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Abstract— Failure detection and correction is essential in
robust systems. In robotics, failure detection has focused on
traditional parts assembly, tool breakage, and threaded fastener
assembly. However, not much work has focused on classifying
failure into various sub-modes. This is an important step
in order to provide accurate failure recovery. Our work
implemented a contextualized failure characterization scheme
for cantilever snap assemblies. A rule based approach was
used through which assemblies whose trajectories deviated
from the normal approach trajectory were identified in the
beginning of the task. We not only identified failure but also
the failure type that occurred. The method identified exemplars
that characterized salient features for specific deviations from
the initial approach trajectory in the assembly task. A contact-
state map was generated through sampling the contact space
during training. Contextualized statistical measures were used
to classify trials during the testing phase. Our work classified
failure deviations with 88% accuracy. According to the statistic
measures used, varying success was experienced in correlating
failure deviation modes. Each case was analyzed using gaussian
statistics and one and two standard deviations. Cases with
trajectory deviations in one direction had {75%, 92%} accu-
racy, cases with deviations in two directions had {61%, 94%}
accuracy, and cases with deviations in three directions had
{69%, 100%} accuracy. Our work provides further insights into
the early failure characterization of complex geometrical parts
which will serve to implement failure recovery techniques in
the face of significant and unexpected errors.

I. INTRODUCTION

Failure detection and correction are essential to produce
flexible, adaptable, efficient and robust autonomous robotic
systems. Failure detection early on focused on detecting
abrupt changes [14]. Numerous filters and rule-based meth-
ods emerged. Overtime, statistical and machine learning
methods were implemented to detect failure and failure
modes [10], [11], [4]. Failure detection methods can be
divided into model or model-free approaches. The former use
theoretical system designs to identify failure, while the latter
accumulate experimental data for both outcomes. Model-free
approaches can be computationally expensive and damaging
to robot equipment given that failure experiments need to
be carried out. Recent work has focused on implementing a
technique that requires relatively few trials to learn failure
classification [10].

In robotics, failure detection has traditionally focused in
parts assembly [5], tool breakage [3], [6], and threaded
fastener assembly [1]. Recent work has used support vec-
tor machines and principal component analysis to classify

successful or failed assemblies upon completion [10], [3]. A
similar work tried to continuously detect the task and identify
early failure by combining relevance vector machines with
a Markov chain model [11]. Less work has focused on
the harder problem of failure mode characterization. In this
work, we define failure characterization (FC) as, not only
detecting failure, but what kind of failure (e.g. failure mode)
occurred. In [4], a Bayesian nonparametric time series was
used to monitor fault detection. While the work stated that
it could identify failure mode detection the authors did not
execute such experiments.

Our work will perform FC on cantilever snap parts as they
are amply used but also have complex geometries and elastic
snaps that lead to intricate force signatures. The complexity
is such that assembly planning methods like contact-state
graphs [9] have yet to be used in this context. In general,
failure characterization schemes have been built on top of
state estimation techniques. Some recent work has dealt
with state estimation of intricate assemblies. In [12], a non-
parametric system is used to encode FT signatures based
on relative-change according to an increasingly abstract
taxonomy and Bayesian methods to reason about the task.
In [4], a sticky-Dirichlet Process Hidden Markov Model
performed continuous estimation of humanlabeled nominal
executions and identified whenever the trajectory deviated
from the routine trajectory. With respect to FC, [13] studied
cases in which the trajectory of an assembly task deviated
from a nominal trajectory in 1 of 3 directions. The study
focused on the initial approach trajectory that leads to the
first contact between mating parts. They correlated salient
FT features with trajectory deviations in a single direction
(from here on referred to as “deviations” and should not
be confused with statistical standard deviations) and studied
if features for individual deviations could be identified when
multiple deviations were linearly superposed simultaneously.
They also performed failure-mode correlation. That is, after
classifying failure modes in multiple directions, they corre-
lated the data to validate if those deviations actually took
place. That work performed FC with modest success. The
accuracy of failure and failure modes detection diminished
with increased number of deviation directions.

