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Abstract— Deformable objects are very common around us
in our daily life. Because they have infinitely many degrees
of freedom, they present a challenging problem in robotics.
Inspired by practical industrial applications, we present in
this paper our research on using a humanoid robot to take
a long, thin and flexible belt out of a bobbin and pick up
the bending part of the belt from the ground. By proposing a
novel non-prehensile manipulation strategy “scraping” which
utilizes the friction between the gripper and the surface of
the belt, efficient manipulation can be achieved. In addition,
a 3D shape detection algorithm for deformable objects is
used during manipulation process. By integrating the novel
“scraping” motion and the shape detection algorithm into our
multi-objective QP-based controller, we show experimentally
humanoid robots can complete this complex task.

I. INTRODUCTION

Deformable objects, such as cables, cloths, sponges are

very common around us in our daily life. Different from rigid

objects, deformable objects have configurations of infinite

dimension. Their shape can be easily changed by the external

forces. In general, their physical properties are difficult

to obtain. Predicting their deformation by using traditional

modeling-based methods is difficult. For these reasons, many

tasks for handling deformable objects in the factory are still

done manually by human workers.

Research on humanoid robotics has been going on for

several decades [2]. Early research about humanoids mainly

focused on the balance and walking. Due to the increasing

maturity of technologies, many projects began in recent years

have looked at using humanoid robots for industrial pro-

duction. As part of the Horizon H2020 program in Europe,

the COMANOID project [6] aimed at deploying humanoid

robots to achieve non-added value tasks in aircraft manu-

facturing operations. In such cluttered factory environments,

humanoid robots can overcome their biped instability and

improve their flexibility by adding or reducing contact points

with surroundings [14].

In manufacturing, to facilitate their transportation and

handling, long deformable materials are coiled round-by-

round, or layer by layer on bobbins (see Fig. 1 for examples).

Once the bobbin is brought at its designated place in the

production chain, the next step for workers to handle the

material is usually to find their exposed ends, and take it out

of bobbins, to then feed the production.

This paper is one of the steps to the bigger goal of having

humanoid robots to help human workers to complete the
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Fig. 1. Upper left: A long cable is coiled in a wood bobbin; Lower left:
In a factory, a long and flat rubber belt is coiled in a steel bobbin; Right:
A section of thin and flexible belt is taken out of the bobbin by humanoid
robot HRP-2Kai. (For confidentiality reasons, we need to blur the sides of
the bobbin we are using in this paper.)

tedious and low-added value tasks. We consider here the case

of taking belts out of bobbins. To achieve this goal, we are

facing some difficulties:

• It is hard to find the exposed ends of the objects for

a robot because there is no special features or markers

on the objects. In our case, the manipulated object is a

thin and flexible belt, the upper layer belt is laying on

the lower layer, this brings great challenges for directly

detecting and handling the end of the belt. In some

cases, to get the position of the end may be even not

feasible for a robot.

• When the robot is handling the belt, knowing the state

of the belt is very important and challenging. A wrong

estimation in the state of the deformable object can

easily cause the operation to fail.

• A humanoid robot is an underactuated system on a

floating base. While handling long and flexible objects,

controlling balance becomes a very important issue.

In this paper, by utilizing the state-of-the-art technologies

and proposing novel methods, we try to resolve these issues.

The paper is organized as follows: In section II, we introduce

the related works. Section III presents the work about shape

detection for the belt. Section IV presents separating top-

layer belt by a kind of force-based manipulation, “scraping”,

which is inspired by human motions. Section V introduces

how the robot picks up the bending belt on the ground under

the help of visual information. Section VI introduces the

experiments and the results.



II. RELATED WORK

To handle a long and flexible object, a very common

strategy is to directly grasp it. Force closure on the contacts

improves the controllability and the stability for the objects.

