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A significant problem in brain–computer interface (BCI) research is decoding — obtaining required infor-
mation from very weak noisy electroencephalograph signals and extracting considerable information from
limited data. Traditional intention decoding methods, which obtain information from induced or sponta-
neous brain activity, have shortcomings in terms of performance, computational expense and usage bur-
den. Here, a new methodology called prediction error decoding was used for motor imagery (MI) detection
and compared with direct intention decoding. Galvanic vestibular stimulation (GVS) was used to induce
subliminal sensory feedback between the forehead and mastoids without any burden. Prediction errors
were generated between the GVS-induced sensory feedback and the MI direction. The corresponding pre-
diction error decoding of the front/back MI task was validated. A test decoding accuracy of 77.83–78.86%
(median) was achieved during GVS for every 100 ms interval. A nonzero weight parameter-based channel
screening (WPS) method was proposed to select channels individually and commonly during GVS. When
the WPS common-selected mode was compared with the WPS individual-selected mode and a classical
channel selection method based on correlation coefficients (CCS), a satisfactory decoding performance
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of the selected channels was observed. The results indicated the positive impact of measuring common
specific channels of the BCI.

Keywords: Electroencephalogram; galvanic vestibular stimulation; prediction errors; motor imagery;
channel optimization; brain-computer interface.

1. Introduction

Globally, particularly in developed countries, the
numbers of senior citizens and persons with vary-
ing degrees of disability,1,2 who struggle to con-
trol their limbs and other body parts,3 are increas-
ing. Therefore, wheelchairs have become one of
the most important methods of transportation.1,4

However, existing wheelchairs, such as mechanical
wheelchairs are difficult for such people to control.4

Hence, brain–computer interface (BCI) technologies
are promising because they can enable people to con-
trol wheelchairs with their brains instead of their
bodies. This could be useful for providing alterna-
tive communication and mobility to assist elderly or
disabled people and aid them in regaining more inde-
pendence in their daily activities.5 BCI technologies
are also evolving to provide therapeutic benefits by
inducing cortical reorganization via neuronal plastic-
ity for the neurological disorders.6

Researchers have studied inducible BCI sys-
tems7–9 that depend on the participants sensory
pathway, which is induced by an explicit external
stimulation.10–12 According to the form of stimula-
tion, these can be divided into visually evoked poten-
tials, auditory evoked potentials and tactile evoked
potentials. As the inductive BCI system requires
additional stimulation devices and the users atten-
tion, it results in a cognitive load for the users.13

However, the spontaneous BCI system is completely
derived from the participant’s inherent brain sig-
nals.14–16 Although it provides a more flexible and
natural control method, some cases still require
extensive user training, either to enable the user
to control their brain activity17,18 or for the motor
imagery (MI).8,9,19 Some imagery differs with the
user who wants to control the BCI system. There-
fore, users still bear some usage burden.

In our previous study,20 a new methodology was
explored for decoding whether the movement that
users imagined matches the sensory feedback induced
by a subliminal stimulator. This differs from the
previously proposed methods that directly decode

the motor imaginations of the users. This method-
ology is motivated by the well-documented ability
of the brain, to use forward models21 for predict-
ing the sensory outcomes of self-generated and imag-
ined actions. The sensory prediction errors gener-
ated between the forward model prediction and the
actual sensory signal are the basis of social motor
ability,20 and can be generated during the period
of real motion and during the MI period.22,23 Pre-
diction errors are considered to correspond to the
control of self-generated actions,21,24,25 haptic per-
ception,26 motor learning,27 and even interpersonal
interactions28–30 and self-cognition.31

In previous studies, by using single-channel gal-
vanic vestibular stimulation (GVS),32–34 a form of
subliminal stimulation (max 0.8mA), designed to
induce sensory feedback (left/right roll) was used.
Meanwhile, the participants were requested to per-
form MI as if they were in a wheelchair and turning
left/right, thus producing prediction errors that cor-
responded to the direction of the MI and the sensory
feedback of the GVS. Better decoding performance
across the tested participants was observed in the
decoding of the left/right MI task within 96ms of
the stimulation (also satisfactorily decoded in other
processing periods of the GVS-induced prediction
errors).

The multichannel GVS-induced prediction errors
in the front/back MI task were not verified in the
previous study. However, for planar motion con-
trol of the wheelchair, the four principal directions
left/right/front/back must be decoded. The decod-
ing procedures were split into two sides: left/right
and front/back, and a corresponding decoding
method that can be used in real-time wheelchair con-
trol was considered (see Fig. 1). As the intention of
MI cannot be observed in advance, the GVS stimu-
lation was applied every 100 ms for measuring and
decoding convenience in four directions: left, right,
front and back. The users could perform MI freely
in each 1 s period, and the decoding process was
conducted eight times at intervals of 100ms during
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Fig. 1. Hypothetical EEG-controlled wheelchair.

this 1 s period. The final decoding result was decided
based on the average decoding results of the trials.

