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Abstract— In this paper, we present a real-time method for
identification of the inertial parameters of a humanoid robot
and an estimation of its center-of-mass (CoM) and linear and
angular momentum. CoM and momentum are important for
whole-body motion generation of a humanoid robot and can
be used as an indicator of motion planning. Because they are
affected by modeling errors and inertia changes (e.g., due to
object grasping), it is important to estimate them online. The
proposed method has the advantage of being based only on the
internal sensors. We verified the effectiveness of the proposal
method by applying it to a humanoid robot.

I. INTRODUCTION

Humanoid robots are made to resemble human body
dynamics; therefore, they have the advantage of adapting
to human infrastructure to work in our society. However,
humanoids have a large degree of freedom (DOF) and a
complex system, leading to difficulties in generating their
motions. Many types of motion generation methods for
humanoids have been studied thus far. Some research has
focused on whole-body center-of-mass (CoM) [1][2], and
others have used not only CoM but also total momentum
[3][4][5]. As an example of using the dynamics of mo-
mentum for motion generation, Kajita et al. realized kick
motion [3]. They set the reference linear momentum (LM)
and angular momentum (AM) and commanded a robot to
realize those momenta by controlling joint velocities. Dai et
al. achieved high-grade exercises, such as an aerial ladder
and a salmon ladder, in simulation using CoM acceleration
and a rate of change of momentum as indicators in the non-
linear programming [4]. Those motions cannot be performed
on real robots unless the modeling error is sufficiently small.
Moreover, when the mass property changes during object
grasping, the risk of falling down increases. We, therefore,
aimed to develop a whole-body CoM and momentum esti-
mation method that is robust against modeling errors and
mass property changes upon moving. Our method is based
on an online identification technique.

In the robotics field, identification methods of the dynamic
parameter using recorded robot motion data have been stud-
ied [6][7]. One aim of these studies is the identification
of the link mass, the first mass moment (related to the
CoM ), and the inertia matrix, which are together called
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inertia parameters. For legged robots, including a humanoid
robot, identification using unactuated dynamics of the base
link has been proposed [8]. This method uses joint angles,
inertial measurement, external forces, and their differentials,
which are signals available from sensors embedded in bipedal
robots of a standard composition. Although online identifica-
tion for humanoid robots has not yet been established, some
studies have applied this method for human body segment
identification and executed it in real-time [9]. Considering the
previous work of humans, we propose a method to estimate
the whole-body CoM and momentum via sequential inertial
parameter identification.

The difference between online identification of a human
versus a humanoid can be summarized as follows: (1) The
global position and attitude of a robot cannot be directly
obtained. (2) Robots can use only internal sensors, which
means that they cannot detect pure external forces. (3) Robots
have limited computing resources because they must execute
not only state estimation but also motion control. Issue (1)
can be addressed by expressing the equation of motion with
respect to the local coordinate for identification [10]. To deal
with the other issues, in this study, we (1) divided all link
chains into multiple link segments and (2) made an online
identification system that is lightweight and runs at a high
speed.

Some investigations have studied CoM estimation for a
humanoid robot. Masuya et al. fused CoM-ZMP dynamics
and Kinematics information by using Kalman filter for
CoM estimation and proved the advantage of their method
by comparing several related methods in simulation [11].
Piperakis et at. constructed an estimator of CoM and external
forces according to the CoM-ZMP model and evaluated
the estimator by using the real robot [12]. Carpentier et
al. developed a high-performance CoM observer combining
some of the computation CoM by a complementary filter
and applied the observer to a human who is walking on
a treadmill [13]. Rotella et al. constructed an observer to
estimate the CoM, LM, and AM using CoM dynamics,
which is robust against modeling error (offset) for intentional
attachment [14]. However, it has not been validated on a real
robot.

In this paper, we propose a novel framework that provides
an estimation of CoM, LM, and AM without the need to
construct an individual observer because novel framework is
based on the identification of inertial parameters. In addition,
the framework can deal with dynamic inertia changes. The
contributions of this study compared with previous methods
include the following: (1) Separation of link segments whose
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Fig. 1. Flowchart of the proposed method

boundaries are formed by a force sensor. By the separation,
the identification system can handle many contact situations.
(2) A novel computational framework for inertial parameter
identification that uses a sequential least squares method for
fast implementation.

