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Abstract— This paper presents a method for motion synthesis
using Functional Principal Component Analysis (Functional
PCA) to generate complex humanoid robot motions in a low-
dimensional space while considering physical consistency. Since
each motion can be expressed by a point in a space called
FPC space, this method allows blending different motions.
For more complex motion synthesis, we introduce a novel
framework to synthesize blended motions by configuring a local
FPC space and a global FPC space. This method enables to
merge data while considering data features. However, physical
consistency was not ensured in our previous work, we here
apply optimization under constraints after synthesis. We show
the dynamic feasibility and the feature of the synthesized
blended motions and also an interesting observation opening
to the possibility to generate a variety of motions from a few
motion data in a local space at low cost and time.

I. INTRODUCTION

Humanoid robots are expected to be used in many applica-
tions thanks to the progress in hardware and software. One
example is the application of humanoids for performance
evaluation of assistive devices for farmers, construction
workers and caregivers. We can compare directly measured
joint torques of the humanoid robot with and without such
devices in order to assess their performance quantitatively
which is impossible to do on the human [1]. This allows
overcoming the drawbacks of experiments with humans such
as lacking of quantitative measures, poor repeatability and
heavy ethical procedures [2]. These particular applications
need smooth reproduction of different human motions. For
other applications like entertainment and human interaction,
a variety of whole-body human-like motions should be
generated.

Since humanoid robots have typically more than 30 de-
grees of freedom (DOF), it is difficult to manually generate
stable coordinated whole-body motions. As a solution for
this issue, GUI software are usually used. Choregraphe for
the humanoid robot NAO is one of them [3], an other
example is Choreonoid developed by Nakaoka et al. [4].
Such software have functions such as dynamic simulator,
choreography planning, and low level control to ensure the
robot balance with correction of the center of mass (COM)
position automatically. However, such methods require a
skilled animator and it still takes a long time to manually
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generate long motion sequences or complex whole-body
movements. The inverse kinematics approaches are often
applied to generate the whole-body motion to achieve tasks
in a systematic way [5], [6], [7], [8]. However, it needs
another framework to ensure the human-like property of the
whole-body motion. An alternative method is retargeting,
which is a conversion method from human motion acquired
by motion capture to feasible motion for a humanoid robot
[9], [10], [11], [12], [13]. Generated motions from retargeting
are qualified as more ”human-like” compared to manually
coded motions by a GUI, though no quantitative metrics
of ”human-like” has yet been given. Although retargeting
methods are practical, they require each single motion to
be recorded on the human for a humanoid robot to perform
different motions. For this reason, we need a new motion
synthesis method to generate various motion more easily
using fewer human recorded motions.

Morishima et al. [15] proposed a motion synthesis method
using a procedure called smoothing with constraints and
Functional PCA [16], [17]. After applying motion smooth-
ing, which is an approximation with a parameterized trajec-
tory, to the human measured motion, Functional PCA con-
verts the smoothed motion into a point in a low-dimensional
space called FPC space. A new motion can be generated by
blending two (or potentially more) motions in the FPC space.
They succeeded in synthesizing left and right lunge motions
(one leg is positioned forward with its knee bending and the
other leg backward) into a new motion that looks like a squat
in simulation. However, this motion was generated from
linear synthesized values in FPC space, so we didn’t utilize
the effort of Functional PCA. Moreover, in the real humanoid
experiment, the robot could not perform the blended motion
properly because the synthesized motion did not satisfy
physical consistency including stability and self-collision
avoidance.

In this paper, we propose a framework allowing to blend
motions with maximizing the characteristic of motion sub-
ject. The problem of how to consider the data feature by
using a low-dimensional point in FPC space for synthesis
is solved by establish a local FPC space and a global FPC
space. Other problem of how to take physical consistency
into account is solved by applying smoothing with con-
straints and Functional PCA again to already synthesized
data. This method makes it possible to choose a subject
point in a local FPC space and obtain a new point in the
global FPC space. We can generate not only one point
(motion) but a group of points (motions) corresponding to
different physically consistent motions. If the point group are



Fig. 1: Flowchart of the proposed motion synthesis method
with physical consistency

distributed as a specific shape such as a curve or a surface and
we formulate it, we will be able to combine original motion
data at any mixture rate and generate an infinite variety of
feasible motions.