Our current work, seeks to build a contact-state map
to identify failure modes. Such a map is generated by
populating sample points with FC exemplars. The sample
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points represent contact points when deviations in 1-3 di-
rections are inserted in the nominal approach trajectory. The
exemplars in this work, as in [13] hold salient force-moment
data. However, we do not wish to linearly superpose the
data, instead we try to group exemplars based on Gaussian
properties of mean and standard deviation. For this reason,
our exemplars first consider deviation directions but then
they also consider the number of simultaneous deviations
that are enacted (1-3 are analyzed) as this fact significantly
changes the possible groupings of exemplars by statistical
parameters. Finally, within a limited contact area we sample
the space and characterize failure modes through further
statistical analysis of the exemplars.

Our FC method extracts key FT information through the
Relative Change-Based Hierarchical Taxonomy (RCBHT)
[12] to produce exemplars. The RCBHT yields four abstrac-
tion levels of increasing intuitiveness and one additional layer
for state reasoning. Each layer consists of labels and quan-
titative data from which salient features are detected. After
system exemplars were identified, off-line training was used
to average exemplar values and upper and lower boundaries
at different contact points with different deviations. These
measures helped identify: (i) failure detection and (ii) failure
mode identification. Furthermore, we conducted a correlation
study to verify the reliability of the data.

Training consisted of 114 trials in which deviations were
applied in three separate directions and combinations of
these three in world coordinates. The testing phase used 36
new trials. Testing results showed that our scheme detected
failure with 88% accuracy and failure modes with an average
of 76% accuracy. Depending on the number of standard
deviations chosen for boundary values, failure modes could
be correlated between 68% of the time to 95% of the time.
We discovered that the contextual identification of exemplars
based on constrained trajectory motion can help to identify
failure and failure modes, although with some limitations.
Our work provides a simple and flexible approach for failure
characterization of cantilever snap assemblies.

The rest of the paper is organized as follows: the exper-
imental set-up is presented in Sec. II, the RCBHT system
under which FC is implemented is described in Sec. III, the
FC actual scheme is presented in Sec. IV, Experiments and
Results are detailed in Sec. V, the discussion is present in
Sec. VI, and the conclusion to close in Sec. VII.

II. EXPERIMENTAL SETUP

NX-HIRO, a 6 DoF dual-arm anthropomorph robot was
simulated in the OpenHRP 3.0 environment [7]. Male and
female 4-snap cantilever camera parts were used. The male
part was rigidly mounted on the robot’s wrist, while the
female snap was rigidly fixed to the ground as in Fig.
I. For this work we consider the Pivot Approach strategy
[12] that, for a successful assembly, completes four states:
the Approach, Rotation, Insertion, and Mating states. The
Approach state drives the male part along a smooth trajectory
until it contacts the female part at an angle at the docking

pivot as in Fig. I. Our FC scheme inserts deviations from
the nominal trajectory in the Approach state to generate
and analyze failure signals early in the assembly task. FC
analysis starts during the Approach state and may continue
into the Rotation state. The small deviations are characteristic
of what a human adult would make when trying to enact a
snap assembly but narrowly misses the mark.

III. THE RELATIVE CHANGE-BASED HIERARCHICAL
TAXONOMY

The RCBHT yields state representations by hierarchi-
cally abstracting snap assembly force-torque (FT) data in
increasingly intuitive ways. The latter is composed of four
increasingly abstract layers that encode relative-change in
the task’s force signatures and one monitoring reasoning
layer. The system’s taxonomy is built on the premise that
relative-change patterns can be classified through a small
set of categoric labels and aided by contextual information.
The RCBHT analyzes FT signatures from all force axes
independently and contextualizes the state according to au-
tomata state participation. Previously, the RCBHT’s monitor
only discerned a task’s success or failure at the end of the
task, but for FC it has been extended to monitor from the
Approach state. In this section, the RCBHT first two layers
are explained, while the last two are omitted since they are
not used or needed in this work (for more details on the
taxonomy see [12]). The FC method introduced in Sec. IV
runs as a state-monitor on top of the RCBHT.

