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Abstract—1In this research, we propose a method for es-
timating 6 DOF object pose (3D orientation and position),
based on convolutional neural networks (CNN). We propose
RotationCNN that predicts 3D orientation of the object. The
position of the object is estimated using an object detection
CNN that predicts the class of the object and bounding box
around it. Unlike the method that trains CNNs using a large-
scale database, the proposed system is trained with minimum
dataset obtained in a local environment that is similar to where
the robot is used. With the proposed semi-automated dataset
collection techniques based on a web camera and AR markers,
users in different environment will be able to train the network
suited for their own environment relatively easily and quickly.
We believe that this approach is suitable for a practical robotic
application. The results on 3D orientation prediction using
RotationCNN show the average error of 18.9 degrees, which
we empirically found that it is low enough as an initial solution
to successfully run the iterative closest point (ICP) algorithm
that uses depth data to refine the pose obtained with CNNs. The
effectiveness of the proposed method is validated by applying
the method to object grasping by a robot manipulator.

[. INTRODUCTION

In recent years, industrial robots have led to automation
in factory lines. The next avenue for this trend is such
that a robot is expected to play a role in a less structured
environment such as shops, households and construction. In
such cases, robots will need to be more autonomous, having
good perception to recognize 6 DOF pose (3D position
and orientation) of an object that is randomly placed in
environment. Since a certain object such as a tool has a
certain orientation to be grasped and used, knowing 3D
orientation of the object accurately is a very important issue
in robotic manipulation, which will be the focus of this
paper. In the past years, methods using AR markers and 3D
laser scan has been developed to estimate object pose. In
commercial areas, however, object changes repeatedly, which
makes it difficult to manage AR markers. 3D laser scanners
also have a disadvantage with its long acquisition time which
makes it difficult to use it online.

In this paper, we propose a novel 6 DOF object pose
estimation algorithm as the base function of robotic manipu-
lation for object detection and localization. Our method uses
RGB images as an input to the convolutional neural network
(CNN). In particular, we propose RotationCNN that predicts
3D orientation from a single RGB image such that the robot
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can grasp an object from a specific orientation. Considering
robotics applications in various environments, we propose a
new method to easily obtain training data using web cameras.
The pose estimated with RotationCNN is refined using the
iterative closest point (ICP) algorithm to align with 3D point
cloud data in order to be used for robotic manipulation.

The main contributions of this work are summarized as
follows:

1 We develop a system that integrates object detec-
tion, 6 DOF object pose estimation and robotic
manipulation, which can achieve grasping of an
object from RGB-D data.

2 We propose a method for easily capturing and
annotating an image dataset for using a web camera
and AR marker based on the 3D reconstruction
method called visual hull to semi-automate the
annotation process.

II. RELATED WORK

Iterative closest point (ICP) is a widely-used algorithm in
object localization and pose estimation [1], which minimizes
the distance between two sets of point cloud data. ICP iter-
atively alternates the optimization of a rigid transformation
and the closest point search from one set of point cloud
data to the other. This process is continued until the two
data is aligned. However, ICP tends to converge to local
minima, making it heavily dependent on the initial state.
If the initial state is largely dislocated, not only will the
computational cost increase, but the possibility of not being
able to converge to the correct position also increases. Yang t
al. [2] proposed Globally Optimal ICP (Go-ICP) as a solution
for this problem, which is an algorithm that enables ICP to
converge to global minima. Nevertheless, the calculation cost
of Go-ICP is high, which makes it difficult for practical usage
such as robot grasping.

Methods for detecting an object inside 2D image using
CNN have been introduced with fast and robust detection.
These methods use a single CNN to detect multiple objects
simultaneously, giving a bounding box for each object while
also classifying them into categories. You only look once
(YOLO) by Redmon et al. [3] and Single shot multi-box
detector (SSD) by Liu et al. [4] are examples of such object
detectors with robust online performance.

In computer vision and computer graphics fields, tech-
niques have been proposed for object pose estimation and
viewpoint estimation using CNN. In robotics field, deep
learning has been used to improve perception capability of
robots, especially in the field of grasping and manipulation.

