
 

 

 

  

Abstract—Motor functions of the 
biological system has been forged through 4 
billion years evolution. From a 
neurorobotics view, it is important not only 
to know how well it works, but also how it 
fails. To quantitatively describe early onset 
symptoms of a neurodegenerative disease, 
we analyzed phenotypes of genetically 
engineered Huntington disease (HD) model 
mice, which reveal progressive impaired 
motor functions. We devised a simple yet 
sensitive paradigm called the crystalized 
motion profile (CMP), by which we 
successfully detected subtle difference 
between normal and abnormal mice in terms 
of whole-body level motor coordination. Our 
long-term objective is to remodel human 
mind and body to regain impaired motor 
and cognitive functions with ageing. To do 
so, we are developing a soft neurorobotic suit 
that provides integrated cognitive and 
physical interventions to users. Our analysis 
on the HD model mice is important as the 
first step to bridge between molecular 
mechanisms (altered genetic code) and the macroscopic 
neuro-musculoskeletal model. With this, we can 
extrapolate from knowledge of non-human mammals to 
human to derive the remodeling. 
 

I. INTRODUCTION 

 In a human-centric (anthropocentrism) view, aging is a 
slow death and a gradual collapse of the subjective world with 
decaying psychophysical functions. The aging process was 
thought to be entirely irreversible [2] [3], especially in the 
central nervous system (CNS) [4]. Recent studies, however, 
show that this classical view may need to be revised: the adult 
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brain and neuro-musculoskeletal system are more flexible and 
dynamic than we believed before. Those studies suggest that 
it is possible to remodel human mind and body by physical-
cognitive interventions, leading to regaining the impaired 
functions. 

Our long-term objective is to reconstruct the decaying 
‘world’ with aging, which everyone has to face someday, 
through the systematic physical-cognitive interventions (Fig. 
1). 

We tackle this problem from three different perspectives: 
biology, robotics, and cognitive sciences. Namely: 
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Figure 1. The overview of the StillSuitTM project. Eight subprojects are simultaneously running 
for its social implementation. StillSuitTM is an endoskeletal robot suit that relies on the 
endoskeltal system of the human body in terms of the mechanical structure. In this paper, we 
mainly depict analyses based on “Development of neuro-musculoskeletal models of the model 
organisms” subproject. “Interspecies physical/functional retargeting” part is separately 
discussed in [1].The detail of the project will be described in an upcoming project paper. 
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1. We elucidate biological mechanisms of remodeling in 
adult brain-musculoskeletal associated with the 
physical-cognitive interventions (physical and mental 
eustresses [5]).  

2. Neurorobotics makes it possible to realize mainly 
physical interventions, as well as mechanical 
supports/training for the body. 

3. The virtual reality is used to provide optimized cognitive 
interventions, as well as versatile user-friendly interface 
for the social implementation. 

 
To achieve our goal, we set eight research subjects, each of 

which deepen and widen its own insights, leading to 
interdisciplinary fusions to realize the effective social 
implementation of the endoskeletal robot suit, StillSuitTM 
(Fig. 1 left): 
1. Gene expression analyses on the CNS responding to 

cognitive/physical interventions. 
2. Gene expression analyses on the musculoskeletal system 

responding to physical interventions. 
3. Development of neuro-musculoskeletal models of the 

non-human animals. 
4. Development of a neuro-musculoskeletal physical robot 

of the non-human animals. 
5. Development of a neuro-musculoskeletal model of 

human. 
6. Interspecies physical/functional retargeting to bridge 

between the non-human animals and human neuro-
musculoskeletal models. 

7. Prototype of High-Fidelity Virtual Reality (Hi-Fi VR) 
for the cognitive interventions: Lucid Virtual Reality. 

8. Development of an endoskeletal robot suit for physical 
and cognitive interventions: StillSuitTM. 

 
As a very beginning step of this project, we apply a 

neurorobotics approach to analyze phenotypes of genetically 
modified non-human mammals.  

The biological system has substantial robustness and 
durability against unknown disruptions [6, 7]. Organisms 
have been repeatedly tested by the harsh environments and 
been forged through evolutionary processes. Only successful 
candidates could survive as extant organisms according to 
Darwinian natural selection [8, 9]. As a consequence, the 
control system of organisms is so elaborate, versatile, and 
intelligent. 
 Due to the biological optimization, meanwhile, the 
biological control system has a weakness inside: a tiny flaw 
in the web of genetic interactions can disrupt the whole 
system, leading to a catastrophic consequence: i.e., “diseases.” 
 One way to design a robust control system is to learn from 
the biological system and/or mimic it [10]. However, essential 
understanding of the biological system is notoriously difficult 
due to the extreme complexity, which was designed by non-
human “intelligence:” i.e., evolution. 