Hence, the experimental settings were partially
modified according to the actual requirements for
hypothetical wheelchair control. Furthermore, the
main focus was the prediction error decoding of
the front/back MI task (the left/right MI task was
not repeated in detail, and wheelchair control was
not involved). A four-channel GVS device35 was
used, with a lower level of current stimulation (max
0.4mA, half of the stimulation applied in the previ-
ous research), namely noninductive subliminal stim-
ulation, which was applied across the vestibular-
temple organs of the participants and induced the
sensory feedback of a front/back pitch, leading to
the generation of prediction errors without any stim-
ulation load. Satisfactory decoding performance was
achieved in this study.

In addition, as the signals of some channels
may contain redundant information and noise that
degrade BCI performance,36 when designing applica-
tions of real-time BCI, equipment, costs, and decod-
ing expenses should also be considered. The preferred
decoding system is one that allows users to acquire
sufficient information from limited data. Therefore,
during the GVS-induced period, after decoding, the
weight parameter output vector (characterizing the
contribution of each channel’s feature value to the
decoding) was analyzed. The count values of the
nonzero weight parameters of each channel were cal-
culated, and then all the channels were sorted by
descending order of count values. We referred to

this method as the weight-parameter-based channel
screening (WPS) method.

This method was utilized in the channel selec-
tion by participants individually (individual-selected
mode). To verify whether all participants could share
the common selected channels, we comprehensively
analyzed the weight parameter output vector and
calculated the count values of all channels across
the participants (common-selected mode). Then, the
channels were arranged in descending order. By pro-
cessing the data of these top channels rather than all
64 channels, a better decoding performance could be
observed; moreover, the decoding cost was reduced.
To verify the efficacy of our proposed method, the
WPS was compared with another proposed CCS
method36,37 under the common-selected mode.

2. Materials and Methods

2.1. Participants

Ten healthy participants (8 males, 2 females aged
2125 years) were included in our experiments. They
were all dextromanuals and fully capable. The partic-
ipants signed a written informed consent form before
participating. The study was conducted with the
approval of the ethics committee at the Tokyo Insti-
tute of Technology in Tokyo, Japan.

2.2. Electroencephalogram (EEG)
signal recording

A commercial EEG recording system (Active Two
amplifier system, 64 active sensors, BIOSEMI)
recorded the brain activity at 2048Hz. The National
Instruments-6259 transmitted the trigger signals,
and stereo speakers provided the audio cues to indi-
cate the direction that the participants should imag-
ine.

2.3. GVS stimulation

A custom-made GVS35 was used in parallel with the
EEG recording. The GVS instrument had four elec-
trode sockets, each of which was connected to a sep-
arate constant current source circuit that provided
stable current. Each circuit was insulated to pre-
vent current flow between the various circuits. The
GVS instrument was connected to a computer via
USB 3.0, and the corresponding control command
was issued by the computer to control the loop cur-
rent of each circuit.
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(a)

(b) (c)

Fig. 2. Positions and current paths of the GVS elec-
trodes.

As shown in Fig. 2(a), the four electrodes were
attached to each participants left/right temple and
mastoid. In this study, the lateral directional stim-
ulation (LDS) and same directional anteroposterior
stimulation (SDAS) methods35 were used to induce
sensory feedback. In LDS, the current flows from an
electrode on either the left or right mastoid to the
other mastoid. As shown in Fig. 2(b), the blue cur-
rent pathway from the left mastoid to the right mas-
toid evokes the left roll sensation. Similarly, the red
current pathway from the right mastoid to the left
mastoid evokes the right roll sensation. In SDAS, the
current is induced from electrodes on either of the
temples or the mastoids and exits from the electrodes
on the other regions. As shown in Fig. 2(c), the red
current flowing from both sides of the temples to the
mastoids evokes the front pitch sensation. Similarly,
the blue current flowing from both sides of the mas-
toids to the temples evokes the back-pitch sensation.

2.4. Experiment setup

In the electrode setup, the skin was first cleaned
to ensure that the participant would not feel the

current stinging during the experiment. Then, the
GVS electrodes were attached, and the current value
of the GVS electrodes was adjusted according to the
participants feedback. They answered questionnaires
according to the perception of the test GVS stimulus
from 1 to 8 (1: no feeling). The test GVS stimulus
was set to a maximum current of 0.4 mA and 0.5
s of a 1 Hz sine wave was applied (the stimulation
paradigms were LDS and SDAS), and the partici-
pants were exposed to the stimulus twice for each of
the four GVS directions. After that, the participants
were fitted with an electrode-cap and the electrodes
were attached (see Fig. 2(a)).

