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Abstract— We address the problem of estimating the physical
burden of a human body. This translates to monitor and
estimate muscle tension and joint reaction forces of a mus-
culoskeletal model in real-time. The system should minimize
the discomfort generating by any sensors that needs to be fixed
on the user. Our system combines a 3D pose estimation from
vision and IMU sensors. We aim to minimize the number of
IMU fixed to the subject while compensating the remaining
lack of information with vision.

I. INTRODUCTION

Not all factories are automatized and humans will keep
working in this environment. One of the main reason is
that robots have still problems to adapt to the human
environment. In opposite, humans navigate easily in any
environment, however, several studies [1][2] have shown that
factory workers face muscular fatigue and physical health
difficulties on the long term. One of the focus of this
paper is low back (lumbar) pain which is one of the main
problem encountered by workers. The National Institute of
Occupational Safety and Health (NIOSH) has set a maximum
limit load on the inter-vertebral discs [3] which is often used
to qualify a back pain risk. Monitoring in real-time this
load is a complex operation, first because its computation
is not trivial and second because the used system must not
be cumbersome for the worker. The latter excludes intrusive
methods like [4] which provide a better precision results but
are impracticable. The former goes with estimations (and
thus imprecision), and with some time constraints since all
the computations need to be done in a short amount of
time. Although several off-line estimations exist [5][6], the
focus will be made on on-line computation while reducing
cumbersomeness.

In our previous work [6], we developed a framework
of visualizing the physical burden of human body during
movements by using the human musculoskeletal model [7].
The system can realize the real-time estimation of the several
information like joint angles, joint torques, muscle tensions,
and joint reaction forces [5]. The main objective is to support
factory workers by monitoring the risk of physical health
problems like low back pains. However, the system requires
a large amount of Inertial Measurement Unit (IMU) sensors
in order to obtain the accurate results, which reduces the
workers’ comfort during their tasks.
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Recently, Ohashi et al. [8] presented an algorithm based
on 4 camera that computes Human pose by using a spa-
tiotemporal filter. They could reach a precision of less than
3cm in average. While the precision is remarkable, the
system confines the subject in a space where all cameras
need to see him. IMU-based systems also exist, Marcard et
al. [9] suggest a method that merges a statistical body model
that includes anthropometric constraints with 6 IMU sensors.
Malleson et al. [10] proposed a method to get the 3D
human pose estimation from multiple cameras and from 6
to 13 IMUs in real-time. Methods as in [11] uses the deep
neural network to train both video images and the data of
IMU sensors. This approaches have a benefit of integrating
several inputs of data resources easily. The video cameras can
be introduced in a factory and will provide supplementary
information about human movement. On the other hand, they
are not always available during whole period of working.
Therefore, the pose estimation requires the flexibility of
changing the inputs of data resources according to situations.
In addition, the straightforward pose estimation often lacks
the human musculoskeletal feasibility like joint or muscle-
tendon constraints.

In this paper, we propose a new framework of mus-
culoskeletal estimation by utilizing the vision-based pose
estimation technique with deep learning [12]. Therefore, our
method is based on the motion optimization with the muscu-
loskeletal model to integrate the pose information obtained
from IMU sensors and vision images. The musculoskeletal
optimization can provide both the human feasibility and the
flexibility about data integration. Based on the fast robotics
kinematics computation [13], [14], [15], our method also
realize the real-time computation of the detailed human
musculoskeletal model [7], By introducing the vision-based
pose estimation, the number of IMU sensors can be reduced
while keeping the accuracy of musculoskeletal estimation.
Our method does not use the data of IMU sensors in the
training of the deep neural network, which also enables the
flexible change of the placement of IMU sensors according
to applications. This paper also show several experimental
validations about the accuracy by testing the several config-
urations of sensor placements.

II. METHOD

We propose a system that estimates musculoskeletal ac-
tivities from different set of sensors.
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Fig. 1: Process from sensors outputs to wire tension and joint reaction forces computation. It takes as input IMUs and an
image. XSens SDK provide IMUs’ orientation SERo and SkeletonNet provides joint positions mrRv , both are respectively
transform in world coordinates to get SE0 and mr0. Then, they are sent to the IK along model constraints qt. Output of
the IK q is derived and filtered to get q̇ and q̈. Finally, data are sent to the ID along wire constraints fmax to output the
wire tension f , the joint torque τj and the joint reaction force τc.