Biologists have an alternative approach to treat this kind of 
problem: they intentionally give disturbances to the system 
and observe their responses to uncover the fundamental 
mechanism [11, 12]. In other words, biology is a large-scale 
reverse engineering of the life [13], using a disease as a probe. 

 In genetics, the disturbance was realized by mutations in 
the genetic information, which is a blueprint of the life [14, 
15]. This molecular-level disturbance is mathematically 
discrete, and we can identify it with the exact coordinate in 
the finite genome sequence space [16, 17]. 
 Meanwhile, the response to the disturbance is not that 
trivial. The response is an entity of the physical world and its 
possible patterns are virtually infinite [18, 19]. Biologists 
have often relied on descriptive and/or particular paradigm-
dependent manners to handle the responses, which are 
repeatedly criticized in terms of objectivity, reproducibility 
and accuracy [20], especially in terms of cognitive and motor 
functions. 
 Our basic strategy in order to solve (at least mitigate) the 
problem is to introduce a constructive neurorobotic approach 
to the traditional framework. To elucidate the response, we 
use a neuro-musculoskeletal model to interpret complex 
biological traits to objective measurements [21]: i.e., we will 
translate the biological traits to a well-defined tractable 
problem as done in the preceding studies [22-24], but in a 
different paradigm. 
 In this paper, we used a Huntington disease (HD) model 
mouse, which carries the human HD gene by a transgenic 
technology. HD is a severe and progressive 
neurodegenerative disease cause by an abnormal extension of 
repetitive DNA triplets (CAG) that codes the poly amino acid 
glutamine (polyglutamine), altering the normal huntingtin 
(HTT) protein. Its typical symptoms are: dystonia, 
incoordination, cognitive decline, and behavioral difficulties, 
typically in middle-age [25]. The number of the CAG repeats 
is putatively associated with the disease progression. 

To elucidate the mechanism of HD, it is significantly 
important to detect an early onset phenotype (symptom), 
which was difficult to detect by using conventional 
frameworks [26]. Our objective is to develop a new 
framework to detect the early onset phenotypic signal of the 
HD mice (age 31 days) in terms of the motor functions. Our 
framework, in turn, will contribute to design an artificial 
control system to realize robust motor functions. 

The significance of the study is to bridge between 
molecular mechanisms (altered genetic code) and the 
macroscopic neuro-musculoskeletal model. Regarding our 
project described above, this is the first step to extrapolate 
from the knowledge of non-human mammals to human to 
derive the remodeling. 
 

II. MATERIAL AND METHODS 

A. Modeling 
Data acquisition for mouse skeletal modeling. Geometry 
(morphology) of a skeletal model that we used in this paper 
were based on a set of X-ray CT scanning data obtained by a 
collaborative work with T. Row [27, 28]. We manually 
segmented the volume data and modeled joints following a 
published human model [29]. See Oota et al. (2010) [30] for 
detailed description. 
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Fig. 2 shows a topological structure of the mouse skeletal 
model. It has a kinematic tree structure whose root is set on 
the pelvis. Note that the topology has a meta-node (super-
root) “ground,” which is a parent of the pelvis node. The 
skeletal model’s location (i.e., the global coordinate) is 
determined by this super-root by giving a displacement from 
the global origin. We developed the original skeletal model in 
SIMM (MusculoGraphics, Inc, Chicago, IL) format [30]. We 
revised the skeletal model in OpenSim XML format after 
converting it from the SIMM format. 
 In this paper, we focused on kinematics analyses: i.e., we 
ignored the mass distribution of the mouse body, which 
contributes to dynamics. We also omitted the tail form the 
model for simplicity. This simplification is to decrease the 
number of parameters which we need to determine through 
experiments. 
 Constraints for the vertebra joint. Mouse has 7 cervical 
bones, 13 thoracic bones, 6 lumber bones, and 4 sacrum 
bones. If we directly control each joint, the number of 
parameter would be (30−1)⨯3=87. Those “back bones” are 
too complicated for inverse kinematics with our marker set 
(see section D). By giving constraints between joints, we 
reduced the size of the joint space: i.e., neighboring joints are 
associated with a simple function [31]. Furthermore, we 
treated the 13 thoracic bones as one rigid body (see Figs. 2 
and 3). 