A. Primitive Layer

The first layer, the Primitives, partitions FT data into
linear data segments and classifies them according to gradient
magnitude. Linear regression along with a correlation mea-
sure are used to segment data when a minimum correlation
threshold is flagged. Gradient classification has three main
subgroups: positive, negative, and constant gradients. Both
the positive and negative sets are subdivided into 4 ranges:
small, medium, large, and very large. Contact phenomena
is characterized by abrupt changes in force signals almost
approximating an (positive or negative) impulse, it is such
impulses that are characteristic of snap motions. Negative
and positive gradient ranges are labelled as:“sneg, mneg,
bneg, nimp” and “spos, mpos, bpos, and pimp” respectively.
Constant gradients are those whose change is trivial. They
are classified as such if their gradient magnitude is lower than
the absolute value of a calibrated threshold and are labeled
as “const”. In order to generalize the parameter thresholds
for this layer, an optimization routine devised in [12] uses
contextual information derived from the assembly strategy to
determine where the largest gradients and the near-constant
gradients are located according to task state and axis. For
details see [12]. Filtering is executed for this and every layer
of the taxonomy. Filtering merges extracted behaviors based
on three different criteria: (i) a time-duration context, (ii)
repeated behaviors, and an (iii) amplitude value context. The
time-duration context seeks to eliminate behaviors whose du-
ration is so small that they become negligible. The repeated
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Fig. 1. The NX-HIRO dual-armed humanoid robot assembles male-female
snap parts.
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Fig. 2. Examples of Deviations in Nominal Approach Trajectories in the
x-dir, y-dir, Yaw-dir, and xyYaw-dir.

behavior principles merge repeated behaviors and clean noisy
signals. The amplitude criteria examines adjacent signals
magnitudes. If one is much larger than the other (except for
impulse signals), the lower amplitude signal is merged with
the larger one. Each layer runs a filtering cycle 2-3 times
to reduce the label number to a most representative number.
There are other details concerning filtering which are not
necessary for this discussion but can be found in [12].

B. Composites Layer

The next layer analyzes ordered-pair Primitives sequences
to create “motion compositions” (MC’s). By studying pat-
terns in the ordered-pairs, seven sets of higher-level ab-
stractions are extracted. These actions represent force-torque
behaviors labeled as: adjustments, ‘a’, contacts ‘c’, increases,
‘i’, decreases, ‘d’, constants, ‘k’, and unstable motions, ‘u’.
Adjustments are motions where a positive/negative gradient
is followed by a negative/positive gradient respectively. They
represent a small rattle motion between male and female
snap parts. Additionally, if two positive or negative gradients
succeed each other, it points to actions in which the force
or torque is increasing or decreasing respectively. With
respect to our previous statements, we treat impulse gradients
(pimp, or nimp) independently. We acknowledge that when a
positive impulse is followed by a negative one or vice-versa
a contact action between male and female parts is likely.
Additionally, if two positive or negative impulses succeed
each other, it may lead to unstable behavior. Besides the
assigned label, each MC possess quantitative data such as:
average magnitude values, maximum signal values, average
amplitude values, and starting and ending times for each of
the primitives

Filtering is executed after the motion compositions cre-
ation. Filtering merges motion compositions based on three
different criteria: (i) a time-duration context, (ii) repeated

MCs, and an (iii) amplitude value context. Filtering seeks
to maintain meaningful representations while filtering noisy
compositions.

The MC layer is key to the FC exemplar identification.
The MC’s quantitative data is general enough that we do not
tamper with noisy signal dynamics, but not abstract enough
that we lose salient features’ detail. All of our exemplars
consist of either key motion composition average magnitudes
or average amplitude values.

IV. FAILURE CHARACTERIZATION SCHEME

Our FC method is a novel model-free rule based approach
that uses the RCBHT. The latter, facilitates the identification
of failure modes by look at the distortion of MCs in specific
FT axes, within a given automata state. In particular, we can
compute MC average magnitudes or amplitudes and dura-
tions, all of which encode characteristics of either successful
or failed tasks. Before presenting the FC scheme, a set of
fundamental principles for FC is presented.