II. MOTION SYNTHESIS FRAMEWORK

The motion synthesis flowchart taking into account physi-
cal consistency of the humanoid robot using smoothing with
constraints and Functional PCA is illustrated in Fig.1. The
process of conversion of human motions into humanoid robot
motions is divided into three steps; 1) Retargeting: Acquiring
robot motion data through smoothing with constraints from
human motion data. 2) Synthesis: Analyzing and synthesiz-
ing robot motion data using Functional PCA. 3) Adding
physical constraints: Adding conditions to the synthesized
motion data using smoothing with constraints.

At step 1, we acquire whole-body humanoid robot motions
based on human movements and carry out smoothing to
reduce the amount of motion data. First, human motions
are obtained by motion capture including upper and lower
body motions. These data, expressed in 3D positions of
markers in the global coordinate system, are converted into

sequences of angles of each joint of the desired humanoid
robot based on inverse kinematics according to [6], [8].
Converted data however may not satisfy some conditions for
stable humanoid motions. We then apply an approximation
called smoothing to those discrete data in order to obtain
continuous data by considering physical conditions such as
COM position. Here, smoothing uses basis functions called
B-spline superposing continuous parameterized functions on
the original discrete data [11]. The smoothed continuous data
are compressed into a low-dimensional data by Functional
PCA for the purpose of motion synthesis through blending
at step 2. The compressed data can be plotted in the low-
dimensional feature space as points. We compute those points
in the local and global feature space separately. The local
space corresponds to the motions from limited parts of
the body (for example upper body only, right leg only...),
whereas the global space is obtained from the whole-body
motions. Assuming that motions in different local spaces are
superposed, the low-dimensional data allow us to synthesize
data possessing different local motion characteristics at the
same time. After interpolating points between different lo-
cal spaces in the global space, we can obtain synthesized
motions by reconverting those points back into motion data,
hence the use of Functional PCA. However, there is still no
guarantee that those interpolated data will satisfy physical
consistency. The 3rd step finally takes care of this issue.
This operation shifts those interpolated points to physically
feasible motions in the FPC space.

We finally confirm that any motions generated from the
blended points are dynamically feasible through dynamic
simulation of a humanoid robot. The smoothing and Func-
tional PCA inspired by [15] and the improved method are
briefly explained in the next section.

III. SYNTHESIS METHOD WITH PHYSICAL CONSISTENCY

This section briefly summarizes the representation of
human motion data in a low-dimensional space by using
smoothing and Functional PCA as we originally proposed
in [15].

A. Smoothing with constraints for physical consistency

Smoothing allows estimating the time trajectory along
the sampled time of a given regression model. Data after
smoothing are expressed as a set of coefficients of basis
functions for smoothing. Since the amount of the data can
be reduced from the original dataset, the smoothed data
can be handled more easily for the analysis and for further
computations.

Smoothed joint angles of the robot are expressed by the
following equation:

qqqt =
NB

∑
i=1

cccibi,t (1)

where, qqqt ∈RNJ is the vector of joint angle at time instance
t, NJ is the number of joints. bi,t ∈ R is the cubic B-spline
function, NB is the number of spline functions in the basis,



and ccci ∈ RNJ is expressed as a coefficient matrix. This data
described by smoothing function is called “functional data”.

We can regard smoothing optimization with constraints as
in the following equation.

min
ccc1,..,cccNB ,rrr1,...,rrrNT

NT

∑
t=1
||qqqt − q̂qqt ||2 (2)

subject to ∀t gggt(rrrt ,qqqt)≤ 000 (3)

where, q̂qqt is the acquired joint angle data at time sample t,
rrrt ∈ SE(3) is the position and the orientation of the humanoid
robot, and NT is set as number of time instances. The
function gggt represents the constraints for obtaining physical
consistency required for feasible robot motions, such as the
joint limits, the static stability condition for COM, and a
geometrical conditions for feasible motion at the time sample
t. This optimization problem is solved by a penalty function
method [8].