During the experimental guidance, we moved the
participants into a shielded room and placed them
in a revolving office chair. To familiarize the partic-
ipants with the MI (as if in a wheelchair and mov-
ing forward/backward), we asked them to close their
eyes and feel the forward/backward movement. After
that, before officially starting the experiment, several
trials were conducted for the participants could to
enter the experimental state as quickly as possible.

The participants were requested to keep their
eyes closed and maintain calm for the duration of
the experiment. See the timeline shown in Fig. 3(a).
The participants imagined the motion according to
random voice cues (front or back). Three seconds
later, the GVS device stimulated the participants
randomly with sensory feedback from four directions:
left/right (LDS) and front/back (SDAS) by using
sine wave stimulation (1 Hz, max 0.4mA, sustained
0.5 s). After that, the participants were cued by a
beep to rest for 3 s. The trials were repeated 60 times.

In this study, each volunteer participated in an
experiment consisting of six sessions, where every
session contained 60 trials. As the trial setting in
Fig. 3(b) shows, the direction of the cue (“C”) was
front (“F”) or back (“B”), and the sensory feedback
directions of the GVS (“G”) device were left (“L”),
right (“R”), front (“F”), or back (“B”), giving 2 × 4
combinations for the cue and GVS stimuli. For exam-
ple, CFGB means that the cue direction is at the
front, and the GVS-induced sensation is at the back.
MATCH means that the direction of the cue matches
the GVS direction and consists of 15 trials in each of
the following cases (a total of 30 trials): CFGF and
CBGB. MISMATCH means that the direction of the
cue does not match the GVS direction and consists
of five trials in each of the following cases (totaling
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(a)

(b)

Fig. 3. (Color online) Timeline and trial settings of the
experiment. (a) Experimental timeline: in each trial, the
speakers give random voice cues to participants. Three
seconds later the GVS device stimulates the participants
for 0.5 s. Participants should make the MI before hearing
the rest cue and then take a 3 s rest period; (b) Exper-
iment trial setting: the four GVS cue initials and the
related directions are used to abbreviate the trial name.
When the cue and GVS directions are the same, it rep-
resents a MATCH (two types, each containing 15 trials)
and is marked by a blue circle; otherwise, it represents a
MISMATCH (six types, each containing 5 trials) and is
marked by a red triangle.

30 trials): CFGL, CFGR, CFGB, CBGL, CBGR and
CBGF. Similarly, in the left/right MI task, the direc-
tion of the cue (“C”) was left (“L”) or right (“R”).
The sensory feedback directions of the GVS were also
from four directions. The cases for MATCH consisted
of CLGL and CRGR, and those of MISMATCH con-
sisted of CLGR, CLGF, CLGB, CRGL, CRGF and
CRGB (the processing will be explained mainly in
the front/back MI task).

2.5. Data processing

Considering the applications of real-time BCI, data
closer to the raw state were used for decoding anal-
ysis in this study. The main procedures of the data
processing program were as follows (cue period: 3 s
only MI period; GVS period: 0.5 s period in which
GVS was applied to induce the sensory feedback):

(1) The EEG data were downsampled to 512Hz.

(2) The downsampled data were divided into the cue
and GVS periods. In the cue period, the data
were separated and labeled as different datasets
according to whether the direction of the MI was
front or back. In the GVS period, according to
whether the induced sensory feedback of GVS
was equal to the direction of the cue, the data
were separated into MATCH and MISMATCH
datasets (see Experimental setup in detail) and
labeled. Then, the mean amplitude value of the
last 100 ms of the cue period in the same trial
was subtracted to calculate the reference.

(3) The labeled datasets of the cue and GVS periods
were randomized, respectively, with 80% defined
as the training data and the remaining 20% as
the test data.

(4) The absolute magnitude20 of the randomized
data was cut off at intervals of the 0.5 s decod-
ing time window (GVS at 0–0.1 s, 0.1–0.2 s, 0.2–
0.3 s, 0.3–0.4 s, 0.4–0.5 s, for each 100 ms period:
51 features/channel) as the training feature and
test feature matrices.

(5) The training and test feature matrices with the
corresponding label vectors were sent decoded,
and the classification accuracies of training/test
data and weight vector were obtained.

(6) Steps (3)–(5) were repeated 20 times; then, the
classification accuracies of the training/test data
and weight vectors were all saved. After that, the
subsequent program could analyze the statistical
results and conduct the channel screening.

