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Time Parameterization of Humanoid Robot Paths

Wael Suleiman, Fumio Kanehird/ember, |EEE, Eiichi Yoshida,Member, |EEE,
Jean-Paul Laumondkellow Member, IEEE, and André Monin

Abstract—This paper proposes a unified optimization frame-
work to solve the time parameterization problem of humanoid
robot paths. Even though the time parameterization problemis
well known in robotics, the application to humanoid robots has
not been addressed. This is because of the complexity of the
kinematical structure as well as the dynamical motion equabn.
The main contribution in this paper is to show that the time pa
rameterization of a statically stablepath to be transformed into a
dynamical stabletrajectory within the humanoid robot capacities
can be expressed as an optimization problem. Furthermore we
propose an efficient method to solve the obtained optimizatin
problem. The proposed method has been successfully validat on
the humanoid robot HRP-2 by conducting several experiments
These results have revealed the effectiveness and the rolnesss
of the proposed method.

(a) Initial configuration (b) Final configuration
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L these approaches are based on time-optimal control th8pry [
. INTRODUCTION [4]’ [5], [6], [7]

The automatic generation of motions for robots which are In the framework of mobile robots, the time parameteriza-
collision-free motions and at the same time inside the mbdton problem arises also to transform a feasible path into a
capacities is one of the most challenging problems. Maf§asible trajectory [8], [9]. The main objective, in thisseais
researchers have separated this problem into severalesmd® reach the goal position as fast as possible.
subproblems. For instance, collision-free path planntimge Even though the conventional methods which are based on
parameterization of a specified path, feedback controlgaton the optimal-control theory have been successfully apphed
specified path using vision path planning, etc. In this papéfactice on manipulators and mobile robots, the applinatio
the problem of finding a time parameterization of a given pathne optimal control theory in the case of humanoid robot is
for a humanoid robot is investigated. however a difficult task. This is because not only the dynamic

The time parameterization problem is an old problem iduation of the humanoid robot motion is very complex,
robotic research [1]. In order to better understand theativie But @lso applying time optimal control theory requires the
of time parameterization of a path, let us start by deﬁning(@lculation of the derivative of the configuration spaceteec
path and a trajectory. of humanoid robot with respect to the parameteri_zed pqth.

A path denotes the locus of points in the joint space, or iAlthough ;u_ch calculat.lo_n can bel evaluated from dlffela?lntll
the operational space, the robot has to follow in the exenutig€ometry, itis a very difficult task in the case of systemsiwit

of the desired motion, and tajectory is a path on which a large number of degree of freedoms and branched kinematic
time law is specified [2]. chains, which is the case of humanoid robot. For that, we pro-

Generally speaking, the time parameterization of a pathR8S€ 0 solve the time parameterization problem numeyicall
the problem of transforming this path into a trajectory whicUSing & finite difference approach. _
respects the physical limits of the robot, e.g. velocityitén The remainder of this paper is organized as follows. Section
acceleration limits, torque limits, etc. Il gives an overview of the dynamic stability notion and the

In the research works on manipulators, the time parametg}gthematical formulation of Zero Moment Point (ZMP). The

ization problem has the objective of reducing the executid{i"® Parameterization problem is formulated as an optimiza

time of the tasks, thereby increasing the productivity. Mafs tON Problem under constraints and an efficient method teesol
it is explained in Section Ill. Cases studies and experialent
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(CoM) of the humanoid robot on the horizontal plane is always
inside of the polygon of support (i.e. the convex hull of all
points of contact between the support foot (feet) and the
ground).

Definition 2: Dynamically stable trajectory is a trajectory
for which the trajectory of Zero Moment Point (ZMP) [10] is
always inside of the polygon of support.

The generation of a statically stable path deals only wi¢h th
kinematic constraints of the humanoid robot. It can be oleti
by constraining the projection of the Center of Mass (CoM)
on the horizontal plane to be always inside of the polygon of
support [11], [12], [13], [14].

Theoretically, any statically stable trajectory can begra
formed into a dynamically stable one by slowing down the
humanoid robot’'s motion.