 

B. Mouse motion capture 
We used nine digital cameras (Motion Analysis 

Corporation, Santa Rosa, CA) to capture mouse motions. 
Each camera emits infrared lights, and the retroreflective 
markers on a subject reflect the rays back in the direction of 
which the rays come in. The sampling rate was 120 Hz. 
Cortex software (Motion Analysis Corporation, Santa Rosa, 
CA) was used to reconstruct 3D trajectories of the 
retroreflective markers. Since obtained motion data were 
unlabeled (i.e., each marker is not distinguished by the 
system), we needed to perform “post process” or labeling by 
using a tool of Cortex and/or by hand. We filmed walking 
mice with a conventional digital movie camera for the 
subsequent post process.  

 A capture volume (effective space of the motion capture) 
was calibrated for establishing camera linearization 
parameters (correction of the lens distortion) such that we 
achieved approximately 0.2 mm spatial resolution under the 
given conditions. 
 The motion capture of mice has particular difficulties 
described below, and requires special cautions to treat 
genetically modified animals. We intentionally call this 
measurement the mouse motion capture (MMC), to 
distinguish from conventional motion captures. 
 

C. Post process (labeling) 
In case of MMC, there are mainly two issues in the post 

process [27]: (1) motion data are noisier than those of human 
subjects; (2) motion data are frequently missing due to marker 
occlusion and proximity. Those are primarily caused by the 
small size of the subjects [32]. Theoretically speaking, those 
issue is solvable by increasing the number of cameras to 
eliminate “blind spots [33].” This approach is, however, 
leading to an increase of potential cost of experiments. We 
followed protocols described in the previous works for 
labeling [27]. 
 

D. Mouse marker set 
In case of human, there are several established marker sets 

in clinical applications: e.g., Helen-Hayes (Davis) [34] and 

Figure 4. An expected static pose of a mouse on a slope. Red points 
represent experimental markers (Head, B1, B2, B3, T1, LEl, LHand, REl, 
RHand, LKne, LAnk, LFoot, RKne, RAnk, and RFoot). The other four 
markers represent a slope on which the mouse makes gaits. Curve lines 
indicate trajectories of the experimental markers: i.e., the static pose is the 
average posture during the gait. The length unit is millimeter. Snapshots of 
the postures for both healthy and pathological gaits with rendered scaled 
skeletal models are shown in Fig. 6. 

Figure 2. A summary of the joint definitions (a) and the topological sturctue 
of the mouse skeletal model (b). 

Figure 3. The mouse generic skeletal model and its marker set (a-c). 
Representative anatomical landmarks are also shown. (d) an actual 
mouse with markers placed on the skins. 
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Cleveland clinic marker sets [35]. Unlike human subjects, 
ratio of maker weight to mouse body weight is inevitable. We 
developed our own marker set for mouse (MSM) to achieve 
efficient motion capture with relatively small number of 
markers (Fig. 3). In this paper, we used 17 optical 
retroreflective markers assigned to articulated portions of 
mouse body. Figure 3 shows the marker positions on the 
mouse skins. We used 2.6 mm retroreflective markers 
(Motion Analysis Corporation, Santa Rosa, CA). This type of 
marker is originally used to capture human facial expressions.  
Marker locations were determined by palpating joint and/or 
morphological landmark positions. The marker location 
errors were computationally minimized afterwards (see 
section E). We increased the number of markers by 8 from 
our previous work [30], owning to lighter markers and higher 
resolution cameras (Motion Analysis Corporation, Santa 
Rosa, CA). 
 

E. Static pose computation and scaling 
 In case of MMC, unlike human and obedient non-human 
subjects with which we can communicate verbally and/or 
nonverbally, it is extremely difficult to make mice keep a 
standardized static pose without stress-prone means. The 
standardized static pose is important to identify markers as 
well as standardized inter-marker distances, by which we can 
perform subject-specific model scaling [36]. We simply took 
averages of the experimental marker positions during a 
selected time range, which corresponds to manually 
segmented motions (Fig. 4). Virtual marker positions were 
adjusted such that marker errors are minimized by the inverse 
kinematics [37]. We used virtual markers of pelvis, tibia, and 
forelimb to adjust the generic model to subjects by affine 
transformations. 