B. Motion data compression

Although smoothing reduces the amount of motion data,
the resultant coefficient matrix still has over 1000 ele-
ments. We thus employ Functional PCA for further data
compression, which was proposed by Basse et al. [16] as
a statistical method to abstract important information and
reduce the dimension of ”functional data sets” by analyzing
the covariance structure. It works in the following way:

First, the following formula is defined:

ξξξ t =
NB

∑
i=1

θθθ ibi,t (4)

where, θθθ i ∈ RRRNJ refers to the vector of parameters of the
regression model Eq.(4).

qqq(n)t is the joint angle vector at time sample t of n-th data
set and can be expressed using Eq.(4). The corresponding
scalar value f (n) called FPC score is defined as follow:

f (n) =
NT

∑
t=1

ξξξ t
T qqq(n)t (5)

The analysis method of Functional PCA calculates the basis
ξξξ to maximize the variance of the FPC scores. By connecting
ξξξ t

T , the basis vector ξξξ is defined as follow:

ξξξ = [ξξξ 1
T · · ·ξξξ NT

T ]T (6)

The solution can be computed by solving an eigenvalue prob-
lem [18]. This FPC score has NBNJ dimensions. We choose
NM values of it, and plot them into NM dimensional feature
space called FPC space. After performing the functional
PCA, the relationship between the arbitrary FPC scores fff
in NM dimensional FPC space and the coefficients ccc of the
B-spline bases can be summarized as follows:

fff = MMM(ccc− ccc) (7)

where, MMM ∈ RNM×NBNJ is the conversion matrix which can
be computed from ξξξ and bi,t , and ccc indicates the averaged
coefficients determined by the training data.

(a) Local FPC spaces in global FPC space

(b) Intersection point connecting both local FPC
spaces

Fig. 2: Schematic synthesis using local and global spaces

The coefficients ccc can be reconstructed from the given
PCA scores fff by solving Eq.(7). The coefficients ccc can be
finally obtained from the given score fff by:

ccc = MMM+ fff + ccc (8)

where, (∗)+ indicates the pseudo inverse of (∗).

C. Synthesis with Functional PCA

We believe that the low-dimensional representation in FPC
space is advantageous to visualize and blend motions with
different characteristics. We here introduce the notion of
local and global FPC space as shown in Fig.2. The local
FPC space expresses motions of some given parts of the body
that can be superposed without significant interference. On
the other hand, the global FPC space represents the motion
of the whole body for which blending can significantly affect
the physical feasibility of the robot.

Interpolations in the same local space results in blended
motions. For example, by combining left and right lunge
motions, we obtained new squat motions in the local FPC
space corresponding to the lower body [15]. However, when
it comes to blending motions in different local spaces,
the global space should be considered. Fig.2b shows the
procedure of motion synthesis from different local spaces.
We here introduce the ”intersection point” that plays the
intermediate role of connecting two different spaces. It is
possible to synthesize motions linearly in the global space,
and generate the synthesized point shown in Fig.2b. This



point represents whole body motion as mentioned above, so
the blended data does not consider the specificities of basis
motions for synthesis and the physical feasibility of the robot
such as self collision. Proposed method by using local FPC
can synthesize without those interference. We will compare
the details of the provided method and linear synthesis later
in IV-B

We now explain the mathematical interpretation of the
motion synthesis using local and global spaces. First, FPC
scores in local and global spaces are defined according to
Eq.(7) and Eq.(8) as follow:

MMMG(ccc− cccG) = fff G (9){
ccc = MMM+

L1 fff L1 + cccL1

ccc = MMM+
L2 fff L2 + cccL2

(10)

Where, the subscript G is utilized for global space values: the
subscript L1 is utilized for the 1st motion data group, and L2
is utilized for the 2nd motion data group.