Let the ZMP on the horizontal ground be given by the
following vector

To computep, one can use the following formula
n x 1°
P=N ——— 2
7 @

where the operatox and (.|.) refer to the cross and scalar
products respectively, and
« NN is a constant matrix
100
N = {0 1 0} 3
« the vectom is the normal vector on the horizontal ground
(n=[0 0 1J7).

where[.]" designs the skew operator defined as follows
[]":w e R — s0(3)

0 —w. wy 8
W] = | w, 0 —wy ®
—Wy Wy 0

where so(3) denotes the Lie algebra &fO(3) which is
the group of rotation matrices in the Euclidean space.
The inverse operator of skew operator can be defined as

follows
[]V:Q€s0(3) — R?

r \%

0 —W, Wy
QY 2 | w. 0 —wy
|—wy  Wa 0 9)
o
= |w

and the angular velocity can be calculated using the
inverse operator as follows

i \
- dR' _.T
K3 — RZ
o= ]
Note that the skew operator and its inverse are linear
operators.
Finally, w’ denotes the angular acceleration of i
link.
Note thatR" and I, are the rotation matrix associated
to the free-flyer joint (pelvis joint) and its inertia matrix
respectivelyw® andw? are the angular velocity and the
angular acceleration of the free-flyer joint respectively.

(10)

« The vectorf? is the result of the gravity and inertia forces Ill. TIME PARAMETERIZATION PROBLEM FORMULATION

o= ]V[g—Zmi Xe¢i
1=0
where g denotes the acceleration of the gravily &

(4)

Generally speaking, the time parameterization problem of
a function f (z;), wheret denotes time, consists in finding a
real functionsS; in such a wayf (zs,) verifies some temporal
constraints.

—gn), and M is the total mass of the humanoid robot. Mathematically that means

The quantitiesm;, X¢ are the mass of theé! link
and the acceleration of its center of massespectively.

h(S:) < f(xs,) <U(St) (11)

Note thatmg, X are, respectively, the mass and the In order to obtain a causal and feasible motion, the function
acceleration of the free-flyer joint (pelvis joint) of theS; should be a strictly increasing function, that meéﬁfs> 0.

humanoid robot.

Therefore we will expressS; as the integral of a strictly

« 7° denotes the moment of the forg® about the origin positive functions;, > 0, as follows

of the fixed world frame. The expression of is the

following
TO:Z(mZ— X x (g—XCi)—Z,Ci) (5)
1=0
where £ is the angular momentum at the point
LY =R (I,o' — (I,w') x w') (6)

. t
R' and I, are the rotation matrix associated to the j(s,) = S, + / 7
h

it" link and its inertia matrix respectivelyw® is the
angular velocity of thei*” link can be obtained using
the following formula
- dR’
[w]" =

o ()

R"

Sp dh (12)

t
si= |
h=0

Our objective is to transform the statically stable patto int
a dynamically stable trajectory by minimizing a specified
criterion. We will be interested in minimizing cost funatio
of the form

L (qSh 9 qsh ) dsh ) Tsh,a Sh) dh
=0

ty ty
= / Sh dh+ / L (q8717qsyl7(j8h77—8h1 Sh) dh
h=0 h=0

T1 T2

(13)
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wheregs, , g5, , 45, andr,, design the configuration vector, « Constraint (16) guarantees that the ZMP is inside of the

the joint velocity, the joint acceleration and the exeriedjtie polygon of support.
vector respectively. The first term of the cost functiBnhas « Constraint (17) ensures that the foot is in contact with
the purpose of minimizing the final timg, the second term the ground (the humanoid robot will not jump).

T, captures the desire to minimize an energy related functione Constraint (18) prevents the foot from sliding around the
such as the exerted joint torques or the jerk function of some Z-axis.

specific joints of the humanoid robot. « Constraint (19) guarantees that the obtained trajectory
In order to obtain a motion within the humanoid robot  respects the joint velocity limits of the humanoid robot.
capacities, we will consider two cases: « Constraint (20) guarantees that the obtained trajectory

1) The physical limits which are taken into account are the ~ respects the joint acceleration limits of the humanoid
joint velocity and acceleration limits of the humanoid ~ robot.

