically formulate the gradient of arbitrary physical quantities with respect to
motion trajectory. Having started studying this new framework, we intend to come
up with a new theoretical basis on determination of input or stability analysis for var-
ious control problems of anthropomorphic systems including humanoids and digital
humans.

5 Conclusion

In this paper, we addressed a new framework for trajectory optimization based on
comprehensive differential kinematics and dynamics that allows dealing with the
gradient of any physical quantities with respect to position and its derivatives in the
same way as conventional differential kinematics. We introduced a matrix called
CMTM, an extended version of transformation matrix by adding velocity and ac-
celeration, and showed that it has the same property as the transformation matrix to
apply the chain rules and Jacobian computations. It was also shown that the gradi-
ent of physical quantities such as forces applied to links and joints can be computed
analytically. Another advantage is that the proposed method can deal with spherical
joint, which is critical to analyze human models.

A couple of application examples were presented to demonstrate the usefulness
of the proposed framework. We first showed dynamic trajectory optimization of a
redundant serial robot manipulator composed of spherical joints. A collision-free
dynamic motion was successfully generated in a cluttered environment with non-
convex obstacles, imposing a strong torque limit at the same time. This validates
the basic trajectory optimization capacity of the proposed framework under severe
constraints. Another application is optimization of PE trajectory for identification
of dynamic parameters of a humanoid robot. In this example, analytical gradient
of ZMP with respect to joint angle and its derivatives was utilized to guarantee the
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balance. Dynamic one-leg PE motions were generated whose validity was confirmed
by dynamic simulator.

Finally, we discussed the potential of the proposed framework for building con-
trollers. Combining with MPC, we believe its ability of analytical computation of
gradient of any physical quantities with respect to joint trajectory can bring a new
perspective to the optimal control of anthropomorphic systems. Especially, MPC
is heavily utilized for humanoid walking and whole-body control on a simplified
model, we expect to contribute to development of such a controller for full anthro-
pomorphic model. We will also push forward the research to apply the proposed
framework to human motion modeling and analysis through efficient and accurate
computation.
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