Let us formulate the relationship between the PCA scores
represented in the three spaces: the two local spaces and the
global space. The local values such as cccL1, cccL2, MMML1, and
MMML2 are converted into global ones by substituting Eq.(9) to
Eq.(10) through the following formula:{

fff G = SSSG/L1 fff L1 + fff G/L1

fff G = SSSG/L2 fff L2 + fff G/L2
(11)

where, {
SSSG/L1 , MMMGMMM+

L1

SSSG/L2 , MMMGMMM+
L2

(12){
fff G/L1 , MMMG(cccL1− cccG)

fff G/L2 , MMMG(cccL2− cccG)
(13)

Using these values enables to convert each local FPC scores
into the corresponding global FPC score: fff (∗)G .

Since fff G in Eq.(11) implies the intersection point of
both local FPC spaces, the solution of the simultaneous
equations of Eq.(11) can provide the synthesized data which
considers both upper and lower body motion characteristics.
Furthermore, the coefficient values ccc corresponding to fff G
can be reconstructed from:

ccc = MMM+
G fff G + cccG (14)

Finally, the joint angle trajectories qqq can be computed from
the obtained coefficients according to Eq.(1).

This time, we showed the synthesis method using only
two local spaces. Adding more local spaces of motion data,
we can perform a broader variety of synthesised motions.

D. Physically Consistent Motion Synthesis

Although the motion synthesis method presented in III-
C allows generating synthesized motions using Eq.(1) and
Eq.(14), its feasibility is not necessarily guaranteed with
respect to physical consistency. For example for lower body
motions, mixed motions from lunge motions with different
foot positions [15] were not feasible, which leads to the robot

(a) Swing motion

(b) Twist motion

(c) Wave motion

(d) Stretch motion

(e) Left lunge motion

(f) Right lunge motion

Fig. 3: All motions for synthesis

easily falling down. We solve this issue by applying again the
smoothing under the constraints to the synthesized motions.
The physically consistent solution is obtained by solving the
following optimization problem:

min
f(1),.., fNB),rrr1,...,rrrNT

NT

∑
t=1
||qqqt − q̂qqt ||2

+
NT

∑
t=1

Ng

∑
j=1

λ j|max(g j,t ,0)|2 (15)

where, λ j represents the penalty weight of each constraint
g j,t , and Ng is the number of constraints. The weight is
designed according to the allowable amount of the constraint
violation.

We will demonstrate this analysis with examples of whole
body motions synthesis of a humanoid robot in the next
section.



(a) Local space of lower body motion (b) Local space of upper body motion

(c) Global space composed of upper and lower body motion data

Fig. 4: Local spaces and global space composed of upper and lower body motion

IV. VALIDATION OF PHYSICALLY CONSISTENT
SYNTHESIZED MOTIONS

A. Synthesize upper and lower body motions in FPC space

In this paper, we adopt two local spaces corresponding
to the upper body and the lower body as a typical case.
Other examples of the local spaces could be left and right,
or right leg and left leg... These cases of the synthesis
of robot motions are studied in this section. We recorded
the upper and lower body motions of human subjects with
a motion capture system (Raptor-12 cameras provided by
Motion Analysis). The captured data was converted into the
joint angles data of the humanoid robot according to inverse
kinematics computation[6]. Then, the converted data was
utilized for FPCA.

Through the capture process, we acquired 16 motion data
in total. All the captured motions were converted to the mo-
tion of humanoid robot HRP-4 [19] by using the retargeting
method shown in [14]. Fig.3 shows all the captured motions
in a 3D dynamic simulator called Choreonoid [4]. There are
eight upper body motion data in total. Four kinds of upper
body motions were acquired twice respectively. Each motion
moves the COM significantly and may result in an unstable
robot motion (Fig.3a, Fig.3b, Fig.3c, Fig.3d). Other eight
data contains lower body motions. Left and right lunges
were captured four times respectively for a lower motion,
by changing the longitudinal and lateral distance between
the feet (Fig.3e, Fig.3f). In the dynamics simulation using
Choreonoid, all 16 motions of the robot could be performed
without falling down after the retargeting step. We applied

Functional PCA to those motion data and converted them
into low dimensional FPC space for synthesis. The two local
spaces were generated from the upper body motions and
the lower ones, respectively, while the global space were
generated using both of them.