robot. In this case, the functioh in Eq. (13) is de- Let us writep,,, f2 andr? as functions ofs;
fined independently of the exerted torques on humanoid

robot’s joints. B nxTg
2) The physical limits which are taken into account are the Ps. = ( §t|") (21)
joint velocity and torques limits of the humanoid robot,
and there is no constraint on the functidn where
Even though the first case is included in the second one, we n
will propose an adequate and optimized method to solve each T = (mi X x (g _ Xf) _ Lf)
case. =0 . (22)
A. Case 1: joint velocity and acceleration limits s« = Mg ;ml Xi
Let us suppose that we have a path which consists of
K points. At first, we transform this path into a trajector)'/n which
by considering a uniform time distribution function. In eth AXCi AXCE
words, we suppose that = 1 : Vt in Eqg. (12). Let the Yo — At St=1 T TAp ot
sampling period of the desired trajectory B¢, we denote ! st?st-1At (23)
the time horizonl’ = K At. Ly =R} (I, — (I,w}) x w))
In this case, the time parameterization problem of tramsfor
ing the initial path into a dynamically stable trajectonthin  The angular velocity; can be obtained as follows
the joint velocity and acceleration limits of the humanabtot ‘ Y
can be expressed as an optimization problem as follow wi — [AR@ RiT:|
T T t StAt t
min J(St) = min {/ Stdt + / L (QStaQSm(jsw St) dt} 1 Ri - Ri,1 T v
St St t=0 t=0 = S_t [(T) R; ] (24)
(14) v
subject to _1 [M]
St At
st >0 (15)
p;, < ps, < p7, (16) Wwherels € R3*3 is the identity matrix.
( °n) <0 (17) The angular acceleratian; can be calculated as follows
o (Fln) < (75 n) < —p (£2In) (18)
i <ds, <q° (19) i _wi-wi
G <ds <q" (20) ! seAt

: . I;—R:_ RI" L-r ,r "] (25)
where p, is the ZMP vector,p; and p} design the 11 {%} — 5 {%}

polygon of support for the humanoid robg®? andr, denote

the applied force on the foot (feet) and the moment of this

force about the origin of the fixed world frame respectively.
w is the coefficient of the static friction. The vecigy, and

StQSt_lAt

In similar way, we obtain

gs, denote the joint velocity and acceleration of the humanoid . Agqy
robot res.pectively.zj+ z?md q" de_sign the upper Ii.mits of 9se = s At
acceleration and velocity respectivelyy. and g~ design the (26)
lower limits of acceleration and velocity respectively. Ag, Agis
The constraints of the optimization problem (14) can be Gs, = A St-1 7 A7 St
t

analyzed as follows s¢2ss 1A¢



SUBMITTED TO IEEE TRANS. ROBOT. , VOL. XX, NO. XX, 2010 4

1) Reformulation of the inequality constraints: It is clear As a result, all constraints of the optimization problem
that the constraints (16- 20) are rational functions in the are transformed into polynomial functions with respecto
time parameterization functiofs;). In order to accelerate the Recall that the original constraints of the optimizationlgem
convergence rate of the optimization problem and the acgurdefore the reformulation are rational function with respec
of the obtained solution, one might think of transforming ths;. By using this reformulation the convergence rate of the
inequality constraints from rational functions to polynaim optimization problem has been considerably improved.

functions. 2) Discretization of The Solution Space: As it is well

In order to reformulate the inequality constraints, lettasts known, the space of the admissible solutions of the minimiza
by the constraint of ZMP (16): tion problem (14) is in fact very large. In order to transform

B N s, pr this space to a smaller dimensional space, we can use a basis
Py, < Ps, S Pg, & [—psj [_p;] of shape functions (e.g. cubic B-spline functions).
- {—N (nx72)+ (f2In )Pst] . aste(:)’c”gjv(S:onader a basis of shape functi@sthat is defined
N(nXTSOt)_( | )pSt ( 7)
_ pl 2 nT
As D(s;) = si2s; 1At > 0 @ Vs, we multiply the two B, =[B! B; Bi] (35)

sides of inequality (27) byD(s;) and obtain _
where B; denotes the value of shape function numbeat

R - the instantt. The dimension ofB; is [ which defines the

—N (nx 7)) + ( §t|")P§i ~o dimension of the basis of shape functions.