A. Overview

The flow of the system (see Fig. 1) works like this: i) get
sensors’ data, ii) Transform data into the musculoskeletal
model reference frame, iii) compute the Inverse Kinematics
(IK), and iv) feed the Inverse Dynamics (ID) with IK results.

We used two sets of sensors. For body orientation, 12 IMU
sensors1 are attached to wrists, shoulders, ankles, thighs,
head, torso and back, and for body position, a webcam2

visualizes the scene. We use the XSens provided SDK to
collect IMU outputs and SkeletonNet [12] system to get the
3D pose estimation.

SkeletonNet uses a single camera with depth and deep
learning methods to return joint position in the world frame.
The system uses a two-step regressor (see Fig. 2) that first
performs a bone rotation regression then a cross heatmap
regression. Note that the regressor used here is less complex
than the one presented in [12].

Although IMU sensors don’t need any model to work, the
3D pose estimator is based on a simplified human model
composed of 16 points that correspond to the ankles, knees,
hips edges, hip center, neck, shoulders, elbows, hands, lower
and upper head positions. This model is rather simple and
thus, is different from the one in the IK and ID. The
IK/ID model is composed of 14 joints, which correspond
to 47 degrees of freedom, 314 muscles, 6 tendons and 34
cartilages.

1XSens awinda series: https://www.xsens.com/products/
mtw-awinda/

2Logitech HD C615: https://www.logitech.com/en-us/
product/hd-webcam-c615

B. Musculoskeletal variables estimation

To synchronize XSens with the IK model, and SkeletonNet
with the IK model, we added an initialization step which
allow us to get correct transformations from measurement to
model. At the initialization step, the subject is asked to match
an upright configuration with arms along the body Fig. 4.
From this configuration we get both RoEi

S the rotation of the
i-th sensor from its current frame FS to its reference frame
FRo and mrkRv the k-th marker position from its reference
frame FRv to the marker position m. For XSens, we need
to know the rotation from the IMU reference frame and the
orientation of the arm it is attached to. Let’s have GEb the
Given rotation from the body orientation to the attached
sensor. This value is decided beforehand and is chosen so
that the IMU is easy to place on the body (like a flat surface).
Provided that the frame FG and the frame FS should match,
we compute the transformation

RoEi
0 = RoEi

S
GEi

b
bEi

0 (1)

with bEi
0 the orientation of body i in the world frame. We

also compute the offset from FG to FS with

SEi
G = SEi

Ro
RoEi

0
0Ei

G. (2)

In the same manner, we define

brim = bri0 − 0ERv
mriRv (3)

where 0ERv is the rotation form SkeletonNet reference frame
to the world frame and bri0 the position of body i in the world
frame.
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Fig. 2: SkeletonNet system that outputs joint positions using a two-step regressor.

Now that data are transformed into the same frame, we
can compute the IK:

min
q

ωq‖qi
t−qi‖2+ωr‖tri0−bri0‖2+ωE‖tEi

0−bEi
0‖2 (4)

with qi the generalized coordinates of angle i and qi
t its

target, bri0 the position of body b in the world frame and
tri0 its target, bEi

0 the orientation of body b in the world
frame and tEi

0 its target, ωk, k = {q, r, E} the weight. The
vision system provides markers as position markers relative
to the camera and IMU sensors provide body orientation.
When the subject performs a whole body rotation, the IK
has difficulties to rotate the root body at the same amount.
This is because the pelvis (e.g. the root body), has no parent
joint (it is freely attached to the world). To prevent this, we
add a special task which target a specific joint angle value
for all joints that link a body to the pelvis. We also add tasks
that acts as joint limit constraints. These values are set at the
initialization step and are not changed afterwards.

