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Abstract— An accurate and convenient method of measuring
human movements is essential for human motion analysis.
In recent days, several types of motion capture system be-
came available. Since each measurement technology has both
merits and demerits, their suitable choice depends on each
application or varying situations. Therefore, it is important
that the motion analysis software should flexibly select and
be connected to several measurement systems simultaneously
according to target applications. This paper presents a software
designed to manage different motion capture systems and to
perform the musculoskeletal analysis. It allow us not only to
get data from different systems but also give us the capability
of synchronizing/merging their data.

I. INTRODUCTION

With the rise of AI, human motion analysis has recorded
an increasing interest among researchers. Thanks to modern
technologies, it can be performed in real-time and crossed
many modern domains. It is used in sociology, where an
emotion can be extracted from a gait analysis [1] [2]. It also
became a first-hand tool for rehabilitation where tracking
human motion is vital to correct a patient movement [3].
Comparing to video only, it provides a more precise in-
sight in sport performances [4] like athletics [5] or swim-
ming [6]. And of course, it appears in several biomechanics
and biomedical analysis studies [7] [8]. The software that
provides all those information has become the keypoint
of all these analysis techniques. More recently, Ohashi et

al. [9] presented their new motion capture system using
multiple camera along a spatiotemporal filter. They compared
it with an optical system and presented the efficiency of their
system.

In the past year [10] we worked on a software to monitor
factory worker in order to detect risks of physical health by
utilizing the human musculoskeletal model [11]. Mainly, it
supported real-time force estimation using either a motion
capture system or an IMU-based system. From our motion
analysis software we can detect potential risk of lumbar
pain using IMU sensors. The main drawback of our system
is the number of sensors. To reduce this number we have
considered adding a vision-based system and coupled it with
IMUs [12]. During these experiments and the data analysis,
we suffered from the coupling and the synchronization of
the different systems.
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Futhermore, along our research in the human motion anal-
ysis, we had the need of using several very different motion
capture systems. Either to test new sensors or to compare
musculoskeletal computation results, we had an increased
need of managing that many motion capture systems. We
thus decided to have a more dedicated software to this
purpose. Ultimately, it provides the following:

1) It facilitates and factorizes communication between
multi-process. Therefore, it will be easier for future
developers to implement new systems or to review their
past implementation.

2) It allows the use of several sensor system at the same
time, thus giving the possibility to merge/combine
data together. This can be useful to increase accuracy
of acquired data or to make software synchronized
recording.

3) It gives a user (or a program) the capacity to directly
accept or stop the data flow in real-time. It means that
we can record data of several systems at once and
replay the record while excluding some data. Assuming
a failure system exists, this also could be used to
discard data of a whole system, while keeping the
others alive, if the data are detected to be corrupted
or not to exist (e.g. out-of-range of an IMU sensor,
occlusion of a camera, etc).

This paper is presenting our motion capture systems
management software. It is currently compiled as a form
of a plugin of the ergonomic assessment support software
platform Dhaiba [13]. The software is divided in three main
parts. i) communication with motion capture systems, ii)
communication with the musculoskeletal library, and iii) user
interface.

II. GENERAL SOFTWARE PROCESS

Our software has been designed so that it can use different
types of motion capture systems. To be more specific, we
currently have tested it with three kind of systems;

• Optical motion capture system (Motion Analysis)1,
• IMU-based system (XSens)2,
• Vision-based system (SkeletonNet) [14].

This allowed us to be able to record a human motion with all
motion capture systems at once. Such various set of systems
requires different kind of communication process. We then
designed a system manager (see Fig. 1) as a Dhaiba [13]

1Motion Analysis Corp: https://motionanalysis.com/
2XSens awinda series: https://www.xsens.com/products/

mtw-awinda/
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plugin that handles motion capture systems’ output, pack the
data and send them to the musculoskeletal library. Then the
musculoskeletal library computes the kinematics (general-
ized coordinates, velocity, acceleration and wire length) and
dynamics (wire force, joint reaction force, joint torque) and
send the results to the core of Dhaiba. As explained in our
previous paper [10], these information are then dispatched
across Dhaiba to render a 3D model, to plot, to record or to
stream them elsewhere. In parallel, Dhaiba’s user interface
is used to communicate directly with the user. It enables the
switch on/off a system, change global weights, etc. In short,
the software allows multi-combination of any of the motion
capture systems which means that it can combine two (or all)
of them. It also provides on-the-fly (de)activation of a system
as well as on-the-fly weight tuning. On-the-fly (de)activation
may seem useless at first sight, but it will come to be handy
when two motion capture systems run simultaneously and
one fails to provide data. Such failure can be caused for
several reasons like a system breakdown, an out-of-range
sensor, occlusions, etc.