462



Input: RGB-D

Object Detector [SSD 2016]
o AN

[X1,y1.%2,¥2] i 4[
] R®
Boundin R-t
= i-ED- 5 -
~— Pose T
Cropped AlexNet
RGB Image Class impaiz;e (201l i

RotationCNN

|

Fig. 1.
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Overview of the proposed method. The red box indicates the object detector which gives the location and the class of the target object. The blue

box is RotationCNN that estimates the 3D rotation of the object. The final 3D rotation of the object is obtained with the ICP algorithm, using the initial

pose, point cloud data, and CAD model.

The early techniques have tried to detect the graspable points
or parts in a general manner without knowing the class
of a object[6][7][8][9][10].However, actually using these
techniques for robot grasping an object seems to be still
challenging. Pavlakos et al. [11] estimated object poses by
showing semantic key points on heat maps. This method is
robust in conditions such as when the object is occluded.
However, the key points have to be defined manually, which
requires a more efficient way to obtain training data. SSD-
6D by Kehl et al. [12] and poseCNN by Xiang et al. [13] are
also examples of pose estimation methods using CNN. They
use large dataset to train CNN, while our method is enabling
pose estimation using minimum dataset. Smaller dataset is
easier to collect, which will be an advantage.

III. OVERVIEW OF THE SYSTEM

The overview of the system, which integrates from object
detection to robot grasping is shown in Fig. 1. Six DOF
object pose comprises 3D orientation and 3D position. In this
paper, we use rotation to represent 3D orientation. We first
use RGB-D sensors such as Kinect to obtain data of the target
object. The RGB image is used as input to the object detector
to get the bounding box and class of the object. Using the
bounding box, the original RGB image is cropped out so that
only the object region remains. The cropped images are then
fed as input for the rotation regressor to calculate the 3D
orientation. We use the calculated pose as the initial pose
for the Iterative Closest Point (ICP) algorithm, which we
use for refinement to obtain the final pose of the object. The
robot will use grasping points defined on the 3D model as
guide to generate and execute the grasping motion. Note that
our main focus in this paper is to create a rotation regressor
using CNN, aiming to get initial pose inside the permissible
range quickly so that the ICP algorithm will converge to
the correct solution. We would also like to mention that all
of the 3D models used for ICP are built beforehand, and

thus users are expected to construct 3D models for their
target objects. Note that the proposed method can be fitted to
detect multiple class of object. When classifying the object
with the object detector, the result will be used to select
the corresponding 3D model. This will allow the system
to estimate and visualize object pose of the targeted object
accordingly.

IV. METHOD
A. RotationCNN network architecture

In our research, we modified AlexNet [16], which is
originally proposed for object classification, into object ori-
entation estimation task. The original network consists of
five convolutional layers and three fully connected layers,
containing the total of eight layers. We changed the softmax
loss function used for classification to the 12-norm regression
loss function in order to output nine parameters. We chose
to use the shallower network than the recent ones, such as
ResNet, because our dataset is relatively small for learning
deeper networks and we prefer fast prediction performance.
When testing time, we further perform polar decomposition
using the singular value decomposition (SVD) to eliminate
shear/scaling. We also remove the symmetrical flip, which
makes the coordinate frame to left-hand instead of the
standard right-hand system, by checking the determinant of
the matrix and changing the sign to make it always positive.
These operations will make the output transformation to
become a perfect rotation.

B. Iterative closest point

With SSD and RotationCNN, we can estimate the 6 DOF
pose of the object relatively accurately. The pose is further
improved by using iterative closest point (ICP) to optimize a
transformation (rotation + translation). The first step searches
the closest points from the model to the point clouds.
Then, the transformation is optimized using the closed form
formulation.
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Fig. 2. Visual hull was used to provide bounding boxes for our training
images. Only 8-10 manually annotated bounding boxes are needed to obtain
bounding boxes for all of the rest of the images.