A. Failure Characterization Requirements

FC systems consist of at least three components [8]:
(a) General Failure Identification: the system identifies if
failure is present. The system should be robust against
falsepositive situations.
(b) Failure Mode Identification: the system also identifies
what aspect of the task failed.
(c) Diagnostics: the system provides quantitative data (when,
how much?) about failure.
This information can then be used by a failure recovery mode
and attempt to return the task’s state to normal operation.

B. Failure Sources

Current state-of-the-art robots still introduce error into
tasks. Manipulator failure sources include: upper bounds on
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payloads and speeds; absolute position accuracy (depends on
temperature, load, speed, and workspace position), and re-
peatability error. Similarly, mechanical parts introduce error
due to differences in design within the permitted tolerance
range and uncertainty in pose of both robot effectors and
parts [2].

C. Failure Scheme

The FC Scheme is divided into three stages: (i) exemplar
identification; (ii) contact-state map and statistical parameter
generation, and (iii) testing. In this work, six exemplars
fj ∈ F were designed to discern up to three simultaneous
deviations δi ∈ D. Mean x̄ and standard deviations σ of
FT data are encoded as exemplars are derived to identify
success or failure modes. During training, a contact-state
map is generated by pairing trajectory deviations

∏m
i=1 Δi

with exemplar values
∏n

j=1 Fj , such that there is a cor-
respondence between possible deviation combinations and
corresponding exemplars as stipulated in Fig. 3 leading to :∏m

i=1 Δi ⇔
∏n

j=1 Fj . Deviations are limited (for simplifica-
tion) up to three directions. They can be enacted individually
or simultaneously. By testing individual deviations first and
simultaneous deviations later, a map of contact points can be
generated in which a set of deviations that lead to contact
points can be paired with a corresponding set of exemplars.
In effect, we are sampling a contact-space. In this way, failure
direction and magnitude can be indirectly represented. Both
of these data are important to effect precise failure correction
methods to the assembly task.

1) Exemplar Identification: Exemplar identification as-
sumes a constrained assembly that allows to generate similar-
patterned signals across trials and facilitate encoding. For the
case of early FC, we introduce limited trajectory deviations
in the Approach state of the assembly task in different
directions and magnitudes. Deviations are introduced in the:
x-direction (xDir), y-direction (yDir), and rotation about the
z-direction (YawDir): 〈+x,±y and ± φ〉. Noise is inserted
within limited bounds and in 1-, 2-, or 3-simultaneous
directions. Compared to success signals, failure signals reveal
clear differences across FT signal patterns. Selected exem-
plars can be used to discern two aspects of the failed assem-
bly: (i) the present deviation magnitude, and (ii) whether
the deviations were introduced in 1-, 2-, or 3-simultaneous
directions.

Exemplars were identified empirically. The RCBHT’s MC
level was determined to have the best granularity to capture
change in salient features. Likewise, a number of criteria
was used to identify the presence of salient features: (i) a
specific force axis; (ii) a specific PA automata state; (iii) a
limited automata state duration, and (iv) the analysis of the
MC amplitude or magnitude value within the FT axis-state-
duration criteria. Furthermore, we contextualize exemplars
by detecting if a narrow band of average FT values can char-
acterize deviations in 1-, 2-, or 3- directions. That is, consider
the deviation & exemplar pair: (xDir,MyR). We analyze if,
when xDir is mixed with yDir or YawDir, whether or not,
the exemplar’s mean average value plus up to two standard

Dir Dev's
Force
Axis

PA State
Parameter
(Avg Val)

State
Duration

Notation

xDir 1:3 My Rotation Magnitude 50% MyR
1 Mz Rotation Amplitude 100% MzR1
2:3 " " " " MzR23
1 Fx Approach Magnitude 33% FxA1
2 " " " " FxA2
3 " " " " FxA3