Fig. 1. System manager general process. Data are first received from
external motion capture systems and then stored in a shared memory space.
Depending on whether or not the user has switch off a system, the system
manager fetches the data from the shared space and sends them to the
musculoskeletal library. The results are then sent to the Dhaiba core for
visualization, recording and streaming. State flow represents the flow of
user-defined parameter transmitted through Dhaiba’s user interface. Data
flow represents the flow of data relative to the musculoskeletal computation.

A. Receiving data from motion capture systems

Inter-process communication and inter-system communi-
cation can generally be narrowed down to two main possi-
bility: internet and shared memory. Dhaiba also provides a
third way that grants inter-plugin communication. A great
advantage of this system is that it can process any kind of
data but has two main drawback. One is to implement a
dedicated Dhaiba plugin in order to connect to it. Formally,
it is mandatory to write a plugin that handles a sensor system
output and re-inject the data to the communication system.
This system will handle data transmission between plugins
and can eventually record them. Another problem is that
the current system keeps all information during the whole
experiment. At the end, it then dumps all the information into
a file. It means that for very long experiment, the computer
might use virtual memory or worst, reach an out-of-memory
state.

We also have a streaming system to receive data from an
internet connection which is the main output form of the op-
tical motion capture system. This system is essential for long
distance communication. Depending on the communication
mode (TCP/UDP) it may get slower or loose packets. For
local use, these considerations are off context.

Lastly we use a shared memory system that provides data
sharing between system processes. This is fast, reliable and
it can shared any type of data. Although, it requires the
processes to run under the same machine.

In all of the three communication protocol, data transmis-
sion can be parallelized. So, more than one sensor system can
use the same communication protocol at the same time. In
our tests, we use a TCP communication along the motion
capture system, the Dhaiba protocol along XSens and a
shared memory protocol for the vision system. Reasons for
this choice are quite simple: i) The motion capture already
provides a network connection, ii) we already have an XSens
plugin for Dhaiba, and ii) our vision-based system is working
under Matlab which provides a good opportunity to use inter-
process shared memory.

All data are temporary stored in a dedicated shared space
that is refresh at the sensor system frequency. We then need
to fetch and manage these data.

B. Data management

We mean by data management the way that data are
merged and send to the musculoskeletal library. One of the
main problem is to synchronize data that come from various
sources. First, note that synchronizing different systems is
not trivial and, at the hardware level, it is just impossible
to synchronize. Thus, the synchronization is done at the
software level.

Since each motion capture system has its own clock and
frequency, and hardware synchronization is not an option,
we make a time approximation of the data. To ensure that
data are the closest in time, we use for each sensor system
a shared space that is updated as soon as new data are
available. Then, at a given time, we loop over all shared
spaces to recover the latest data. Although, each latest data
are fetched, it is done recursively so timing may vary a
bit between the first fetched data and last one. One way
to overcome this problem would be to use multiple threads
to fetch all data at once. Even though we fetch data at
the (almost) same time, each sensor system having its
specific frequency, the shared space won’t be updated at
the same rate. Moreover, highly dynamic motion increases
data coherency loss between motion capture systems. If the
frequency is high enough, the time difference between each
data fetch is then small and we can neglect it. If not, one
could try to implement a prediction algorithm based on
previous data. Such estimator is not trivial to build and
requires to solve two major problems. One is to have clock
synchronization between all motion capture systems. This
could be made at the software level by sliding each system
clocks to a software reference clock. One is to compute the
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prediction itself where the difficulty resides in keeping some
kinematic consistency with the model.

As a first version, our current system does not yet im-
plement the multi-threading concepts and prediction. We
then make the assumption that the frequency of each sensor
system is high enough so that time difference between
motion capture systems can be neglected. Once data are
fetched, we may combine them. To understand how data
are merged, it is necessary to understand how they act on
the Inverse Kinematics (IK). Currently, our IK looks like the
following:

min
q,l

∑

τ

Wτ‖S(τ target − f(q))‖2 +Wl‖ld − l‖2 (1)

where Wτ and Wl are user-defined weights that should
depend on the system reliability, ld is a vector of desired wire
length or the vector of wire length at rest, l is the vector of
current wire length, q is the generalized coordinate vector, S
is a selection matrix, τ target is the target of a task τ , f(q)
is a non-linear function that can take the following forms:

• f(q) = q,
• f(q) = pr0(q),
• f(q) = pE0(q),
• f(q) = pX0(q),

where pr0 is the absolute position of a point p, pE0 is the
absolute orientation of a point p and pX0 is the absolute
transformation (position + orientation) of a point p. Finally,
p is chosen so that it corresponds to the targeted point
which means that the IK solution converge toward p =
τ target. These values are generally computed with a forward
kinematics algorithm.