C. Object detection using single shot multi box detector

Prior to inputting an image into RotationCNN, we detect
bounding boxes surrounding objects and crop the original
images so that only the region of a certain object is in the
image. To do so, we use the single shot multi box detector
(SSD) framework. Here, the original image is first resized
to the size of 300-by-300 and input into SSD. SSD outputs
the bounding boxes, classes and probabilities of those class
predictions for the objects in the image.

V. TOOL DATASET CONSTRUCTION
A. Dataset acquisition methods

Three types of techniques were used for constructing
image datasets in this research.

1) Semi-automatic dataset annotation technique: First
dataset was obtained using web cameras (webcam). Mea-
suring ground truth 3D orientation data was done using
ArUco markers developed by Garrido-Jurado et al.[14]. This
setup eases the user from time consuming manual 6 DOF
annotations using such as the Pascal annotation tool to align
the 3D model to images.

To provide the bounding box annotation without efforts,
we provide a semi-automatic method using 3D reconstruction
method called visual hull, shown in Fig. 2. From the extrinsic
camera calibration results, i.e., camera pose, we plot all
the camera positions and select approximately 10 views
which are distributed uniformly using the farthest sampling
methods. The user is only required to annotate the bounding
boxes for these 8-10 views. Next, the visual hull algorithm is
used to reconstruct a volume around the object using these
bounding boxes. The visual hull algorithm was originally
proposed to carve the volume around the object within the
image silhouettes, whereas we use the bounding boxes to

Fig. 3. Some examples of training dataset. The dataset was taken at
different environments.

Fig. 4. Examples of images of testing dataset. AR markers were used here
also for ground truth.

roughly determine the volume around the object. Finally, the
volume is projected onto all other images to automatically
annotate bounding boxes of e.g., 2000 images.

2) Other techniques: The second dataset was obtained
using multi-view photography machine (3D MFP) to capture
images of objects from multiple angles. The third dataset
was images taken at random environments with different
brightness (Random). The ground truth data for this dataset
was measured by using PASCAL 3D annotation.

When training these datasets, random cropping was used
for data augmentation. This was done to train partial parts
of the objects, as well as the full image of the object.

B. Dataset splits

1) Other techniques: Webcam dataset were taken at three
different backgrounds, desk, tile, and carpet, while the object
was standing and laying. Some examples are shown in Fig. 3.
For images when the object is laying, the object was taken
laying on both sides. However, we did not take any data
sets for unrealistic positions, such as objects standing upside
down. The images were taken from around 360 degrees, 200
images in one lap. Approximately 2000 images were taken
in total. 3D MFP dataset were taken by rotating the object
10 degrees each, from 3 different elevation angles, resulting
in total of 108 images. The Random dataset were taken at 50
random environments with different brightness. Furthermore,
15 different noises were added to each image to create a total
of 750 images.

Different combinations of these dataset were made to
evaluate the effectiveness of each dataset. The dataset was
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Fig. 5. The validation results for the 3 objects are shown above.

split for training and validation in the proportion of 9:1
respectively.

2) Testing dataset: Testing dataset was obtained to quanti-
tatively evaluate the effectiveness of training data. Examples
of test dataset are shown in Fig. 4 These images were taken at
different environments than the webcam training dataset. The
test dataset features include different colored background and
occluded conditions. Testing dataset included 253 images for
yellow tool, 280 images for green tool, and 223 images for
black tool. To obtain the ground truth pose angles of the
yellow tool, ArUco markers were used again. However, with
the test dataset for green and black tools, we used LentiMark,
developed by Tanaka et al.[15]. LentiMark is smaller than
the ArUco markers which prevents markers from showing
in the input images. Evaluation was done by comparing the
average degree error when training the network with various
combinations of training data and using the testing data as
input.

VI. RESULTS AND DISCUSSION

We ran our method on i7-6700K @4.00GHz with NVIDIA
GTX 1080Ti. In order to quantitatively evaluate the accuracy
of the network, we compared the error average of various
combinations of dataset. The error average was first calcu-
lated using relative rotation between the estimated rotation
Rest and the label Rcor'r‘ects Rerror = RestRTcorrect' Then
R.,ror Was converted to axis angle. Finally, we take the norm
of axis angle and convert it to degrees.