Roll

yDir

Fig. 3. Exemplar Identification: Six exemplars were identified for trajectory
deviations in three directions. MyR identifies xDir deviations (works for 1 to
3 simultaneous deviations); MzR1 and MzR23 identifies yDir (the former
for cases when 1 deviation is enacted, the latter for 2 to 3 simultaneous
deviations); FxA identifies YawDir deviations (three exemplars used to
identify deviation the three different deviation sub-groups). Note that ”
represents a repetition of the same data on the row above.

deviations can capture all FT data or not. If yes, one exemplar
is used, if not, we analyze if we need 2 or 3 exemplars. The
process repeats by considering only 2 deviations. If it works
we assign the exemplar to that deviation pair, if not we try
the next pair, if not 3 exemplars must be used for the three
deviations. This categorization, is referred to as “Deviation
sub-groups”. The contextualization is more powerful as it
identifies the minimum exemplar number that represents
salient features in simultaneously enacted deviations. The
results are shown in Fig. 3. Exemplars use local wrist-
coordinates. A basic explanation is presented below. xDir
deviations are characterized by the vertical contact that the
male snap makes with the female snap (z-axis in local
coordinates). My signatures strongly correlate Fz in the
first half of the Rotation state. Thus, one can identify xDir
deviations by averaging the MC’s magnitude values that
occur in the first half of the Rotation State of the My axis.

yDir deviations have noisy Fy signals are that are hard to
interpret, however, a moment about z can easily be discerned
as some rotation about xW occurs when the male and female
parts are in contact. One can identify yDir deviations by
taking the MC’s maximum amplitude signal that occur in
the Rotation State of the Fz axis.

YawDir deviations generate force signals in the Fx axis
during the Approach stage as opposed to having a near-zero
reading when there is no rotation. In particular, the change
in force value is apparent towards then end of the Approach
stage. One can identify YawDir deviation by averaging the
MC’s magnitude values that occur in the last third of the
Approach state in the Fx axis as shown in Fig. 4.

2) Training: After exemplars are identified the training
phase computes a couple of values for both successful and
unsuccessful tasks. (i) The Mean Averaged Value: it is
the mean value of all training example MC magnitudes or
maximum MC amplitudes; and (ii) The Upper and Lower
Boundaries: created by taking the Mean Averaged value plus
or minus 1 or 2 standard deviations respectively.. In effect
one has these 3 statistical measures for our six exemplars:
MyR, MzR1, MzR23, FzA1, FzA2, and FzA3. By collecting
statistical measures for these exemplars, we will be more
effective in classifying common values for failure assemblies
that have deviations in the xDir, and/or, the yDir, and or the
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YawDir. In essence, a type of map is being formulated in
which regions with similar values can be classified.

During the training phase, 114 trials were run. Training
samples show with red dots in Fig. 5. In the x- and y-
directions, deviations range from ±0.0075m to ±0.0105m.
In the Yaw direction, rotations range from ±0.08725rad to
± 0.5235rad. Seven trials were run in (+xDir, +yDir, -yDir)
respectively. Six were run in (+Yaw, -Yaw) respectively. Nine
were run in (+xDir,+yDir) and (+xDir,-yDir) respectively.
Eighteen were run in (+xDir, ±Yaw) and (±yDir, +Yaw)
directions with equally spaced intervals. Twenty-seven were
run in the (+xDir, +yDir, +Yaw) directions with equally
spaced intervals. For success cases, 6 trials were used.
During training, three statistical parameters were computed
for exemplar’s fj across trials: (i) the Mean Average Value
x̄, (ii) the Upper Boundary Value (x̄max), and (iii) the
Lower Boundary Value (x̄min). Note that the exemplar for
an individual trial already represents an averaged quantity,
either of magnitudes or amplitudes, but the Mean Average
Value is of exemplars over trials. The Mean Average value
computation and the standard deviation for a set of N values
are shown in Eqtn. 1.

x̄ =
1
N

N∑
i=1

xi σ =

√√√√ 1
N

N∑
i=1

(xi − x̄)2. (1)

Additionally, if Π is defined as the set of all exemplars in
the training phase, then the upper boundary xmax for all
exemplar averages x̄ and the lower boundary xmin is defined
according to x̄max = x̄ + kσ and x̄min = x̄− kσ, where
k has a constant value of 1 or 2.