F. Inverse kinematics and marker position optimization 
In inverse kinematics (IK), marker positions on skeletal 

segments are one of important determinants. A subtle 
deviation of an experimental marker placement site from a 
corresponding model marker can cause an impact on results 
of IK. However, it is virtually impossible to exactly assign 
optical markers to expected landmark positions on mice skins. 
It is also difficult to model the elasticity of the mouse skins. 
The marker positions were adjusted in each IK session to 
minimize the marker errors with equally distributed weights 
[37, 38]. 
 

G. Mouse preparation 
 We analyzed yeast artificial chromosome (YAC) 
transgenic mice expressing normal (+) and mutant (Tg) 
human huntingtin (HTT) in a developmental and tissue 
specific manner: HD model mouse R6/2 [39]. Totally eight HD 
mice were used, four of which were normal (+/+) and the 
others four were abnormal (Tg/+) (see Table I).  They were 
all male and born on the same day (31 days of age). The 
number of CAG repeats was 120 	±  5. Our experimental 
protocols, including animals, were approved by the Animal 
Experiment Committee of the RIKEN Tsukuba Institute. 
 

H. Data analysis 
Conventional methods to analyze motor functions rely on 

spaciotemporal values: e.g., transitions. However, it is 
obvious that individual variations are so huge in transitions 
due to “free will,” leading to difficulty in reproducibility. A 
solution to reduce such variations is to spatially restrict a 
subject: e.g., a forced gait on a treadmill. But this kind of 
restriction could spoil innate behaviors of the subjects and 
obscure subtle signals. In addition to that, the restriction has 
possibilities to alter mechanical properties of the system. In 
case of the treadmill, for example, effects on the gross inertia 
of the subject are significantly neglected because it stays in 
the almost same spatial position. 
 Our approach is to let subjects behave according to their 
free will, while we simply focus on dependency between joint 
angles, eliminating spaciotemporal factors from the motion 
sequence data. Fig. 5 shows a “dependency tree” of all the 
joint angle sequences of the motion data 1_4 of Mouse 
140912I07. The dependency tree shows, for example, that the 

knee, ankle, and elbow reveal similar or closely dependent 
behaviors comparing with the other part of the body. The 
dependency tree was constructed based on squared Euclidean 
distances between different motion angle sequences. Our 
basic idea is that the dependency tree can represent an overall 
motion profile of the subject in the session. 

In the actual analysis, we compared all possible pairs of 
joint angles to generate a huge association matrix to represent 
the dependency The matrix is regarded as a “crystalized” 
motion profile (CMP) of a mouse behavior during a session. 
We directly used CMP matrices in this paper because the 
topology inference is not always correct depending on the 
nature of the distance matrix. 

Since each element of the matrix is a mare (linear) 
association, it has no longer spaciotemporal factors in the 
profile. Here, the motor functions are translated to more 
primitive and objective entities: linear correlations of 
different joint angle sequences. 
 An element of a CMP matrix is defined by the absolute 
correlation between joint angle sequences of the two different 
joints 𝑖 and 𝑗: 

Figure 5 A dependency tree of all the 
joint angle sequences of the motion 
data 1_4 of Mouse 140912I07. Only 
representative joint angles are 
displayed. Part of the tree is truncated 
while relative scale is correct. 
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where 𝐴 = {𝛼X	Y} is a set of joint angles of joint 𝑗 at time step 
𝑡. 𝑛 is the number of joint angles. Note that the size of time 
steps does not affect dimensions of the CMP matrix. 

 

III.  RESULTS 

A.  HD mouse motion capture 
 We obtained eight sets of motion data that contain totally 

4,800 frames (120 fps), from which we used 3,248 frames for 
subsequent analyses (Table I). Missing marker data were 
linearly interpolated by using their flanking frame data if 
possible. The interpolated data were smoothed by the 
Butterworth filter [40] with 6 Hz. The gross data coverage of 
the motion capture was 67.7 %. 
 Optical markers on mouse skins were occasionally 
detached during motion capture sessions. In such case, we 
simply continued the sessions without recovering markers. 
This is to avoid unexpected influences of anesthesia for the 
restitution. 
 In the post process, frequent marker occlusions and noises 
(ghost markers) were observed. Since Cortex algorithm could 

not properly handle such noisy data, we manually labeled the 
makers in those cases. Owning to the small number of 
markers of our marker set, the labeling was totally 
deterministic. 
 Fig. 6 shows snapshots of the postures for healthy (a) and 
pathological (b) gaits with rendered scaled skeletal models. 
Marker trajectories are also shown. 
 