N (nx72)— ( ~Sot|n)p; B The projection ofs, into the basis of shape functiori3,
(28) can be given by the following formula

p,, <ps, <Pl &

where
n - - ! . .
70 =3 (m X5 x (9- X7) - £5) su=Y s Bj=sp B (36)
1=0 . (29) =1
;Ot :Mg—Zmi Xfi Thus, the optimization problem (14) can be rewritten as
i=0 follows
in which
~ 2
9=9 s siAl mm{}st/ fﬁdwg/ LQME@B@m)ﬁ}
o Cj AXE’L AX:E:I 1
)ft: At VT A _
'Lgi _ Ri (IciJ)z B StA 1 (Icl tz) « QZ) subject to
~i I3 — Ri—lRi sg B; >0
Wy = T ~0 £o +
N(n X TSB) + (fsB|'n,)psB <0
,-rR ,R'] [L-RrR ,R ., :
R R Nl 5,) = (n)o, <0
(30) (F2,In) <0
It is clear that7 and f" are polynomial function with = Y <0
respect tos;. As a result, the inequality constraint of ZMP # ( |") < (Tpln) <-p (f83|n)

trajectory becomes polynomial function with respectto i sT B, < Ag; <4t sT B
In similar way the constraints (17 - 18) can be transformed BPt= "Ap = B =t
into the following equivalent ones . Agqy Aqt 1
9eq ds, < —28£ t—1 — sp By < qu
2o (A1) "k
(&m)<o (31) (37)
: - ; in which
I ( §t|n) < (T§t|’n) < —u ( Sot|n) (32)
The velocity and acceleration limits can be reformulated as G4, = Bl spspBispBio G* (38)
follows G, = Bl spsEBispBi1 G~
i G~ < Agy <s gt (33 Thus, the optimization problem has been transformed into
A - AtA - finding the vectorsp € R
$¢°8i-1 G- < thSt 11— qt’; s, < 8251 G (34) In order to transform this optimization problem into a
classical optimization problem, let us introduce a cortstan
(At) (At) | | optimizat blem, let trod st
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e e R: 0 <e< 1 and the following definitions wheres¥ is the unconstrained minimum of(s g, /\i). Such
updating rule will generate a sequenls@ converges to\),

Z SB/ Bt dt +/ L(Qsy,Gsp, dsy) dt [17]._In practic_e, a good schedule is to choose a moderjte
t=0 and increase it as follows

[ —sL By +¢ ] oftl = ag” (44)
N (n X 7~'§’B) + (fe.In)ps,

~0 o _ where « is between 5 and 10. A threshold,,.. is chosen
N(nXTsB)_ sB|n psB

and the update rule af stops wherv* becomes higher than
Umam-

For more details on the algorithm of augmented Lagrange
multiplier method see [18], [15], [17].

(F2,1n) +¢
—(7e,In) + 1 (f§B|n) +e
(72,In) + p (f§B|n) +e

Ag:
At

3) Implementation Algorithm: The algorithm of the imple-

T mentation can be summarized as follows
—q Sp B,

1) Given a path which is supposed to be statically stable.
2) Split the path into various time segments depending
on the place and shape of support polygon during the

Aq' +q- sB B,

(2?)338 B, — ?m)? sL B, — s, ;notéon. The support polygon for each time segment is
ixed.
Agy 3) ChooseAt, this value is usually determined by the

(At)2SB Bt 1+ (At)2 'SB Bt +qu

sampling period of the humanoid robot’s control loop.
For instance, for the humanoid robot HRP£&X =
5.0 x 10 3sec

4) Transform each time segment of the initial path into

(39)
Thus the optimization problem (37) can be transformed to the
following classical form

Hsl,ian J(sB) a trajectory by considering a uniform time distribution
. 40 function (s; = 1, Vt). _
subject to (40) 5) CalculateAq;, X;*, AX;" and R} (i=0,1,---,n),
G(sp) <0 for each time segment of the path. Recall that the path

The above optimization problem has been extremely studied i
the literature of optimization theory. To solve this optration
problem, one can use the augmented Lagrange multiplier
method, which is a very efficient and reliable method [15],
[16]. Based on the augmented Lagrange multiplier method,

is defined by the parametefsy;, X;°, R}, whereg;
designs the configuration vector of the humanoid robot
joints, X;° and R? denote the position and the rotation
matrix in the Euclidean space of the free-flyer joint
(pelvis joint).

Calculate the cubic B-spline functions.