As it is parameter-free and robust against over-
fitting,38 sparse logistic regression (SLR) was used
to classify the EEG data. It provides a solution for
binary or multiclass classification. A binary decoder,
SLR with variational approximation (SLR-VAR),
was utilized in this study. In the algorithm, the
weight of the uncorrelated feature of decoding was
set to zero and the weight of the associated feature
was set to a nonzero value. The feature matrix and
label vector of the training and test data should be
entered into the decoder to acquire the weight vector
and decoding accuracy matrix.

2.6. Channel screening

Since the prediction error decoding utilized in
this study showed satisfactory performance in the
front/back MI task during the 0.5 s GVS period
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(see the red portion in Fig. 4), we further proposed
a channel screening method based on the weight
parameters (WPS), and hoped to reduce redundant
information channels while maintaining or improving
the original decoding performance.

After the EEG data were analyzed and classified
using the SLR-VAR algorithm, the weight vectors of
all the channels could be acquired. In this research,
each participant had 64 EEG measurement chan-
nels and five object decoding time windows (each
time window was 100ms, containing 51 features) that
were classified 20 times; hence, the initial weight
parameter vector was structured as [(64 channels ×
51 features corresponding weight parameters) × 5
time periods × 20 rounds of decoding].

As previously mentioned, the weight of the uncor-
related feature was set to zero and the weight of the
associated feature was set to a nonzero value in the
SLR algorithm. Therefore, the nonzero values of the
initial weight parameter vector were counted, and
the count values of 20 rounds were summed and aver-
aged across five time periods; hence, a comprehensive
count vector that was structured as [64 channels ×
1 comprehensive count value] could be calculated.
Then, the vector was sorted in descending order,
and the top number of channels was selected and
processed for each participant individually (called
individual-selected mode).

After that, different participants would obtain
different descending ordered channels; however, the
diversity of the object selected channel was not con-
ducive to future commercial applications. Hence, the
common-selected mode was investigated. The com-
prehensive count vectors of the 10 participants were
averaged and sorted in descending order. The count
values of all 64 channels are plotted in a bar graph,
and the distribution is mapped on a brain layout.
The top number of common-selected channels was
selected and analyzed for all 10 participants, and
the comprehensive decoding performance was eval-
uated with the individual-selected mode. Addition-
ally, a CCS method proposed in other studies36,37

was also compared with the WPS method (under the
common-selected mode and across the participants).
This method conducted a Pearson’s correlation anal-
ysis of the EEG data between each pair of chan-
nels and then combined the correlation coefficients
between each channel and all the others to obtain the
comprehensive mean correlation coefficient vector of

all 64 channels. Then, the channels were sorted in
descending order, and the highly correlated channels
were selected.

3. Results

Ten participants were involved in the experiments in
this study. The participants were asked to sit on a
revolving chair in a shielded room in a quiescent state
(keep the eyes closed and body still) and were cued
with an audio signal from two speakers that were
placed on either side of the participant. They were
required to imagine thoughts similar to the actual
motion control of the wheelchair after listening to
the cues. Three seconds after the end of the cues,
GVS (attached to the left/right side temples and
mastoids, see Fig. 2(a)) was applied to induce the
vestibular sensation of the left, right, forward, and
backward (see timeline in Fig. 3(a)), which was asso-
ciated with the generation of prediction errors. The
participants EEG signals were recorded throughout
the experiment (see the detailed procedures in the
Materials and Methods).

3.1. Intentional decoding

The intention decoding section (cue period) only con-
tains the motor imagination data according to the
direction of the audio cues. The brain wave was
recorded and aligned with the ending of the cue
presentation. The data were divided according to
whether the cue direction was front or back. In the
hypothetical wheelchair control method, the decod-
ing time window was set to 100ms, therefore, we
divided the EEG data of the 3 s period of pure MI
into 30 equal parts. It should be noted that 80% of
these data were used for training and the remaining
20% were used for testing. The process was repeated
20 times for a comprehensive analysis of the decoding
performance.

The brain activity of the cue period (see the
decoding performance represented by the blue color
in Fig. 4) was based solely on the MI (front/back). It
can be seen that the decoding accuracy was mainly
distributed around the chance level (H = 0, P =
0.96; the decoding rates of all the cue periods across
the participants were analyzed by the one-sample
t-test). The results of different decoding time win-
dows showed a stable low decoding rate (F = 0.97,
P > 0.05, one-way ANOVA) in the cue period.
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Fig. 4. (Color online) Box plot-line chart of the decoding accuracy across participants: all the participants decoding
performances in the 0–3 s cue period and 0–0.5 s GVS period (the data were analyzed each 100 ms for a total of 35
periods. Each contained the results of 10 participants and 20 rounds of decoding) were combined and plotted. Each
boxplot represents the performance of 20 rounds of decoding for all the tested participants, and the line graph connects
the median values. The blue and red graphs represent the cue and GVS periods, respectively.