3) Testing: During testing, 36 trials were run and shown
in blue dots in Fig. 5. Four trials were run in (+xDir, ±yDir,
±YawDir) respectively. Six were run in (±xDir,±yDir) and

FAILURE

Exemplar: FzA1
Average of MC Magnitudes 

φ−dev −μ=2.41

-33%

−σ=0.02
+σ=0.02

Fig. 4. Failed assembly introduced a Yaw deviation early in the trajectory.
The figures shows a section of the Approach stage in the Fx axis. The red
line segments represent primitives. Paired primitives form MCs represented
here by blue arrows. Brown arrows in the failure case represent MC
amplitudes. To compute the exemplar for a Yaw Deviation as a single
deviation we look at the last 33% of the Approach stage where there is
a large distortion in signals between the success and failure case. The mean
and standard deviations of MC amplitudes in this region are computed.
Notice the large difference between success and failure cases: 1.86 ± 0.1
for success vs. 2.41±0.02 for failure cases. During training, this exemplar
value is averaged with other iterations (we do not count outliers) of the
same failed assembly task, resulting in an averaged set of statistical values
used during the testing phase of the experiment.
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Exemplar Average Values and Upper and Lower Boundaries for Success Tasks, Failure Training Tasks, and Failure Test Tasks

Success
Training Data 1 StdDev
Training Data 2 StdDev
Testing Data

Success
Training Data 1 StdDev
Training Data 2 StdDev
Testing Data

Fig. 6. Exemplar Mean Average Values and upper and lower boundaries
for success assemblies in green, training with standard deviation σ=1 in
blue, training with σ = 2 in magenta, and testing in red.

(+xDir, +YawDir), (±yDir, +YawDir), and (+xDir, +yDir,
±YawDir) directions.

Once the statistical measures were generated, the testing
of new trials with deviations (in 1, 2, and 3 directions)
were executed. Testing was designed to evaluate the system’s
performance in (i) failure detection for specific deviations,
and (ii) failure mode identification. As mentioned in IV-
C.2 failure-sub mode identification allows us to classify
the failure with more accuracy as exemplar values change
when the deviation magnitude increases or when multiple
deviations are enacted simultaneously. To illustrate, consider
a task in which there is only deviation in the YawDir. In this
case the system will compute the mean exemplar values and
(i) it will detect if the values fall within the boundaries of
the successful task. Bounds for xDir and yDir should work
but not so for YawDir. The system would then (ii) flag the
YawDir with failure. Further, (iii) the system would then re-
assess if the exemplar value computed falls within any of the
six exemplars: MyR, MzR1, MzR23, FzA1, FzA2, and FzA3.
If successfully classified, a flag should appear in FzA1.

V. RESULTS AND ANALYSIS

This section presents statistical measure computations
during the training and testing phases as well as system’s
performance in detecting failure and failure modes.

In Fig. 6, note that average values between failure case
exemplars and successful ones are markedly different and
ratify their use for classification. Also note how the testing
Average Mean Values (red color) fall within the boundaries
of failure boundaries with σ = 1 (blue color) and σ = 2
(magenta color). Also note that the extrema between MzR1
and MzR23 is quite significant in net terms and the fact
that the boundaries for FzA’s in general are quite wide.
Our intuition tells us that the Average Mean Values which
are directly caused by contacts generated between the male
and female parts vary widely even as we deviate along any
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Fig. 5. Training and Testing trials. The scatter plot depicts selected deviation points in 1, 2, or 3 directions. Values for x- and y- directions range from
±0.0075m to ±0.0105m. Values for yaw deviations range from 0.08725 to 0.5235rad. Training samples are represented by the blue dots and testing
samples are represented by the red dots.

Failure Identification Accuracy

Fig. 7. Failure Detection Accuracy: accuracy percentages for failure
detection by deviation subgroups are shown. Total percentages for failure
accuracy are shown in the last row.

coordinate axes given the complex geometrical structure of
the parts. We will discuss this more in Sec. VI. Another
challenge is that different exemplars Average Mean Values
and Boundaries overlap each other. Hence, when trying to
identify failure modes, exemplars that should not be flagged
will be raising a type of false-positive alarm.