Solve the optimization problem (37) for each time
segment with the initial solution obtained by applying
the above steps.

the optimization problem (40) is transformed into the mini- 6)
mization of the following function 7)

. 1
min J(sp,Ay) = J(sB) + Ajv + §0¢T¢

SB,>\¢,

(41)

where ) = max{G(sp), = Ay}, ando > 0. Then there

exist A7, such thatsy is an unconstrained local minimum of

J(sg, /\*) for all o smaller than some finite.

To solve the unconstrained optimization problenafoéB, Ay)

with respect tosg, one can use Gauss-Newton method.
Note that the functionf(sB, Ay) is differentiable insp if

B. Case 2: joint velocity and torque limits

In this case, we suppose that we have a path which consists
of K points. Similarly to the precedent case, we transform
this path into a trajectory by considering a uniform time

anzso\?vlg ;:a;(/(eSBzo?/g(f(iﬁg a:ﬁ ﬂgﬁg?&?{?‘l%?ia o distribution function. We denote the time horizéh= K At,
P B) 1S POy P B whereAt is the sampling time.

and its derivative can be calculated easily. The cost fancti . . o
J(sp) is defined by the user and it is supposed to be denvable'n this case, the time parameterization problem of tramsfor

with respect tos and its derivative is continuous. ing the initial path to a dynamically stable trajectory viith
So in this case we can write the joint velocity and torque limits of the humanoid robohca

be expressed by the following optimization problem

0J(sp,\y) OJ oG
00 20) _9TO8) s {0, +0 G5} 28]
633 633 88&2)
As \* is unknown, an update rule is used min J(s;) = min{/T sedt + /T L(qs,,4qs,:7Ts,»5 )dt}
t) — t sty Usyy 15y ot
X=X+ o (sh) (43 " v o =0
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subject to Thus, the time parameterization problem can be transformed
into the classical optimization problem
sy >0
_ min J(s
pst Spst S p:; St ( t)
(foln) <0 (45) subject to (48)
p (foln) <(riIn) < —p (fiIn) Glst) <0
G <qs, <q" Similarly to the previous case, the above problem can
r<r, <t be solved using the discretization of solution space and the
ST, S

augmented Lagrange multiplier method.
where 7, designs the vector of exerted torques on the hu-

manoid robot’s jointsz~ andT™ denote the lower and upperc. Discussion

limits of the torque vector. In this section, we discuss how to split the initial path into

By including the torque limits into the time parameterigati time segments according to the support polygon and the globa
problem, the obtained motion will not damage the mOtO'E?ptimal solution of the optimization problem.

located in the articulated joints, and the robot will notpsto
because of high exerted torques.

However, solving the time parameterization problem, is thi
case, becomes more difficult. This is because the equation of
motion of the humanoid robot should be taken into account,
this equation is a complicate and high nonlinear equation.

The motion equation has the following form

« The support polygon is a function @fz, and it depends

on the horizontal position of CoM. However, as the given
path is a statically stable one, it can be split into various
sections. Each section is a statically stable path which has
a fixed support polygon that is independentsgf. Note

that the polygon of support can be determined according
to the position of feet and by verifying if the feet are
in contact with the ground. This determination can be
M (a¢) G¢ + C (q, a¢) = 7 (46) done independently frora, this is because the position
vector of the jointsX, is an invariant quantity in the time
parameterization algorithm.

The optimal solution obtained by solving the optimization
problem of time parameterization is a local optimum.
However, if we prove that the optimization problem is
convex, then the obtained solution is the global optimum.
To this end, we should prove that the functigrof Eq.

(41) is a convex function. The functionsand of Eq.

(41) are convex, because the first one is defined by the
drs, _ 075, dgs, 075, dgs, | 075, dgs, (47) user and it is supposed to be convex and the second
dsy 0qs, dsi 0qs, dsi 04gs, dsi one is convex on account of the convexity G{sg).
Consequently, the functiod is convex and the obtained
local optimum solution is thglobal optimum.

whereM (q¢) is the mass matrixC (qs, q¢) is the Coriolis
matrix, and includes gravity and other forces . At a glanag, E
(46) might appear to be simple; nevertheless the analytical®
expressions for a simple six-axis industrial robotic arra ar
extremely complex.