3.2. Prediction error decoding

In the 0–0.5 s GVS period, the EEG data were
recorded and were aligned with the start time of
the GVS. The prediction errors were decoded accord-
ing to whether the direction of the MI was equal to
the induced sensory feedback of the GVS: MATCH
(the cue and GVS directions corresponded) and MIS-
MATCH (the cue and GVS directions did not corre-
spond).

Figure 4 shows that the decoding performance
achieved in the GVS period is significantly superior
to that of the cue period (F = 2049.12, P < 0.01,
one-way ANOVA) and chance level (H = 1, P <

0.01, one-sample t-test). The median decoding accu-
racy of the first 100 ms was 76.4% (ranging between
72.2% and 91.7%), and the median accuracy of the
entire GVS period was 76%79%, and the decoding
performance remains similar thereafter (P > 0.05,
one-way repeated-measures ANOVA). Some partic-
ipants results exceeded 90% (Participants 3, 8 and
10). The results revealed that the proposed method
achieved a satisfactory decoding performance for the
prediction errors in the MI of the front/back.

3.3. Proposed channel screening
method: WPS

Multichannel EEG signals are widely used for
acquiring brain activity data in BCI. Although the
prediction error decoding showed satisfactory per-
formance during the GVS period, redundant infor-
mation may have been recorded on some channels,
which influenced the decoding performance. Addi-
tionally, to adapt real-time control in future studies,
only channels that are highly relevant to the decod-
ing should be selected. A channel screening method
based on weight parameters (WPS) was proposed in
this research.

In the WPS individual-selected mode, the
nonzero value of the weight parameters in each chan-
nel was counted after the EEG data were analyzed,
and then all the channels were sorted in descending
order of count values (see channel screening in Mate-
rials and Methods in detail). The top 32 channels
were first selected and analyzed and then we halved
the number of channels successively and attempted
to select and decode the top 16 channels, 8 chan-
nels and 4 channels (a total of four selection types)
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(a) (b)

Fig. 5. (Color online) Comparison of the decoding performance for different channel selection modes of WPS during
the GVS period. (a) Channel screening in prediction error decoding of the front/back MI task; (b) Channel screening in
prediction error decoding of the left/right MI task. The decoding performance (across 10 participants) of all the channels
(green), WPS individual-selected mode (blue), and WPS common-selected mode (red) were plotted in the figure. The line
graph connected the median value of each section. The abscissa represents the periods, and the ordinate represents the
test decoding accuracy.

(a)

(b)

Fig. 6. (Color online) Bar chart and spatial distribution of nonzero weight mean count values across participants. The
WPS-processed channels were sorted in descending order and were tentatively categorized into four classes: high weight
channels (black), second high weight channels (blue), second low weight channels (yellow) and low weight channels (white).
The distribution of the count values (all 10 participants) are exhibited (green line). The abscissa represents channel names,
and the ordinate represents the mean count values.
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for each participant. The comprehensive decoding
performances of the WPS individual-selected mode
(containing all four selection types) is shown in Fig. 5
(blue graph).

Nevertheless, the diversity of the selected
channels was not conducive to future common
applications. Hence, the count values of all 64 chan-
nels across the participants were averaged, combined
and arranged in descending order (WPS common-
selected mode) and plotted in Fig. 6(a). The spa-
tial distribution is shown in Fig. 6(b). This shows
the spatial distribution of the weight parameters in
terms of relevancy to the prediction error decoding.
However, the feature selection of the decoder is prone
to false negatives, and in this study, the use of 0 as
the counting threshold of the weight parameters is
explored; hence, further concrete deductions regard-
ing the spatial distribution of the underlying neu-
ral mechanism from the nonzero weight parameters

selected by the decoder cannot be made. However,
some information can still be obtained. Many darker
electrodes are distributed over the parietal lobe,
which is closely related to spatial information pro-
cessing. Although the remaining darker electrodes
are distributed in areas that do not closely corre-
spond to MI, these channels are highly related to
decoding.

Similar to the verification in the WPS individual-
selected mode, we also selected and analyzed the first
32, 16, 8 and 4 channels (a total of four selection
types) according to the descending order of common
channels across the participants. The decoding per-
formance of the WPS common-selected mode (con-
taining all four selection types) is plotted in Fig. 5
(red graph).

The above content was verified first for the
front/back MI task and then the left/right MI task.
The average decoding accuracy of all 10 participants

Table 1. Average decoding accuracy (%) of all 10 participants (GVS period) of all channels, WPS indi-
vidual-selected mode and WPS common-selected mode. The standard deviation is shown in parentheses.