We now present the system’s effectiveness in detect-
ing deviation-specific failures, correlation modes, and false
positives. In Fig. 7, failure detection accuracy is orga-
nized by deviation directions and by exemplar classification.
The table records: (i) Correct diagnostic’s percentage for
individual exemplars and (ii) an evaluation measures for
the overall combined effect of multiple exemplars. In Fig.
8, the table records the percentage of failed exemplars
that were able to be correlated. To clarify, consider an

assembly where there were deviations in the x- and y-
directions, and in which My.Rot.AvgMag, Fz.Rot.AvgMag,
and Mz.Rot.AvgAmp were flagged. We then consider if these
exemplar’s average values fell within the bounds derived
during training. If so, we state that these exemplars are cor-
related and have a more reliable measure that the exemplars
are not false-positive’s.

A. Analysis

The analysis section studies failure detection and failure
modes on three levels: (i) Individual Deviation Analysis:
which exemplars did better when a given deviation was
enacted?; (ii) Individual Exemplar Analysis: how did a
given exemplar do across different deviations subgroups; and
(iii) Output Computation Analysis: a study of the overall
combined effect of exemplars for a given deviation.

1) Failure Detection: The first analysis, Individual De-
viation Analysis, consists in taking: x, y, φ, xy, xφ, xφ,
and x, y, φ deviations as separate subgroups. In doing a
row-by-row analysis it is clear that failure detection in the
yDir struggles more than any other direction. The reason
is that as soon as the male part is moved in the +xDir
or ±YawDir, horizontal contact either disappears, or it is
considerably different than what it was when there was only
deviations in yDir. The second analysis, Individual Exemplar
Analysis, consists in looking at an individual exemplar across
all deviation subgroups. It can be considered a column-by-
column analysis and shows that they Yaw deviation detection
was the most accurate (96%), then xDir (83%), then yDir
(71%). The third analysis, Output Computation Analysis,
looks at average value of all exemplars. Generally, the more
deviations one inserts, the poorer the accuracy. For a: 1-
direction deviation (1D), exemplars assessed failure 100%
accurately. For 2-direction deviations (2D): (x,Yaw) and
(y,Yaw) both did well at 92% and 83% respectively. The
(x,y) subgroup struggled more at 67%. For 3-direction-
deviations (3D) exemplars assessed failure with 72% of
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Failure Accuracy for Failure Mode Identification

Fig. 8. Failure Mode Identification: failure mode accuracy percentages
by subgroups are presented in the table. The top table shows the results
when upper and lower bounds are adjusted by 1 standard deviation. The
lower table shows the results when 2 standard deviations are used. Total
percentages are shown in the last row of each table.

accuracy. Surprisingly better than the (x,y) subgroup. It tells
us that, in our current method, YawDir estimates are better
and yDir estimates, a result that is different from [13], in
which accuracy degraded as more deviations were inserted.

2) Failure Mode Identification: This section analyzes
failure modes identification. It evaluates how accurately the
correct deviation sub-group was detected for a given trial.
The evaluation is done by a user offline. As with our previous
research, here too failure sub-group identification shows to
be more difficult than failure detection. We perform the
same three types of analysis as in failure detection for both
standard deviation values: σ = 1 and σ = 2.

1D has the highest accuracy for both σ = 1 and sigma =
2. A different result compared to our previous research is
that we do not get degrading performance as we add more
deviations. By selecting the exemplars we have used in this
work, 3D deviations are more accurate than 2D deviations.
When using σ = 2 however, all accuracy measurement
increase from 75% to 100% in 1D; and from 61% to 94%
in 2D, and 69% to 100% in 3D.

While in failure detection yDir did the worst, in terms of
failure mode detection it did the best. The reason is that the

range of boundary values for MzR1 and MzR23 are quite
distinct to each other. Without the overlap it is easier to
correctly identify the failure mode. For the FzA’s however,
the values have lower accuracy except for FzA3 whose value
range is smaller than FzA1 or FzA2, helping it make more
accurate assessments.