In order to solve the optimization problem (45), the deriva-
tive of 7,, with respect tos; should be calculated. This
derivative can be calculated as follows

Because of the path of the vectgr is expressed as discreet
points in the configuration space, and the time parameteriza
tion algorithm will not change the positions of these points

in the configuration space, therefo%%st—t ~ 0. The quantities
dqgs, g

IV. CASE STUDIES AND EXPERIMENTAL RESULTS

- _ _ .. The considered example is a collision-free reaching motion
g5, and e can be calculated easily by using the finitg, 5 cjyttered environment. Fig. 2 shows snapshots of the
difference approximation of Eq. (26). _ simulated motion. In the initial configuration, the robot is
6TThe man difficulty is the calculation of the quantitieganging on its right foot and surrounded by a torus, a cglind
D4.; and 5z--. Although, in principle, these quantities carynq 4 hox. In this example, the task for the humanoid robot is
be numerically approximated analogously by using the fini{g move its left hand to a specified position, and at same time
difference, we have observed that this approximation Ieafgskeep the projection of its CoM inside of the support polygo
to illconditioning, and poor convergence behavior. This itatically stable motion). Producing such kind of motien i
because of the high non-linearity of the motion equation).(46; very challenging task. This is because the environment is
To overcome this problem, anaanalytical formulation can hﬁ;ry cluttered, and the support polygon is small (standing o
derived of the quantitie% and gz by using the recursive the right foot). During the motion the humanoid robot should
dynamic algorithm proposed in [19], [20], which is based oavoid the collision between its left leg and an obstacle Whic
Lie groups and algebras. (for more details see [19], [2]],[2 consists of a cylinder and a box, at the same time the left hand
[22]). should avoid the collision with the torus to reach the desire
Note that the guantitie ;j and g;—‘: are calculated only position. This collision-free path is created using an &ffit
one time and then they are used as constants in the time pethod proposed by Kanehiab al [14].
rameterization algorithm. Therefore the torque limit dozist Once the collision-free path is available, this path is con-
can be reformulated as polynomial function with respect;to verted to a trajectory using a uniform time distribution dun

analogously to the previous case. tion.
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Fig. 2. Snapshots of the simulated whole body reaching wathsion avoidance

The sampling timeAt has been chosen to be equal t&MATALB language to solve the optimization problems. How-
5.0 x 10~3sec. The duration of the initial trajectory is equalever, the number of iterations of the augmented Lagrange

to 77sec. multiplier method gives a good idea of the computationaétim
In this sectionwe will consider three scenarios: [23], [24], [17]. In fact, the augmented Lagrange multiplie

] ) method is a fast and reliable method because it does notesqui

A. First Scenario: the inversion of matrices which have, in our case, very huge

The time parameterization problem has the form of Eq. (3®imensions.
in which L (gs,, 4s 5+ s,) = 0. In this scenario, the objective  From Table |, it is clear that the duration of the obtained
of time parameterization is to transform the initial pattoia trajectory decrease by increasing the number of B-spline
minimum time and dynamically stable trajectory. functions. However, the number of iterations to reach the
The effect of the number of B-spline functions on thgptimal solution increases while increasing the number -of B
duration of the obtained trajectory and the required numlfJerSp”ne functions.

iterations to reach the optimal solution is reported in @bl 1o trajectories of ZMPR, and P,) corresponding to basis

TABLE | of B-spline functions of 20 and 120 functions are given in
DURATION OF OBTAINED TRAJECTORIES AND NUMBER OF ITERATIONS  Fig. 3. The directionsr and y for the humanoid robot are
drawn in Fig. 2.
Number of B-spline ~ Duration of Number of From Fig. 3, we observe that the trajectories of ZMP are
5 Obta'”edltg_‘fscmry (sec 'terit'ons always maintained inside of the polygon of support. However
20 14.81 9 the fluctuations of ZMP occur more frequently when a basis
40 12.68 19 of 120 Bsplines is used, this is because the motion is faster
120 8.92 27 than the motion obtained by using a basis of 40 Bsplines.