1) Pose prediction results: Some result examples of ro-
tation estimation on validation dataset are shown in Fig. 5.
Since the input images are validation dataset with similar
background as training data, the estimation is possible with
low error rates. Even for the image with different background
and partial occlusion, the proposed method works relatively
fine as shown in Fig.6. We estimated poses of three different
types of tools, having different colors and shapes. The error
average of the pose estimation using the test dataset is shown
in Table I.
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Fig. 6. The results of pose estimation using the test dataset are shown.
The Webcam dataset was used for training.
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Fig. 7. The result when applying ICP after the RotationCNN. The left
images are before ICP. The right images are after the ICP is executed. The
3D model is aligned with the point cloud by ICP.

After estimating the initial pose of the object, ICP is used
to get the final pose. Fig. 7 compares the pose of the 3D
model, before and after ICP is executed. The initial pose is
accurate enough, which allows ICP to converge to the same
pose as the point cloud.

2) Computational preformance: The average estimation
time for RotationCNN was approx. 0.035 seconds. As men-
tioned in section IV, the drawback of representing the rotation
with 9 parameters needs to be considered. As a result,
the difference of calculation time during the testing time
between axis angle and rotation matrix was insignificant,
which only took 1.7% longer than when using axis angle.
Hence, the advantage of getting higher accuracy received by
using rotation matrix is more beneficial than the disadvantage
of longer calculation time. SSD takes approx. 0.04 seconds.
Combining SSD and RotationCNN, online pose prediction
can be done with 15 fps. ICP however takes approx. 0.5
seconds. We wish to improve the performance of ICP using
GPU parallelization in future work.

465



TABLE I
ERROR AVERAGE OF POSE ESTIMATION WITH TEST DATASETS FOR THE
THREE DIFFERENT TYPE OF TOOLS WE USED.

Dataset Error average [Degrees]
tool_yellow 25.6
tool_green 30.6
tool black 58.4
TABLE I

ERROR AVERAGE OF ROTATION ESTIMATION WITH TEST DATASET.
DIFFERENT COMBINATION OF DATASET WAS USED TO EVALUATE THE
EFFECTIVENESS OF EACH DATASET.

Dataset Error average [Degrees]

‘Webcam 26.9
3D ' 66.1
Random [ 71.5
Webcam + 3D MFP ' 220
Webcam + Random v 243
‘Webcam + Random + 3D MFP v 18.9
Webcam + Random + 3D MFP (No augmentation) v 20.8
Webcam + Random + 3D MFP (Not pretrained) » 54.5

3) Dataset evaluation: In order to further more investigate
the effectiveness of dataset, we prepared various type of
dataset mentioned in Section 5 for the yellow tool. The
evaluation of training dataset is shown in Table II. The results
with the webcam dataset only already achieves accurate
prediction with the average error of 27 degrees. On the other
hand, the results of network trained with 3D MFP dataset
only and Random images only both had poor scores. For
both of these dataset, the number of images is small, which
makes a network difficult to learn the features of the object
to correctly estimate the pose.

The results with the lowest error average was obtained
with the training dataset combination of webcam, Ran-
dom, and 3D MFP. The various information included in
Random and 3D MFP images have helped with achieving
better scores. Random images include images with different
brightness and noises, while 3D MFP images include a tool
taken from different elevation angles. Images from different
elevation angles seem to have some effect on accuracy, as
we can see that the combination of webcam and 3D MFP
marked better score than the combination of webcam and
Random.

4) Effect of augmentation and pretraining: We also eval-
uated the effectiveness of augmentation and pre-training.
The results show that data augmentation was effective as
well. The pose estimation in occluded conditions were supe-
rior when the network was trained with webcam, Random,
and 3D MFP, then trained by the same combination of
dataset without the augmentations. We also learned that the
estimated results show lower score when the network is
untrained. We randomly changed the weights of the network
while having the same structure as the trained network. This
result showed that network trained with various features, in
this case with ImageNet images, have higher performance
level.

result (error =55.719) result (error =168.1543)

Fig. 8. When the object was placed in an occluded condition, the network
failed to obtain accurate pose estimation. For the black tool, the network
had difficulty recognizing the roll angle. As in the figure, the tool is facing
up, but the network recognizes it as if the tool is facing down.