Related research has been extensively conducted. Based on

grasping, regrasping and locomotion primitive actions, Qin

et al. proposed a multi-layer framework for a humanoid robot

to install a long flexible cable to two clamps [12]. In many

cases, limited by surrounding environments and configura-

tions of a robot, direct grasping is difficult, even not possible.

Researches about picking up a thin object can be found in [8]

[16]. But this kind of manipulation needs special mechanism

design, precisely sensing and handling for the edge of the

object. Another idea is to take some preprocessing stages

with non-prehensile manipulation, moving the object to a

position that is easier to grasp, then perform the grasping.

In [4], Hang et al. proposed a planner based on pre-grasp

manipulation for picking up a thin object from the table. In

some cases like fast manipulation, comparing to prehensile

manipulation, non-prehensile manipulation can provide more

effective solutions for the robot.

Visual information can significantly improve the effec-

tiveness of robotic manipulation. Since shape of deformable

objects can be easily changed during manipulation, being

able to know the shape information becomes a very critical

issue. Zhu et al. proposed a vision servo approach to deform

a cable to desired shapes in 2D plane with a dual-arm

robot [17]. Li et al. used “top-sliding” motion to actively

deform a flexible printed circuit board and proposed a vision-

based control scheme was for the soldering system [7].

By encoding the state of the deformable objects, Hu et al.

proposed a deformable object manipulation controller for a

robot to bring several kinds of objects to desired shapes [5].

Our contributions are as follows:

• We propose and analyze an efficient force-based ma-

nipulation strategy “scraping” for handling a long, thin

and flexible belt.

• We resolve a challenging manipulation task by integrat-

ing multi-objective Quadratic Programming (QP) based

controller [11] [14], deformable object shape detection

and “scraping” motion.

• We experimentally verify the approach can be used in

the process for belt manipulation by a humanoid robot,

showing the approach has the potential to be applied to

practical applications.

III. SHAPE DETECTION

The shape of a deformable object in 3D space is a

continuous mathematical object that needs to be repre-

sented with a finite number of parameters. Some commonly

used shape representation approaches are geometric-based

method, parametric equation and so on. Considering the data

type we get from the robot vision sensor, we choose to use a

geometric model composed of discrete points to represent the

continuous shape. Thus, a shape detection problem can be

simplified and formalized as a point set registration problem.

Assume we have two point sets X = {x1, x2, ..., xN} ∈
R

N×D, Y = {y1, y2, ..., yM} ∈ R
M×D, N and M are the

number of points in each set, D is the dimension of point.

Function f is the transformation model. The goal of this

problem is to find the optimal transformation f⋆, such that

point set X is best aligned to Y:

f⋆ = arg.min.
f∈F

dist(f(X),Y) (1)

where F denotes all possible transformation models for

X and dist denotes the distance function for a pair of

points (usually, the Euclidean distance). Figure 2 provides

an example for the registration problem.

(a) Before registration (b) After registration

Fig. 2. Illustration of 3D space point set registration: Point set X (blue)
is transformed to align point set Y (red).

Coherent Point Drift (CPD) algorithm proposed by Myro-

nenko et al. [9] is a probability-based point set registration

algorithm and is suitable for non-rigid objects. This method

takes a Gaussian Mixture Model (GMM) point of view,

where each point in X is regarded as a Gaussian centroid,

and the point set Y is regarded as the samples from the

mixture Gaussians. To prevent data from overfitting, coherent

point drift regulation is introduced to add constraints between

points in X, and topological structure of the point set can be

preserved. This obviously improves the robustness for out-

liers and occlusions. Tang et al. [13] applied this algorithm

for robotic manipulating a rope. Taking their research as a

reference, and with only a few minor changes to the initial

structure of X to extend to 2D objects, this algorithm can be

used in our research for belt shape detection.