Front/back MI task

Participants All channels WPS individual-selected mode WPS common-selected mode

1 76.19 (±5.17) 78.69 (±4.71) 78.40 (±4.71)
2 76.19 (±4.56) 78.02 (±4.77) 78.57 (±4.69)
3 78.13 (±4.30) 81.49 (±4.59) 81.28 (±4.40)
4 79.07 (±5.67) 81.34 (±4.59) 81.91 (±4.49)
5 77.64 (±4.72) 80.17 (±4.38) 81.62 (±5.04)
6 75.83 (±4.74) 78.87 (±4.59) 79.49 (±4.92)
7 77.46 (±4.93) 80.05 (±4.72) 80.64 (±4.99)
8 79.00 (±4.46) 80.28 (±4.70) 80.64 (±4.77)
9 77.61 (±4.73) 79.49 (±4.69) 80.24 (±4.84)
10 79.78 (±4.53) 81.10 (±4.15) 80.85 (±4.41)

Left/right MI task

Participants All channels WPS individual-selected mode WPS common-selected mode

1 76.90 (±4.10) 79.98 (±4.71) 80.29 (±4.86)
2 82.25 (±4.15) 82.03 (±4.64) 83.15 (±4.11)
3 94.39 (±2.86) 94.22 (±2.73) 94.25 (±2.75)
4 80.96 (±4.04) 82.76 (±4.19) 82.86 (±4.07)
5 87.57 (±4.72) 88.77 (±4.03) 87.40 (±4.05)
6 83.57 (±3.91) 84.47 (±4.06) 83.99 (±4.07)
7 90.24 (±2.65) 90.11 (±3.75) 91.05 (±3.39)
8 85.03 (±3.76) 85.95 (±3.96) 84.61 (±4.03)
9 87.86 (±4.04) 88.05 (±3.66) 86.52 (±4.24)
10 86.26 (±2.97) 87.61 (±3.77) 87.77 (±4.06)
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(a) (b)

Fig. 7. (Color online) Comparison of the common-selected modes of WPS and CCS during the GVS period. (a) Channel
screening in prediction error decoding of the front/back MI task; (b) Channel screening in prediction error decoding of the
left/right MI task. The decoding performance (across all 10 participants) of all channels (green), WPS common-selected
mode (red) and CCS common-selected mode (blue) were plotted in this figure. The line graph connected the median value
of each section. The abscissa represents the periods, and the ordinate represents the test decoding accuracy.

of all the channels, WPS individual-selected mode,
and WPS common-selected mode (across five GVS
periods and four selection types) are shown in
Table 1.

3.4. Another channel screening
method: CCS

The channels related to MI may contain common
information when participants are executing the cor-
responding tasks.36 Based on this hypothesis, a CCS
method was proposed in a previous study to select
channels that contained more correlated information.
The performances of WPS and CCS were compared
in the common-selected mode (analysis across par-
ticipants, MI task of front/back and left/right side,
during the GVS period). Similar to the WPS, we also
selected and analyzed the highly correlated 32, 16, 8
and 4 channels (a total of four selection types) for all
participants. The decoding performances (containing
all four selection types) of the WPS (red) and CCS
(blue) are plotted in Fig. 7.

As shown in Fig. 7(a), for the front/back MI
task, the WPS-based channels and CCS-based chan-
nels have better decoding performance than all the
channels (p < 0.01, two-sample t-test; the decoding
performance across 10 participants and four selec-
tion types were compared), but there was no sig-
nificant statistical difference between the decoding

performance of the WPS and CCS methods (p >

0.05, except for the 0.2–0.4 s GVS period, two-
sample t-test). However, in the left/right MI task (see
Fig. 7(b)), although a significant statistical difference
between the decoding performance of WPS and all
channels could not be observed (p > 0.05, except
for the 0–0.2 s GVS period, two-sample t-test), the
decoding performance of WPS was superior to that
of CCS (p < 0.01, two-sample t-test). Furthermore,
the decoding accuracy of the CCS method was even
lower than that of all the channels (p < 0.01, two-
sample t-test).

4. Discussion

The BCI is used to translate brain activity into
a command for the computer or machine.3,39 In
recent years, to improve the decoding performance
and feasibility of BCI systems, many schemes have
been proposed. A fusion approach that combines
EEG and magnetoencephalography (MEG) simul-
taneously was proposed to improve the decoding
performance.40 However, MEG systems are bulky
and expensive, making them difficult to implement
on mobile BCI. The generalization ability of clas-
sifiers in BCI was improved in a previous study,41

and the results demonstrated comparable perfor-
mance improvement across multiple subjects without
subject-specific calibration. A flexible group sparse
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discriminative analysis algorithm based on Moreau–
Yosida regularization was proposed to improve the
event-related potential (ERP) classification problem
in a study.42 P300 is a type of ERP, which is a spe-
cial endogenous evoked potential related to cogni-
tive function. Some typical researches decoded it via
continuous tapping of the finger and thumb43 and
also via left-hand and right-hand movement MI,44