Last point is the synchronization of data. SkeletonNet
returns data every 16ms in average but varies from 14ms
up to 22ms for worst cases. XSens returns values every
16ms. We decided to have a loop that runs every 30ms. The
loop first get data from both SkeletonNet and XSens (using
protective methods like mutex to ensure data validity). Then
it computes the IK. The IK can either end because a limit of
time is reached or if converged. The derivative of IK’s result
are computed and filtered and then sent to the ID.

The optimization system to compute the inverse dynamics
is [5]: {

min
f ,τj ,τc

Zf (f) + Zj(f , τj) + Zc(f , τc)

s.t. -fmax ≤ f ≤ 0
(5)

with

Zf = fTWf f

Zk = (τk − JT
k f)

TWk(τk − JT
k f), k = j, c,

(6)

where f ∈ RNw is the wire tension, τj ∈ RNdof is the joint
torques, τc ∈ RNc is the joint reaction forces, Jj ∈ RNw×Ndof

is the Jacobian matrix that maps the joint torques to the wire
tension, Jc ∈ RNw×Nc is the Jacobian matrix that maps the
joint reaction forces to the wire tension, and Wf , Wj and
Wc are weighting matrix.

III. EXPERIMENT

We conducted experiments in order to compare the results
of estimated physical quantities among several configurations
of input data resources. Though our framework utilizes
IMUs and a single video camera, the optical motion capture
system (Motion Analysis Corp.) was also used in order to
be compared.

Our aim is not only to reduce the number of IMUs but also
to know which IMUs should be used. To compare different
IMU configuration, we decided to record a complete data-
set with all systems. As in Fig. 3, the subject wears a suit
with 34 motion capture markers and 12 IMUs. The vision
system is composed of one camera (see Fig. 4) set in front of
the subject. All data are streamed to the main computer that
record data altogether so that all are synchronized. Although
it is possible to compute wire tension and joint reaction
forces in a dynamic way, to simplify the comparison, we
decided to limit the computation of the ID at the static level,
leaving q̇ = 0 and q̈ = 0.

Fig. 3: Sensor positioning. The suit is composed of 34 motion
capture markers and 12 IMUs.

During the recording, the subject is asked to perform
several movement with different facings (facing the camera
or not). Some of the movement includes step, throw, lift,
crouch, sit, radio gymnastic, etc.

IV. RESULTS

Among all different motion we will show some results on
4 different level. Fig. 5a and 5b is about the joint angle (x-
axis) of the left shoulder during lifts. Fig. 6a and 6b compares
joint angle (y-axis) of the lumbar vertebra 5 during steps
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Fig. 4: Experiment initialization. Red circle shows motion
capture cameras, blue circle shows the camera used for the
vision, green for the recording.

and throws. Fig. 7a and 7b shows joint reaction force (y-
axis) of the lumbar vertebra 5 during crouches. And finally
Fig. 8a and 8b represents data of the rectus femoris muscle
during crouches and sit. For each motion (step, crouch, etc),
the subject performs it facing, siding and backing on to the
camera. All the computation process has been made in real-
time at a rate of 33Hz on a single computer (Intel Xeon Gold
6134 CPU @3.20 GHz and NVIDIA Quadro P200).

Here, we compare different set of IMU disposition on the
body along the vision system. In the following graph we
used Ext for 5 IMUs on chest, wrists and ankles, Int for 5
IMUs on chest, shoulders and thighs, Mix5 for 5 IMUs on
chest, wrists and thighs, and Mix6 the same as Mix5 with
one more IMU on the lumbar vertebra 1.

Fig. 5a shows that the vision system does not yet have
a precision good enough to run on its own, although it
sometimes can perform as good as a full IMU set, it can
not maintain the precision. This is due to the occlusion that
might happen and the difficulties for the estimator to get the
3D pose from dynamic motion that generates blurry images.
Fig. 5b compares different IMUs disposition. It turns out that
the best disposition in this case is the Int. It almost always
follow the MoCap value which is consider of the closest to
reality.

To prevent and alert potential back pain we need to focus
on lumbar forces. We now consider a joint belonging to
the trunk and that is used to compute these forces. In that
case, Fig. 6a, the vision system can not see how the person
is bending since it only return the hip and chest position.
Of course, having a sensor close to the lumbar vertebra (line
Mix6 in Fig. 6b1) provides a better solution than others.