Flow chart for shape detection is shown in Fig. 3. From the

RGB-D camera, we get the image data and the point cloud

data. Voxel-based filter is then used to reduce the density of

the point cloud. A sparse point cloud is thus generated. To

separate the belt’s point cloud, a color-based segmentation

method is used in the image space. Here, to improve the

robustness to ambient lighting, we choose HSV space based

segmentation algorithm. This gives us a target point cloud

of the belt after segmentation. Note that this point cloud

would contain noises and part of the point cloud may be lost

in some cases. We regard this point cloud as point set Y. A

manually-defined geometric model with 2D plane structure is

then generated. We denote the points in the model as point set

X. CPD algorithm is implemented to deform the geometric

model to best align the belt’s point cloud.



Fig. 3. Process of belt shape detection. The color of the points in the
geometric model is only for visualization and has no special meaning.

IV. SCRAP AND SEPARATE THE TOP LAYER OF THE BELT

BY COMPLIANCE FORCE CONTROL

A. Non-prehensile Manipulation with Friction

As mentioned before, the belt is coiled layer-by-layer in

the bobbin. To take the belt out of the bobbin, one strategy

is to directly find and grasp the exposed end. Since the

belt is thin and flexible, the upper layer is closely lying

on the lower layer. This greatly increases the difficulties for

the robot to perform without a specially customized gripper

(gripper of HRP-2Kai is shown in Fig. 9). Inspired by human

manipulating thin objects, we investigate another kind of pre-

grasp strategy: scraping (Fig. 4). Imitating human behavior,

the robot can use its gripper to exert a normal force to the

surface of the belt, then keep the normal force and move

the gripper along the curve of the bobbin. By utilizing the

friction between the gripper and the top layer, the belt will

slide with the gripper’s movement, and be separated with

lower layer. Once the unwound part is long enough, due to

the gravity, the end of the belt will be separated from the

bobbin, and fall to the ground. Motion scraping is a kind

of non-prehensile manipulation. Comparing to prehensile

manipulation like grasping, scraping cannot fully control

the belt during manipulation, but it has advantages. First,

the exact position of the end of the belt can be ignored.

Instead, the coiled direction of the belt is enough for robotic

manipulation. This will be much easier to specify in a

real application scenario. Second, without grasping the belt,

meaning that the robot, the belt, the bobbin and the ground

do not form a closed-loop structure, motions of the robot

become more flexible and safer. Third, without moving to

the other side of the bobbin, the robot can unwind the belt,

by repeating the scraping motion multiple times. This greatly

reduces the time and complexity for practical applications.

To achieve this kind of non-prehensile scraping motion

with the robot, friction plays an important role. To simplify

the problem, a rough assumption was made for the current

research: friction between the gripper and the top layer of

the belt, friction between the layers of the belt satisfy the

(a) “Edge grasping” motion (b) “Scraping” motion

Fig. 4. Two kinds of belt handling motions demonstrated by human.

following well known static friction formula Ff = µFN

The friction force is denoted by Ff . FN is the normal force

exerted on the belt surface. Coefficient of Friction (COF) is

denoted by µ.

As the belt is flexible, the normal force FN on the surface

can be transmitted layer-by-layer. We denote the friction

force and the COF between the gripper and the belt as Ff1

and µ1, the friction force and COF between the layers of the

belt as Ff2 and µ2. To prevent the contact point sliding while

scraping, we need to ensure Ff1 > Ff2, so as µ1 > µ2. In

real situation, the COF between flexible objects is much more

complicated and may change according the exerted force,

and the sliding between two layers also make the analysis

more difficult. But from the simplified analysis above, we

got two critical ideas to achieve scraping motion: (i) increase

the COF between gripper and belt and (ii) control the exerted

normal force on the surface while scraping.

B. Compliance Force Control

Fig. 5. Bobbin-belt model.

Based on the bobbin-belt model in Fig. 5, a circular

trajectory along the curve of the bobbin can be computed a

priori. While the gripper tracks the trajectory, it also rotates

to keep the direction pointing to the center of the bobbin. A

compliance force control law is then applied to the gripper.