which is different from the MI of the actual control
task. In addition, the latency of P300 is not accu-
rate (250–800 ms), making it difficult to obtain sat-
isfactory decoding accuracy in a short period of less
than 300ms. One study45 verified that visuospatial
imagery could be used to signify intent in an online
EEG-based BCI. In another study46 based on effec-
tive spatial filtering algorithm in steady state visu-
ally evoked potentials (SSVEP)-based BCIs, a novel
canonical correlation analysis (CCA) method is pro-
posed in which spatial filters are estimated using
training data only, the robustness of CCA to noise
shows potential in practical applications. The char-
acteristics of the analytic common spatial patterns
(CSP) method have been detailed and investigated
in a previous study.47 The spatial model of this
method is composed of amplitude and phase com-
ponents that provide a more comprehensive under-
standing of basic activities and relatively good ana-
lytical performance in the SSVEP system but require
more electrodes to enrich the characteristic struc-
ture for decoding brain activity. The decoding algo-
rithm used in this study is more inclined to reduce
the weight of the uncorrelated feature of decod-
ing, which also provides the conditions for our sub-
sequent channel screening. Although the proposed
methods have exhibited good decoding performance,
some of them may require either a complex algo-
rithm or high experimental cost. By analyzing the
GVS-induced prediction errors, the method proposed
in this paper can significantly improve the decoding
accuracy using the common algorithm and will not
increase the load of experiment and decoding.

4.1. Direct intention decoding and
prediction error decoding

The results of the front/back MI task indicated
that the decoding performance of the GVS period
(containing prediction errors of all 64 channels)
was significantly superior to that of the cue period

(containing direction intention). The mean improve-
ment of decoding accuracy between the 0–0.5 s cue
and the 0–0.5 s GVS period was 28.56% (std = 2.60,
p < 0.01, two-sample t-test). The test decoding accu-
racy reached 77.83% to 78.86% (mean) during the
GVS period, and some specific participants 90.3%
(Participant 3), 91.7% (Participants 1, 10), 93.1%
(Participant 8) and 94.4% (Participant 3). Addition-
ally, the proposed method was also verified for the
left/right MI task, whereas a median decoding accu-
racy range of 86–87% was observed for each 100ms
during the GVS period (was similar to the results in
our previous study). As seen, prediction errors are a
good indirect means of decoding MI.

In this research, the SLR algorithm was used
to decode the EEGs directional intention data and
prediction errors. It has the advantages of being
parameter-free and robust to overfitting, but it also
contains problems such as over-pruning features48;
hence, using other algorithms may improve the
decoding performance. It was verified in our previ-
ous research20 using a support vector machine and
iterative SLR,48 and the results revealed that the
decoding performance was similar.

4.2. GVS and its artifacts in the
decoding

Validation of the GVS-induced degree of stimulation
was implemented in a previous study. According to
the statistical results of reported comprehensive sen-
sory levels (including vestibular perturbation, mus-
cle twitch and tactile sensation), GVS with a cur-
rent value of 0.8mA and below would not cause cur-
rent tingling (the tingling could be attenuated by
shaving the hair under the GVS electrodes and wet-
ting the skin with a swab). In this research, a maxi-
mum current of 0.4mA of insensible subliminal stim-
ulus was used on the participants. According to the
results of the GVS perception questionnaire, partic-
ipant reports were 1 (1 represents no feeling) for
the comprehensive GVS stimulus at the amplitude
of GVS (0.4mA) used in our experiment to ensure
that the stimulus was subliminal.

The satisfactory decoding performance verified
that the lower GVS intensity induced prediction
errors could acquire a reliable decoding performance
and ensure no usage burdens of the hypothetical
EEG-controlled wheelchair. As the stimulus intensity

11



Y. Shi et al.

in this study was lower than that of the previous
study, we could obtain a satisfactory decoding per-
formance, indicating that the lower current inten-
sity also induced subconscious stimuli very well. In a
follow-up study, we will investigate the lowest thresh-
old current value of subconscious stimulation.

GVS artifacts are another matter that is easy to
consider. According to our previous study20 to verify
whether GVS artifacts affect decoding, experiments
that were similar to the main experiment except for
the GVS location were conducted. GVS electrodes
were attached to the forehead and the back of the
neck not to correspond properly with the direction of
MI. Although all tasks were mismatched, two kinds
of trials were forcibly marked MATCH and the other
two were forcibly marked MISMATCH. The decod-
ing process was similar to that of the main experi-
ment. The results showed that the prediction error
decoding was significantly less than the case when
the GVS corresponded to the direction of MI, but
a strong correlation was observed between the EEG
channel weights chosen by the decoder in the ver-
ification experiment and those chosen in the main
experiment. These results comprehensively suggest
that GVS artifacts do not affect decoding.