Tasks’ target τ target generally correspond to sensors’
outputs, so a way to combine data is throughout the IK itself.
Each system provides a set of tasks that should be compatible
together (considering that data are received at the same
time). Often, sensors measure position and/or orientation of
a human body and thus provide directly a task target. So, one
last thing for the IK to work properly is to ensure cohesion
between data of each motion capture system. In our case,
vision and optical systems provide absolute position targets
and IMU system, orientation targets. Ensuring cohesion of
data between system requires that data are measured in
the same reference frame. Since each system has its own
reference frame, we decided to transform all data in our
model reference frame which we will call world frame.
In [12], we have explained how these transformations are
done to combine IMU and vision. However, it does not deal
with the optical system. We first have added the possibility
to merge the optical system with IMU in the same manner
of vision and IMU. Since IMU does not require an absolute
position of the reference frame, we only needed to deal with
matching the reference frame orientation. For optical and
vision combination is a bit more tricky. Indeed, both deal
with absolute position of the markers and both have their own
reference frame. So, to resolve this problem, we have added

an translation offset of vision data to match the reference
frame of the optical system. This is simply done with

MrV = Mr0 − V r0 (2)

where Mr0 is the translation from the world (the model)
frame to the optical system reference frame, V r0 is the
translation from the world frame to the vision reference
frame, and MrV is the transformation to apply to each vision
data. For the orientation part, data are transform directly in
the world frame. Note that here, we have decided that the
world frame origin is placed at the optical system reference
frame, this is an arbitrary choice and does not change any
results.

Finally, we need to give access to some IK intrinsic
variables (like weights) to the user. This is done through
Dhaiba’s user interface.

C. User interface

The software provides three distinct states. i) Online, ii)
Record, and iii) Load. The online state corresponds to the
real-time computation of musculoskeletal parameters along
with all the Dhaiba tools such as plot and 3D visualization.
By default, the record state switches all system sensors
and deactivate musculoskeletal computation to minimize the
impact of computational tools over recording. Nevertheless,
it is still possible to have the Inverse Kinematics (IK) and
Inverse Dynamics (ID) running so 3D visualization and plots
can output data. It records synchronized data in a CSV file.
Lastly, the load state allows to replay data saved in a CSV
file. In all states, the user can enable/disable a sensor system,
tune weight, etc. An example of the settings is given in Fig. 2.
This relatively simple GUI provides some tweaking tools
such as system-wide weight and filter weight. It allows easy
(de)activation of system for the IK. In the given case, XSens
(IMU sensors) and Matlab (vision-based sensor) are switched
on while Cortex (optical system) is off. The loaded file is
called ’fulltrial’ which is a synchronized recording of all
three systems during an experiment. From this interface, it is
clear that the user can make any combination of any system.
Finally, in this example, the output is redirected to another
plugin and not sent to an armature.

Fig. 2. Different available settings for the load state. In order: 1. Armature
relative information for direct display. 2. (De)activation of each system
with their respective system-wide weight. 3. Filter for absolute position
estimation for vision-based system. 4. File of data to load (Only to load
previously recorded file).
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III. IMPLEMENTATION DESIGN

We currently manage 3 different systems, it could also be
possible to have 2 systems of the same kind (e.g. 2 vision
systems). So we decided to design our library so it may
handle several system and adding/removing a whole system
can be simplified. Fig. 3 represents how sensor system are
managed by the program.
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Fig. 3. Simplified model of the sensor system interface. Note that methods’
arguments have not been written. A system marker shall inherit from the
marker interface that provides system-dependent mandatory variables. A
system shall inherit from the system interface which ensure that mandatory
functions and variables exists for each system.