In Fig. 4, the initial, the reference and the executed tra-
We have chosen to report the number of iteration instefgttories of the roll axis of right shoulder joint are given.
of the computational time. This is because we are usifighe initial trajectory is directly obtained from the statiiy
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(a) Using a basis of 40 Bsplines

(b) Using a basis of 120 Bsplines

Fig. 3. First scenario: ZMP trajectories, and the safetyesdior dynamical stability which are designed by the redslinghe time scale of the two figures
is not the same because the time parameterization funciienslifferent
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Fig. 5. First scenario (minimum time trajectory): Time paeterization

Fig. 4. First scenario (minimum time trajectory): The iaitirajectory of the
roll axis of right shoulder joint which is obtained directisom the statically
stable path (figure above). The reference and the execuittories of the
real experiment on the humanoid robot HRP-2 (figure belowg fime scale
after time parameterization (figure below) is much smallemtthat of the
initial trajectory (figure above)

stable path by considering a uniform distribution of thedim
parameterization functiofs; ). The reference trajectory is the

the minimum time trajectory obtained by using a basig 2if

B-spline functions. We can observe that the executed tajgc

function (s¢)

robot HRP2 are given in Fig. 9.

B. Second Scenario:

-:left hand

X

In this scenario, the time parameterization problem has
also the form of Eq. (37), in which. (gs,,qss,dss)
. The function L captures the jerk function of

of the real experiment on the humanoid robot HRP-2 is exacfﬁ/e left hand joint, this joint plays the role of end-effecio

following the reference trajectory. The humanoid robot HRPNE

approximated as follows

computation of the initial path. The jerk function can be

2 is a position controlled robot, that means the trajectooie

the humanoid robot’s joints are tracked using a high-gaih PI X, X,

controller. X, == (49)
The time parameterization functions which correspond

to basis of B-spline functions of 20, 40 and 120 functions atghere X, is expressed as a function of as in Eq. (23). The

given in Fig. 5. duration of the obtained trajectories and the required rermb
Snapshots of the conducted motion applied to the humanaeititeration to reach the optimal solution is reported in[€dh
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TABLE Il

DURATION OF OBTAINED TRAJECTORIES AND NUMBER OF ITERATIONS

B Duration of Number of
obtained trajectory (sec) iterations
10~° 10.73 16
104 14.13 31
103 23.18 39

C. Third Scenario:

In this scenario, the time parameterization problem has
the form of Eq. (45), in whichL (qs,,4s5,4s;) = 0. The
objective is also to find the minimum time trajectory and
dynamically stable. The difference between this scenar a
the first one is that the torque limits of the humanoid robot
are taken into account in this scenario.

A comparison between the time parameterization function
s; which is obtained in this scenario and that one of the first

The time parameterization functions which correspond scenario is presented in Fig. 7.
to 3 =10~* and10~2 and the two configurations which are

related to high variation in the jerk function are given g Fo.

The high variation of the jerk function in the first config- 04
uration occurs because the left hand stops near the torus in
order to avoid the collision, in the second configuration the °*
left hand is inside the torus and it changes the directionsof i 03l
motion to avoid collision and at the same time to reach the

desired position.

\
2
\

15

I
=

Fig. 6. Second scenario: time parameterization functiaf) énd the two
configurations (front and side views) which are related ghhvariation in

the jerk function

0.45

T T T
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0.25 -

-~
@ N

2

0.1

0.05 [~ " y NN N

0 i i i i i i i
0 10 20 30 40 50 60 70

Time (s)

Fig. 7. Third scenario: time parameterization functien) (

In order to obtain a safe motion which is not near the
physical limits of the humanoid robot, we used a safety nmargi
of 20 percent of the humanoid robot’s torque limits.

A comparison between the applied torque on the yaw axis
of the hip joint with and without the consideration of torque
limits is given in Fig. 8. This figure shows that the consttsin
on the torque limits have been successfully respected, @n th
other hand the duration of the obtained trajectory is moaa th
that one of the first scenario. This is in order to respect the
torque limits.

V. CONCLUSION

In this paper, we proposed a numerical method to solve the
time parameterization problem of humanoid robot paths. The
main contribution of this method is transforming a statical
stable path into a minimum time and dynamically stable
trajectory which respects the physical limits of the humdno
robot’s joints. We have shown that not only minimizing the
trajectory time but also some energy criteria such as the jer
function can be considered.

The initial statically stable path can be calculated using
inverse kinematic methods or the motion planning methods.
This path, by definition, is a pure geometric descriptionhef t
motion.

The effectiveness of the proposed method has been validated
using the humanoid robot HRP-2.
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Fig. 9. Snapshots of the real experiment using the humardidt HRP-2
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Fig. 8. Third scenario: applied torque on the yaw axis of tiejbint.
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