B.  The crystalized motion profiles 
 We computed the crystalized motion profiles (CMPs) and 

clustered them by using Agglomerate function of 
Mathematica [41] according to the squared Euclid distances. 
An example of the crystalize motion file is shown in Fig. 7. 
The clustered results were visualized as a dendrogram. Note 
that the mice are virtually genetically identical except for one 

TABLE I.  SUMMARY OF MOTION CAPTURE RESULTS 

Mouse ID Data ID Genotype Frame # Coverage (%) 
140912E06 1_1 Tg/+ 300 50.00  
140912E07 1_2 +/+ 88 14.67 
140912I06 1_3 +/+ 500 83.33  
140912I07 1_4 Tg/+ 434 72.33  
140912G04 1_5 Tg/+ 559 93.17  
140912L09 1_6 +/+ 600 100.00  
140912F08 3_3 Tg/+ 221 36.83  
140912F10 3_4 +/+ 546 91.00  
Total     3,248 67.67  

 

Figure 7. Examples of crystalized motion profiles (CMP).  (a) Mouse 
140912E07: normal (+/+); (b) Mouse 140912I07: transgenic (Hg/+). 
While the two examples show visual differences in this particular case, 
it is generally difficult to distingusih transgenic mice (Tg/+) from the 
others (+/+) only with visual inspections. Only upper triangular 
elements are shown because the matrices are symetric. 

 

Figure 6. Snapshots of the postures for healthy (a) and pathological (b) 
gaits and marker trajectories (thin white curves). Pink balls represent 
virtual markers after adjustments. The global coordinates are 
represented by thick white lines. We can observe slight differences in 
the marker trail characteristics between the two subjects. 
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transgene: human HTT gene and its putatively regulatory 
regions.  
 Fig. 8 shows results of the clustering. The mouse motion 
data were clearly clustered into two groups corresponding to 
the two genotypes: Tg/+ and +/+ except for data 1_2. Since 
the probability that randomly sampled mouse motion data 
have this partition is: 2 ⨯ ]!

_!(]`_)!
= 0.036, this partition is 

significant at 3.6% level. Note that the misclassified data 1_2 
has only 88 frames (Table I).  

IV. DISCUSSION AND CONCLUSION 
We analyzed motion data of 8 juvenile mice (age of 31 

days) that have different genotypes: Tg/+ and +/+. We 
successfully distinguished their genotypes by using the 
crystalized motion profile (CMP), except for one case. It is 
known that HD mice that have Tg/+ genotypes reveal late-
onset motor and behavioral difficulties [42].  However, there 
was no report that CAG 120 HD mice show distinguishable 
motor and behavioral phenotypes before age of 31 days [43]. 
It is significant to detect early-onset phenotypic signatures in 
HD mice to find an effective treatment of HD, as well as to 
elucidate the neural control mechanism. The CMP made it 
possible to conducted highly quantitative analyses on mouse 
motor functions with comprehensive characteristics of 
motions during a session. This is the first report to detect a 
quantitative motor phenotypic signature in CAG 120 HD 
mice at age of 31 days. 
 Motion data contain various spontaneous signals that are 
not directly determined by genetic factors [44]. For example, 
mice can compensate abnormal motions to recover 
“expected” motor coordination [45]. Such adjustments, 
however, can obscure genetically determined signatures: i.e., 
phenotypes. As a result, it can be difficult to detect an early 
onset phenotype until it gets too severe to compensate by the 
voluntary adjustments. 
 Aside from the adaptive internal models, the motion control 
compensation should occur based on the sensory feedback to 
correct genetically impaired motor commands [46]. Due to 

the time lag, the motion data should contain some trace of the 
corrections.  
 The problem here is two-fold: (1) we have no prior 
knowledge when and where the trace can appear; (2) it is 
virtually impossible to distinguish the genetically essential 
signature from the voluntary adjustment. Our idea is that, with 
comprehensive comparison between joint angles, we detect 
the perceptually hidden signals in the motion data by using 
high dimensional association matrices: CMP. 