HRP-2Kai is a position-based robot. To directly control the

joint torque is not feasible in our case, and it is the same

for the exerted force. An F/T sensor is mounted on each

wrist for measuring the external forces and torques, so we

can implement an indirect control of the exerted force by

utilizing the feedback of the sensor. The main idea is to

exert the force thanks to the motion of the gripper, then the



measured wrench on the gripper is fed back to the controller

to form a close-loop. A classic admittance control law [11]

in 3D task space is as follows:

∆Fext = M∆ẍ+D∆ẋ+K∆x (2)

∆Fext = Fmea
ext + F d

ext (3)

∆Text = J∆φ̈+ L∆φ̇+ C∆φ (4)

∆Text = Tmea
ext + T d

ext (5)

where translational and rotational displacements are denoted

as x and φ, measured external force and torque are denoted

as Fmea and Tmea, exerted force and torque are denoted as

Fext and Text, respectively. M , D, K and J , L, C are the

gains, while F d
ext and T d

ext are the desired force and torque

for this second-order dynamics system.

The stabilizer for humanoid robots proposed by Caron et

al. in [1] is used in the whole process of belt manipulation.

Implementation of the stabilizer is based on our multi-

objective QP-based control framework. A Center of Mass

(CoM) task is used by the stabilizer to track the desired

CoM position. Two Center of Pressure (CoP) tasks are used

for each foot to track the desired wrench. For the torso and

the waist, two body orientation tasks are used to regulate their

poses. To implement the scraping motion, an admittance task

is used to regulate the contact force to the belt, while an end-

effector task which controls gripper’s position and orientation

is used to track the pre-computed circular trajectory. To make

these two tasks work together better, different weights are

assigned to them while the stiffness and the damping of each

task need to be carefully adjusted.

V. PICK UP THE BENDING BELT

With the constraints due to two sides of the bobbin, the

piece of belt that has fallen on the ground can naturally

appear in two states: flat and bending (Fig. 6). For now,

because we empirically observed that the bending state is

more likely to occur, we just consider this second situation.

Using the visual shape detection, state of the bending part

can be easily determined. The height of each part of the

bending belt relative to the floor can be determined by

simply analyzing the position of all points in the geometric

model. Points located at the edge of the geometric model

and whose height is greater than the threshold can be used

as the grasping points. Position of a pre-grasping point can be

determined by adding a certain offset to according grasping

point (Fig. 7). Due to the joint limits and limited number of

degrees of freedom, picking up an object from the ground

is not an easy task for a humanoid robot. To achieve this,

the robot need to squat down, lower and shift the CoM

to foot corresponding to the gripper used for grasping, and

twist its body while grasping the belt (see Fig. 11 (f)-(h)).

Such constrained motions can be achieved by whole-body

motion control [15], with reduced safety margins for collision

avoidance.

VI. EXPERIMENTS AND RESULTS

First, we present the experiments to validate the shape

detection algorithm. Then we use the humanoid robot HRP-

(a) Flat state (b) Bending state

Fig. 6. Two possible states of the fallen belt: flat state and bending state.

Fig. 7. Left: Looking at the belt from the view of the robot. White points
correspond to the floor, red ones to the belt; Right: Position for grasping.
Blue points are the pre-grasping point and grasping point.

2Kai to validate the force-based scraping manipulation strat-

egy and the feasibility of picking up the bending part by

visual shape detection.

A. Shape Detection for the Belt

We cut a piece of belt for the experiments. It is 104cm

long, 31cm wide and 0.11cm thick, with a scarlet color.