5) Failure cases: Some examples of failure case is shown
in Fig.8. The most critical issue is when the object is partially
occluded. This may be caused by the lack of visual features
extractable from the image. For better pose estimation, either
collecting more dataset in occluded conditions or modifying
the data augmentation process may be required. For the black
tool, estimating the roll pose sometimes failed. The lack of
characteristic of the tool may have caused this.

VII. APPLICATION TO ROBOT GRASPING

In order to demonstrate the usefulness of the proposed
method, we performed tests of our algorithm in a real robot
grasping scenario. The first setup consists in a Baxter robot
with a RGB-D sensor. The sensor has been calibrated and
its position in the world with respect to the robot is known.
The robot has a tool in front of him and the goal is to grasp
the tool by a point and orientation that have been predefined
using the object 3D model. The robot will obtain the RGB
image and point cloud of the scene using the sensor and
will input them together with the object 3D model to the
aforementioned algorithm.

Once the position and orientation of the tool are known,
we can select any point of the tool in the 3D object model and
find the point’s position in the real scene. This is especially
useful because even if the point that we want to grasp is not
present in the RGB image or point cloud, its position can
be known. We select one point along the handle of the tool
to be the grasping point and define the grasping orientation
to be the same as the direction of the point’s normal vector.
The robot will first move the end effector to a pre-grasp
position situated at 10 cm from the grasping point in the
normal direction and then move in a straight line towards
the grasping point.

Fig. 10 shows the results. In the first row we see 3 cases of
detection of the tool’s bounding box at different orientations.
Second row shows the obtained point cloud and, in red,
the initial rotation and translation provided from the neural
network to the ICP algorithm. The model in blue is the final
transformation resulting from the ICP algorithm. The green
line shows the path that the end effector will cover from the
pre-grasp point to the grasp point. Fig. 9 shows the robot
performing the grasping motion with the yellow tool.

During this grasping motion generation, we gave order to
the robot which arm to use. However, it is ideal to have the
robot decide which arm to use for grasping by itself, which
will be a subject for future work.
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Fig. 10. Top row: RGB images of different tool poses with the detected
bounding boxes. Middle row: Tool point cloud with the initial transformation
obtained from the CNN (Red), the final transformation obtained from the
ICP algorithm (Blue) and a green line representing the trajectory that the
robot end effector will follow from the pre-grasp point to the grasp point.
Bottom row: A real robot performing the grasping action on the item from
the correct direction which illustrates the strength of our system.

VIII. CONCLUSION

We presented RotationCNN which can accurately estimate
the rotation of objects from a single RGB image. A simple
method to obtain training data was also introduced. Only
minimum dataset is required for this system, allowing users
to easily suit it to one’s own environment. Representing
the rotation with rotation matrix and applying orthogonality
constraints made the accuracy increase.

Our system is currently applicable to images with similar
background as training data. The issue is that the object
detector (SSD) is not trained on images with a wide variety of
background. On the other hand, by training the network with
multiple background, RotationCNN were able to estimate
the pose in new environment with different background.
Furthermore, state-of-the-art object detectors are powerful
enough to classify objects with similar shape, therefore
makes the proposed algorithm feasible to detect objects with
similar shape.

In future work, we will explore marker-less solution to
3D orientation annotations. This may be achieved by the
techniques, such as structure from motion, so that the camera
pose is known automatically. This approach may also provide
a solution to the issue of 3D model construction.

As the dataset evaluation results showed, images with
noise and with different elevation angles also contribute to
high accuracy. Attempting to reproduce these features with
just the web camera images will be part of future research. In
order to enhance the completeness of this system, avoiding

problems with occluded conditions is also a challenge left to
solve in the future.
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