The total combined accuracy marker using the Correlation
Combination measure is 68% for 1 standard deviation com-
pared to 68% in [13]. However, when 2 standard deviations
are used, the accuracy jumps to 93.8%. Hence, increasing
the number of standard deviations increases the exemplar
value range used to correctly classify a failure-sub mode.
However, as the number of standard deviations increases,
other exemplars begin to register false-positives.

While failure mode identification increased in accuracy,
there are some challenges to this approach. Even in 1D de-
viation trials, extraneous exemplars may be flagged. During
our exemplar identification stage, salient features may have
been recognized in one axis, but deviation in one direction
inevitably affected other force axis and states although not
in salient ways. This factor can be understood further by
realizing that due to the complex hardware configuration of
the parts, even deviation motions in one direction may ex-
perience contact from other directions leading to unforeseen
contact forces in the constrained deviation task. This will be
further discussed in Sec. VI.

VI. DISCUSSION

Our work demonstrates that the contextualized early FC
scheme performed equally well in detecting failure as in [13].
However, it improved failure-mode identification. Previously
in [13], the Combined Output Measurement yielded 68% cor-
rect classifications; and with the Max Output Measurement
it yielded 81% accuracy. Our work however was 68% to
94% accurate using the Combined Output Measurement. The
characterization is more accurate since we consider the dual
combination of simultaneous deviation direction analysis and
bounded statistical measures instead of maximal and minimal
bounds.

Our work provides further insights into how we can
possibly begin to understand failure characterization. In
essence, by starting with constrained deviations in motion
trajectory, we can identify salient features that will aid in
the classification of that particular type of error in the task.
The challenge then becomes how to analyze and classify the
state-space of failure modes. We believe that constraining
the problem to “small deviations” is important. In [13], even
when using one exemplar for assemblies with 1-3 deviation
directions did not work because the exemplar value range
was too wide and the system was unable to accurately
detect failures and failure modes. As we further contextualize
exemplars by separating them by deviation sub-groups, more
narrow statistic parameters are obtained. Selecting adequate
statistical boundary ranges is important but not trivial and
if poorly selected can lead to broad value ranges. In doing
so, false-positives occur not only in failure detection, but
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also in failure mode identification. For example, in tasks
with 3D deviations, such as: FzA1, FzA2, and FzA3, may
exemplars could be flagged simultaneously. If there is no user
to identify that the task had 3 deviations, the system will not
know which one to choose. This work cannot classify the
nature of trajectories, whether linear, simple, or compound;
it can only infer where and how the contact might have taken
place. We have also not studied boundary ranges and how
this could be surmised. In future work, we will expand the
method both by including more information, such as visual
cues and joint information, as well as using more advanced
probabilistic models.

The great variation seen in the range of values for ex-
emplar sub-groups: yDir, xyDir, and yYawDir; along with
the presence of false-positives lead us to believe that the
exemplar space for failure tasks is more complex than
originally conceived. We think that it may now be necessary
to consider failure characterization by subdividing the task
space in three dimensions, through voxel grids or a similar
technique and assign each point in 3D space a set of exemplar
values (that capture deviation magnitudes) and then use
unsupervised classification methods to group the 3D space
into similarly (FT) valued spaces. This would form a 3D
contact map or failure-force map that can be used to enact
failure correction mechanisms. The key is to have specific
and accurate information about the magnitude and direction
of the failure condition. As our work stands, the authors
believe it would not be accurate enough to perform failure
correction.

VII. CONCLUSION

In conclusion, a contextualized early failure detection
scheme was implemented for cantilever snap assemblies. The
method is able to provide early identification of situations
in which an assembly trajectory motion deviates from the
normal approach trajectory. Further, a contact-state map
was generated through sampling the contact space during
training. In so doing, we identified not only failure but also
what type of failure occurred. The approach was effective in
identifying failure modes by further contextualizing statisti-
cal measures about contact forces in the task.
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