There are two advantages on CMP: (1) since CMP has no 
temporal transition factors of the motion data, sessions that 
have different durations are directly comparable; (2) the CMP 
covers the motor coordination of the whole body. 
 The CMP is, therefore, a comprehensive profile of a session 
of motions (motion sequences), which is represented by linear 
associations (dependency) of all possible pairs of joint angles. 
In a sense, this is a high dimensional representation of 
complex motion characters mapped to the joint angle space. 
 In our analyses, we failed to cluster the motion data 1_2 of 
Mouse 140912E07 (see Table I and Fig. 8). While we still 
have no conclusive reasons for this misclassification, we 
should note that the data size of this session is extremely 
small: 88 frames. This suggests that we need certain amount 
of motion data for an appropriate clustering.  
 It is interesting that CMPs of limb and body joints alone 
failed to lead to expected results (Fig. 9). We also analyzed 
CMPs between limb and body, excluding CMPs of intra-
limb and intra-body joints. Again, we obtained no distinctive 
partitions between the healthy and pathological gaits (Fig. 
10).  

Figure 9. Results obtained from limb CMPs (a) and body CMPs (b) 
alone. Top: examples of CMPs; bottom: dendrograms that represent 
classifications of CMPs. They failed to cluster genotypes Tg/+ and +/+. 

Figure 8. Clustering of mice according to the crystalized motion profile 
(CMP): Tg/+ and +/+ indicate transgenic and normal mice, respectively. 
Thick dots represent roots of the clusters. Data 1_2 (Mouse 140912E07) 
was misclassified (underline). * indicates that the clustering with this 
edge is significant at 3.6% level. 

Figure 10. Absolute correlations of CMPs between limb and body, 
excluding CMPs of intra-limb and intra-body joints. Left: an example of 
a CMP; Right: a dendrogram that represents classifications of the CMPs. 
It failed to cluster genotypes Tg/+ and +/+. 
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They suggest that the impaired motor coordination of HD 
mice appeared in the associations between the limb and body 
joints: i.e., the early onset impairs of HD mice are not 
embedded in the extremities or trunk alone, but in the whole 
body coordination, at least according to the sensitivity of our 
method.  
 The biological “reverse engineering” approach requires a 
sensitive method to handle complex phenotypes. The CMP is 
a simple yet sensitive paradigm to express an overall profile 
of a motion sequence.  This paradigm can be a powerful tool 
to elucidate the biological control system disrupted by 
specific impairments. 
 It is well known that the motor coordination of 
anthropormorphic biped robots in a complex environment is 
prone to fail [47, 48], revealing “neuro-pathological” traits: 
e.g., spasm, faint, and stagger-like motions [49, 50]. They are 
strikingly similar to symptoms observed in neurological 
disease patients. Many neurological symptoms are caused by 
slight deviations from the physiological norm, suggesting that 
acceptable parameter subspace is so tiny comparing with the 
whole parameter space. Therefore, we can naturally assume 
that it is extremely difficult to find “optimized” parameter sets 
in the potentially multimodal parameter space. 
 In this paper, we used the CMP as a measurement to 
categorize a population into subpopulations that have 
different characteristics in motor coordination. On the other 
hand, we can potentially use the CMP as a kind of database 
(or a lookup table) to decide what kind of motor coordination 
is appropriated at a certain occasion. For example, we can 
measure motions of animals (including human) to obtain 
various CMPs corresponding to different environments: e.g., 
level ground, staircase, and rugged ground. By querying a 
joint angle of hip joint, for example, we can quickly retrieve 
associated joint angles of the other joints with certain 
correlative coefficients. In other words, we can reduce the 
aforementioned enormous parameter space without laborious 
dynamic computations (Fig. 11). 

The CMP is potentially useful not only to design controllers 
of quadruped robots, but also to design humanoid robots, 
including soft robot suits, like StillSuitTM. 

 To design a robust control system, the bio-inspired 
approach is expected to be promising. Considering the 
extreme complexity, however, we should learn from the 
biological system in terms of not only how well it manages 
the control, but also how it fails. This kind of disturbance-
response analysis will bring us knowledge on the fundamental 
mechanism which the biological system has acquired for 4 
billion years evolution in the harsh natural environment. 
 More boldly speaking, animals may have a CMP-like 
lookup table at genetic level, which was forged through the 
evolution. And if the lookup table is disturbed by genetic 
defects, it is possible that the animal can no longer coordinate 
its proper motion, as observed in the HD mice. 

The CMP can be a powerful tool in the disturbance-
response analysis by using noisy biological data.  
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