Each sensor system should embed information in a form
of a marker. Here, we define a marker as a point on a
body that represent a given sensor (e.g. an IMU, a motion
capture marker,...). For vision-like system, this marker is
an output of the underlying deep learning system. Markers
have predefined sensor relative information such as the body
it is attached to and its relative position/orientation. After
initialization, it also gets attributed a unique index that
corresponds to its task in the IK. This index stay unchanged
as long as no task is remove from the IK otherwise it needs to
be updated. A system might also embed specific information
relative to its sensors. As an example, vision-based system
uses its own simplified model, thus, extra information is
added to map results of the vision-based model to the IK
model. In the IMU case, we have added correction matrix
to improve imprecision raising from the difference between
IMU placement and predefined orientation.

Then, we have the system interface that will give a basis
to all system. First of all, each system comes along with
an xml file that is load by loadMarkerFile(). This file is
used to set the predefine values and fill its corresponding
system marker as seen above. The initialize() method will
provide a task inside the IK for each sensor and associate
a sensor to a task thus filling the last marker interface.
fetchData() pulls data from the shared space. This must be
done in thread-safe way, and finally sendToIK() update the
IK’s tasks. This is the bare bone of the SystemInterface

class but it also embedded a system-wide weight factor,
activation/deactivation functions, etc. Also, a sensor system
might have system-specific attributes/methods.

Finally, on top of that, a system manager class is added
and is given an handle to each system so it can perform

a recursive call to each base functions. It can also give
access to handle if a system-specific function is needed.
Although, a c++ programmer could generated this using dy-
namic polymorphism and inheritance, since a sensor system
is not a runtime object but is created once and for all, we
use static polymorphism and Curiously Recurring Template
Pattern (CRTP) for better performance. In the case of multi-
threading, the manager does not recursively call each base
functions but rather recursively dispatch each base function
to a thread. The manager class is governed by a user-defined
frequency which tells the manager class at what rate it shall
fetch data and update the IK.

IV. EXPERIMENTS

This section presents the examples of experimental results
by using the developed software. We conducted the mea-
surement of a human subject with the three measurement
systems: the optical motion capture system, the IMU sensors,
and a single RGB video camera. The experimental setup can
be seen in Fig. 4

Fig. 4. Experimental setup. Red circles are cameras of the optical system
and yellow circles are its markers. Blue circles are IMU sensors. Green
circle is the camera used for vision.

Though our software can provide the online analysis, this
section shows the results of offline musculoskeletal analysis
against the same recorded motion in order to be compared.
A more detailed result about the combination of the IMU
sensors and a video camera can be found in [12]; the number
of attached IMU sensors should be reduced for practical
usage, which could be archived by the combination with a
vision system.

The muscle tension estimation was made on the right arm
biceps brachii caput breve which is mainly responsible for
the flexion of the forearm in the elbow joint. It has been
computed from a gymnastic motion Fig. 5 and the results
are presented in Fig. 6.

As can be seen from this figure, the developed software
could record the data streamed from several motion system
at the same time during a unique sequence of motion. From
the recorded data, the software could compute the inverse
dynamics of muscle tensions from the different types of data
resource (i.e, the position of optical markers, the orientation
of IMU sensors, video images). The software could also
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Fig. 5. Snapshots of the experiments. Motion on top is done 3 times and
at the bottom, one time with the right arm and one time with the left arm.

Fig. 6. Plot of the right arm biceps brachii caput breve force of different
sensor system combination for the same motion. Data have been recorded
during a unique sequence and replay with different settings such as optical,
IMU and Vision systems, and their combinations. To not overload the figure
we have omitted Vision and IMU alone results. Instead, optical system alone
and all 4 possible combinations have been computed.

perform the musculoskeletal analysis not only from single
data resource but also their combinations, which indicates
the applicability of the software toward various applications.

V. CONCLUSION AND FUTURE WORK

We have presented a new software to perform muscu-
loskeletal analysis while integrating the different data re-
sources of several motion capture systems. To realize the
integration, the software provides components about commu-
nication, data management and user interface. We also made
an experiment where we simultaneously recorded the data
from IMUs, from optical motion capture and from vision,
by using the software. We computed the muscle tension by
using the data obtained from the three measurement systems.
The software could perform the estimation from the different
data resources as well as their combination, and is expected
to be used for various types of applications.

This paper mainly focuses on the integration and man-
agement of different motion capture. On the other hand, the
force sensors (like force plates, pressure sensors, EMG, ...)
also provide important information about human dynamic

analysis. In our future work, it will be investigated to manage
different force sensors and to develop the inverse dynamics
that handles different types of force information.
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