4.3. Comparing the individual-selected
mode and common-selected mode
of WPS

In Fig. 5, the decoding performance of all channels
is shown in green. It can be seen from Fig. 5(a)
(front/back MI task) that the decoding perfor-
mance of the individual-selected mode/common-
selected mode was better than that of all channels
(p < 0.01, two-sample t-test; the decoding perfor-
mance across four selection types and 10 participants
were compared). Although the difference between
the common-selected mode and individual-selected
mode was not statistically significant (p > 0.05, two-
sample t-test), a slight improvement was observed. In
Fig. 5(b) (left/right MI task), after the individual-
selected mode/common-selected mode of WPS was
utilized, the performance was slightly improved (p <

0.05, except 0.2–0.3 s GVS period, two-sample t-
test), but there was also no significant statistical dif-
ference between the performance of the two modes
(p > 0.05, two-sample t-test). In summary, the pro-
posed WPS is an alternative method for reducing
redundant channels, and the WPS common-selected

mode can choose common and fewer channels to
obtain a decoding performance similar to that of the
individual-selected mode, which is also a desirable
option.

4.4. Comparing the two different
channel screening methods: WPS
and CCS

Although the data from all channels for decoding
could maximally ensure the use of all potentially use-
ful information, to a certain extent, it would also
reduce the decoding efficiency owing to the inclusion
of redundant information that was not conducive to
future practical conversion in some channels.

A channel screening method based on the count
values of the weight parameters (WPS) was proposed
in this research. The weight vectors of all the chan-
nels could be acquired after decoding. The nonzero
values of the weight parameter vector (across the 5
GVS data processing period and 20 rounds of test-
ing) were counted, and the count values of 64 chan-
nels were summed and sorted in descending order
for each participant separately (WPS individual-
selected mode). The top channels were considered
to be highly related to decoding, and they were
selected for further analysis. Satisfactory decoding
performance was achieved. Additionally, to explore
whether it was possible to select channels with “com-
monality” for all participants, the count values of 64
channels were comprehensively analyzed and ranked
across participants (WPS common-selected mode).
Likewise, the top common-selected channels were
analyzed for all participants. These channels also
showed satisfactory decoding results across partici-
pants, which proved the effectiveness and feasibility
of the WPS method.

In the CCS method used for comparison, Pearson
correlation analysis on EEG data between each pair
of channels was performed, and the correlation coef-
ficients between each channel and all other channels
were combined to obtain the comprehensive average
correlation coefficient vector of all 64 channels. Sim-
ilarly, the channels are sorted in descending order,
and highly correlated channels are selected.

As shown in Fig. 7, the decoding performance of
CCS and our proposed WPS was similar, and WPS
performed better in the channel screening of predic-
tion error decoding in the left/right MI task. WPS
and CCS did not significantly improve the decoding
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accuracy even though they undoubtedly reduced the
number of channels required for decoding because
the GVS-induced prediction errors greatly increased
the decoding rate. Therefore, further channel selec-
tion could only be improved to a limited extent. Fur-
thermore, the advantage of the CCS method is that
it can directly select the highly correlated channels
before data processing, while the WPS requires the
weight vector obtained after data processing to per-
form channel selection. In addition, the analysis of
the weight parameters was based on nonzero values;
therefore, it is necessary to explore the influence of
other fiducial values and optimize the entire selection
mechanism.

In general, during channel screening, the chan-
nels with considerable redundant information could
be eliminated, and other channels that are more rel-
evant to decoding could be selected. As shown, chan-
nel screening could improve or maintain decoding
performance while reducing the experimental load
and decoding cost.

4.5. Future plans

(1) Apply the proposed GVS-induced prediction
error decoding method to the EEG-controlled
wheelchair.

(2) Explore the current threshold of GVS-induced
subconscious stimulation.

(3) Utilize opposite directional anteroposterior stim-
ulation (another GVS pattern)35 to induce left
and right yaw, which is similar to the MI con-
tent of left and right rotation, and compare the
decoding performance of the prediction error
that was induced by LDS (left and right roll).

5. Conclusion

In this study, first, the decoding performance of the
galvanic vestibular stimulation (GVS) induced pre-
diction errors in the forward and backward direc-
tions was verified. Second, a weight parameter-based
channel screening (WPS) method was proposed and
verified. The experimental results suggest that the
prediction errors induced by the GVS can be effec-
tively decoded in the front/back motor imagery (MI)
task, and that the WPS method can be used to select
channels that are highly related to decoding, reduc-
ing redundant channels.
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