Top of Fig.4 shows the point groups of the corresponding
dataset in each low-dimensional FPC space. Applying FPCA
to each dataset of lower body motions and upper body
motions generates local spaces as indicated in Fig.4a and
Fig.4b respectively. Point groups of each motion type in
those local spaces have unique forms. In the local space of
lower body motion in Fig.4a, 1st PC score represents length
of both feet in a linear direction, and 2nd PC score means
those width. We could not confirm remarkable characteristics
of 3rd PC score and every PC score of upper body. It is
expected that the point around the local origin is synthesized
data of other points, so we can blend local body parts such as
legs, hands, arms, and so on. Fig.4c shows all the 16 motion
data represented in the global FPC space. These 6 point
groups obtained from several iterations of smoothing with
constraints as presented in III-D. We can see that the point
groups are not distributed regularly and there are some large
gaps. As these gaps are located at nearly the same position,
we can conclude that there is a singularity or a solution hard
to converge towards in the optimization problem.

B. Validation of Synthesized Motions

In accordance with III-C, we synthesized upper body
motions and lower body motions by solving Eq.(11). In this



(a) Synthesized motion in the simulation environment Choreonoid

(b) Generated animation by synthesizing FPC score linearly

(c) Generated motions on the actual HRP-4 robot

Fig. 5: Simulation and experimental results of synthesized motions

research, one arm wave motion (Fig.3c) and a squat motion
were chosen as blended motions. Squat motion is the origin
of the local space of lower body motion. However, generated
data could not satisfy physical consistency, so those data
were subject to smoothing with constraints again as presented
in the paper.

Fig.5 shows the result of the synthesized motion in the
simulation environment Choreonoid. Fig.5a is the result of
the provided method in III-C, and Fig.5b is the result of linear
synthesis shown in [15]. In this case, linear synthesis means

that we calculated the average of two FPC scores in the
global FPC space; squat motion and arm wave motion. Al-
though both simulation model could perform the synthesized
movement without losing stability, comparing with the result
of the proposed method shown, the arms of linear synthesis
result are not straighten. Fig.6 shows the third pictures from
the left in the first row of Fig.5a and Fig.5b. The proposed
method shown in Fig.6a bends robot’s knee because of squat
motion. On the other hand, both legs of linear synthesis
in Fig.6b are not bended well. In other word, the linear



(a) Proposed method (b) Linear synthesis [15]

Fig. 6: Side views of each bending knee animation

synthesis method shown in Fig.5b does not duplicate the
synthesis subject motions because of some interference, so
it is assume that our proposed method using local FPC is
more efficient for motion synthesis than the linear synthesis
method.

We carry out the experiment using the real humanoid
robot. We use the humanoid robot HRP-4 [19]. The robot has
37 DOFs, and its toe has 1 DOF for human-like movements.
In our research, the joint angle of its toe is fixed at zero
degree for the stability. We generated the synthesized motion
by the proposed method, and examined the trajectory by
using the real robot. The snapshots of the synthesized motion
performed by the actual robot are shown in Fig.5c. As
can be seen from the figure, the robot could carry out the
synthesized motion successfully, i.e. without falling down.
Those results show that the proposed framework can provide
the physical consistent motions and is useful for the motion
synthesis for actual robots.

V. CONCLUSION

In this paper, we presented a method for generating phys-
ically consistent motions by blending of motion data using
motion smoothing and Functional PCA. The contribution
is that we have shown an improved synthesis method of
feasible motions by setting the local FPC space and the
global FPC space, improving the drawback of the previously
proposed method. The feasibility of the synthesized motions
have been validated by actual experiments as well as dynamic
simulations of a humanoid robot HRP-4. Other robots can
be used similarly by simply replacing in the retargeting part,
the robot model.

Future work includes extension of the proposed method
to a wide variety of humanoid whole-body motions. Since
the example presented in this paper deals with upper and
lower body motions, and this method can be applied to
more complicated motion synthesis by increasing the local

space, we will investigate if the same kind of spaces can
be identified for other complex cases including combined
different time instance motions. Study on the mathematical
analysis of these topological spaces is another future topic.
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