We can see in Fig. 8a and 8b the impacts of these errors on
the lumbar vertebra joint reaction forces. Vision system can
not output any correct data while the XSens system can at
least provide intensity spikes. Mixing these data with IMUs

1The results are subject to small time delay that increase slightly through
time.

0

1

2

3

4

0 10 20 30

q 
(i

n 
ra

d)

Time (in s)

MoCap IMU
Vision

(a) X-axis of spherical joint of the left shoulder during lifts motion
for MoCap, IMU and vision methods alone.

0

1

2

3

4

0 10 20 30

q 
(i

n 
ra

d)

Time (in s)

MoCap Ext
Mix5 Mix6
Int

(b) X-axis of spherical joint of the left shoulder during lifts motion
for MoCap and several mix methods combining vision and IMUs.

Fig. 5: Joint angle visualization of the left shoulder during
lifts motion.

return Fig. 7b. It shows that adding a sixth IMU on the
lumbar vertebra also greatly increase the system accuracy in
term of joint reaction force. Note that the Ext provides better
results than other methods but it can not catch sudden spike
intensities.

Finally, we also looked at a muscle tension, the rectus
femoris, that links the pelvis to the femur Fig. 8a and 8b.
Again, regarding the subject posture, the vision system some-
times fails matching the 3D pose. Here, the Ext disposition
gives the worst results, it is also the only one that does not
have IMU on its thighs.

Globally using vision allows to reduce the number of
IMUs while keeping accuracy. For case of the spine, it is
necessary to attach several IMUs on it. Another solution
would be to have a better model for the vision. For dynamic
computation, it is better to have IMUs close to muscle
tension/joint reaction force you want to have results on.

V. CONCLUSION

We proposed a new framework of musculoskeletal estima-
tion by using IMUs and a single video camera. The motion
optimization integrates the input data resources with keeping
the accuracy of musculoskeletal estimation. By integrating
the vision-based pose estimation, we showed that the number
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(a) Y-axis of spherical joint of the lumbar vertebra 5 during steps
and throws motion for MoCap, IMU and vision methods alone.
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(b) Y-axis of spherical joint of the lumbar vertebra 5 during steps
and throws motion for MoCap and several mix methods combining
vision and IMUs.

Fig. 6: Joint angle visualization of the lumbar vertebra 5
during steps and throws motion.

of IMU sensors attached to a subject can be reduced. The
consistency between two time instances is also preserved
thanks to the IMUs sensors, while the only vision-based
pose estimation often loses the consistency. The method
can provide a flexible IMU disposition so that it can be
adjusted depending on which body segment we want to
analyze accurately; for example, IMUs on the trunk would
allow the accurate estimation of the joint reaction forces of
the lumber-vertebra. Therefore, our method is expected to be
used to monitor the back pain risk of a individual subject in
an actual working environment.

VI. FUTURE WORK

Here, we discuss a way to reduce the number of IMU
without loosing too much precision. A next job would be
to use multiple camera and to be robust with lost signals
(out-of-range IMU or occlusion).

The benefits of using vision is twofold, it is less cum-
bersome for the subject and, in the future, we can exploit
it to get the global pose and even detect contacts with the
environment. And to better exploit vision capabilities we do
need to update our vision system to have a more robust
system. For the sake of accuracy, we also want to include
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(a) Y-axis of joint reaction force of the lumbar vertebra 5 during
throws motion for MoCap, IMUs and vision methods alone.
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(b) Y-axis of joint reaction force of the lumbar vertebra 5 during
throws motion for MoCap and several mix methods combining
vision and IMUs.

Fig. 7: Joint reaction force of the lumbar vertebra 5 during
steps and throws motion.

dynamic consistency inside the optimization process so that
wire tension and joint reaction forces would return better
results.

In a further future, we would like to use the software on
site, to monitor workers. Doing so, we hope that we will be
able to reduced the amount of physical pains and improve
the workers’ work life.
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