An ASUS Xtion PRO Live camera was used as the vision

sensor to monitor the environments. RGB and depth images

(640×480) were captured and sent to an Ubuntu 16.04 laptop

(Intel i7@2.70GHz + RAM 64GB). Figure 8(a) shows the

shape detection results. Just by visual comparison, we can

find that the belt’s point cloud and the geometric model

(which consists of 30 points, 10 rows×3 columns) match

well. According [13], the matching error for a rope is less

than 2.2cm when using a Microsoft Kinect camera. The

speed of the algorithm is related to the size of both point

sets. In the experiment, after the downsampling process and

color segmentation process, the size of the belt’s point set is

about 400 (which changes with the distance to the camera

and the situation of occlusion). Table I lists the execution

time when the size of the geometric model changes.

TABLE I

EXECUTION TIME

Number of points (rows×columns) Time (ms)

30 (10×3) 170

60 (15×4) 480

120 (20×6) 1800

In practical applications, since the camera is mounted on

the head of the robot (see Fig. 9(a)), when the robot handles

the belt, part of the belt may be occluded by the body

and the bobbin. Considering this, robustness to occlusion

is important in choosing a shape detection algorithm. Figure



8(b) shows the results when validating the robustness of the

algorithm. While moving the belt, part of the point cloud is

lost due to the occlusion of the arm. But the algorithm still

performs well.

(a) No occlusion (RGB image and point cloud)

(b) With occlusion (RGB image and point cloud)

Fig. 8. Shape detection result for the belt.

B. Robotic Manipulation for the Belt

The inside and outside radius of the bobbin are about

36.5cm and 66.5cm, the width between two sides is about

38cm. For the experiments, the right gripper of the robot

HRP-2Kai is used to perform the scraping motion. To

increase the friction between the gripper and the surface of

the belt, several pieces of sponges are attached to the fingers,

which is shown in Fig. 9(b). Some assumptions were made

before the experiments:

• The bobbin is fixed on the ground and will not move

during the experiments.

• The manipulated parts of the belt are inside HRP-2Kai’s

working space without locomotion.

• The robot is placed at an approximately known position

with respect to the bobbin, within a few centimeters and

degrees.

• The exposed end of the belt should be fallen on the

ground by only one successful scraping manipulation.

The relative positions of the bobbin and the robot were

determined experimentally by simulation in Choreonoid [10].

The distance between the bobbin center and the robot is

about 95cm. The assumption on the robot position is not

limiting: previous works (e.g. [3]) have shown that a robot

can walk to a given location using visual servoing. We could

use them with a model of the bobbin to reach a correct

location.

The target force during the scraping motion is 20N in the

direction from the gripper to the center of the bobbin and 0N

is the other directions. The target torque is 0N ·m for each

direction of rotation. As we just consider one direction of

the force, the admittance gains are Mz = 2000, Dz = 1600,

Kz = 20. The forces and torques are shown in Fig. 10.

Because it is difficult to estimate the friction coefficients

at play, we determined the target force by trial and error.

(a) Camera on the head (b) Sponges on the fingers

Fig. 9. The head and the gripper.

(a) Force

(b) Torque

Fig. 10. Force and torque of the right gripper during the experiment:
Interval I indicates the force when the robot creates a contact with the belt.
The controller regulates the contact force to the target value 20N . Interval
II indicates the force during scraping motion. Due to the error between the
pre-computed circular trajectory and the curve of the bobbin, and the gripper
moving quickly along the trajectory, the force varies around the target value.
By generating a more accurate trajectory for the gripper, or further adjusting
the parameters of the admittance controller, the effect can be improved.

At 10N , the force is too low to slide the top-layer belt and

separate it from the lower layer. At 30N , the robot cannot

control its balance and falls backward. Better regulation for

the CoM of the robot during the manipulation should be able

to improve the balance.

The whole experiment takes about 40 seconds. Approach-

ing to the bobbin and regulating the contact force takes

about 11 seconds, scraping along the bobbin takes about 7

seconds, detecting the belt takes about 10 seconds (most of

the time is spent on manual checking the matching results for

safety reasons), picking up the belt takes about 12 seconds.

Snapshots of the experiment are shown in Fig. 11.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11. Snapshots of the scraping and picking experiment: (a) Initial pose. (b) The robot raises its right gripper and approaches to the belt. (c) Create
a contact with the surface of the belt and regulate the force to the target value. (d) “Scraping” motion. (e) Remove the contact and the belt slides to the
ground due to the gravity. (f) Detect the shape of the belt and compute the position of grasping point and pre-grasping point. (g) Move the gripper to the
position of pre-grasping point and open the gripper. (h) Move the gripper to the position of grasping point and grasp the bending part of the belt. (i) Stand
up while picking up the belt. (j) End pose.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our work on control of a

humanoid robot to take a long, thin and flexible belt out

of a bobbin. Then grasping for the bending part of the

belt on the ground and pick it up was achieved. A novel

strategy scraping was proposed for manipulating belt-like

objects. Visual detection for the shape of the belt improved

the capability for handling flexible objects. The feasibility

was experimentally verified. In the future research, we will

integrate the shape detection approach into the control loop.

As a scraping motion is a kind of non-prehensile manipu-

lation, manipulation for belt-like objects based on real-time

visual servoing will be an interesting topic. In addition, we

will also generalize the framework to bobbins of different

sizes and belts of different materials.
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manufacturing. IEEE Robotics and Automation Magazine, 26(4), Dec.
2019.

[7] X. Li, X. Su, and Y.-H. Liu. Vision-based robotic manipulation of
flexible pcbs. IEEE/ASME Transactions on Mechatronics, 23(6):2739–
2749, 2018.

[8] T. Matsuno, K. Kanada, F. Arai, H. Matsuura, and T. Fukuda. Strategy
of picking up thin plate by robot hand using deformation of soft
fingertip. In Proceedings of the 2005 IEEE International Conference

on Robotics and Automation, pages 2326–2331. IEEE, 2005.
[9] A. Myronenko and X. Song. Point set registration: Coherent point

drift. IEEE transactions on pattern analysis and machine intelligence,
32(12):2262–2275, 2010.

[10] S. Nakaoka. Choreonoid: Extensible virtual robot environment built
on an integrated gui framework. In 2012 IEEE/SICE International

Symposium on System Integration (SII), pages 79–85. IEEE, 2012.
[11] K. Pfeiffer, A. Escande, and A. Kheddar. Nut fastening with a

humanoid robot. In 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 6142–6148. IEEE, 2017.
[12] Y. Qin, A. Escande, and E. Yoshida. Cable installation by a humanoid

integrating dual-arm manipulation and walking. In 2019 IEEE/SICE

International Symposium on System Integration (SII), pages 98–103.
IEEE, 2019.

[13] T. Tang, C. Wang, and M. Tomizuka. A framework for manipulating
deformable linear objects by coherent point drift. IEEE Robotics and

Automation Letters, 3(4):3426–3433, 2018.
[14] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande,

K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, et al. Multi-
contact vertical ladder climbing with an hrp-2 humanoid. Autonomous

Robots, 40(3):561–580, 2016.
[15] E. Yoshida, M. Poirier, J.-P. Laumond, O. Kanoun, F. Lamiraux,

R. Alami, and K. Yokoi. Whole-body motion planning for pivoting
based manipulation by humanoids. In 2008 IEEE International

Conference on Robotics and Automation, pages 3181–3186. IEEE,
2008.

[16] T. Yoshimi, N. Iwata, M. Mizukawa, and Y. Ando. Picking up
operation of thin objects by robot arm with two-fingered parallel soft
gripper. In 2012 IEEE Workshop on Advanced Robotics and its Social

Impacts (ARSO), pages 7–12. IEEE, 2012.
[17] J. Zhu, B. Navarro, P. Fraisse, A. Crosnier, and A. Cherubini. Dual-

arm robotic manipulation of flexible cables. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
pages 479–484. IEEE, 2018.