This paper is organized as follows. Section II describes the
inertial parameter identification method and show solutions
for the problem of the online identification for a humanoid.
Section III presents the estimation results in the dynamical
simulation. Section IV provides the experimental results for
validating the proposed method through detection of addi-
tional weight of the robot. Finally, conclusions are presented.

II. SEQUENTIAL INERTIAL PARAMETER
IDENTIFICATION

Inertial parameters for a multibody system, such as a ma-
nipulator, can be estimated using regression analysis because
the equation of motion can be written linearly with respect to
the inertial parameters. However, the sequential least squares
method is often used for the online identification problem.
We, therefore, propose a combination of these methods as
illustrated in Fig. 1.

A. Equations of motion for humanoid robots

The equations of motion for humanoid robots that have
n links, NJ degrees of freedom and Nc contact points is
expressed in (1) [15].
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where

• Hjk( j = O,C, k = 1, 2) is the inertia matrix,
• qO ∈ R6 is the position and the attitude of the floating

base,
• qC ∈ RNJ−6 is the column vector of joint angles,
• bj ∈ RNJ is the column vector including the Coriolis,

the gravity, and the centrifugal force,
• τ ∈ RNJ−6 is the column vector of the joint torques,

• J =

[
JOi

JCi

]
∈ RNJ×6 represents the Jacobian matrices

of the contact position i and the orientation of the
contact link i,

• F ext
i ∈ R6 is the external wrench at contact link i.

(1) can be rewritten linearly with respect to each link
mass, the first mass moment and the element of the inertia
matrix[6], as[
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where

• YO ∈ R6×10n is a coefficient matrix called a regressor.
It is related to the floating base and computed using the
base link velocity (linear and, angler), joint angles, and
that differentiation,

• YC ∈ RNJ−6×10n is a regressor matrix that relates to
each joint,

• ϕ =
[
ϕT

1 ,ϕ
T
2 , . . . ,ϕ

T
j , . . . ,ϕ

T
n

]T ∈ R10n represents
the column vector of the inertial parameters. The inertial
parameters of link j are defined as follows:

ϕj = [mj, mjcjx, mjcjy, mjcjz,

Ijxx, Ijyy, Ijzz, Ijyz, Ijzx, Ijxy]T
(3)

Then, mj , cj∗, and Ij∗∗ are the link mass, the distance
between the joint local coordinates with the CoM and
the elements of the inertia matrix, respectively.

Inertial parameters expressed as ϕ are redundant when
calculating the kinematics or dynamics because they contain
parameters not included in the dynamics model. The identi-
fiable parameters are called base parameters or a minimal set
of parameters [16][17]. Let ϕb be the base parameters, and
Nb(< 10n) be the number of base parameters. The relation
of ϕ and ϕb can be represented by (4).

ϕb = Zϕ (4)

where, Z ∈ RNb×10n is the composition matrix. An analyti-
cal method of computing the matrix Z for humanoid robots
has been established [8]. By using ϕb , (2) can be rewritten as
(5), where YOb ∈ R6×Nb is a regressor matrix with respect
to ϕb . [
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]
ϕb =

[
0
τ

]
+

Nc∑
i=1

[
JT
Oi

JT
Ci

]
F ext
i (5)

The upper part of (5) does not include the joint torques.
Thus, it can be calculated without measuring the torques.
In addition, we confirmed that the minimal set of inertial
parameters for the whole-body dynamics is exactly equal to
the minimal set for the base-link dynamics[8]. Finally, the
identification equation can be written with respect to the local
base link coordinate. Therefore, it does not depend on the
base link position or attitude of the world coordinate and can
be calculated using only the robot’s proprioceptive sensors
(IMU, force sensors, and encoders)[10].

YObϕb =

Nc∑
i=1

JT
OiF

ext
i (6)
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B. Division of the dynamic model using force sensor signals

In this section, we describe the division of the dynamic
model into multiple segments by considering the state of the
force sensor installed in the robot. Legged robots usually
contact the environment through force sensors. Because
the measurable external force changes due to the sensor
arrangement, it is necessary to consider these differences.
Figure 2 shows the contact situation when the humanoid
robot walks. The entire kinematic chain is divided into three
for the two foot force sensors. Blue links do not contact with
the environment, whereas the red one contacts directly with
the environment. Because red segments cannot detect the
external force from the floor, those are unidentifiable. Thus,
it is necessary to consider the contact situations and divide
the equation of motion. Assuming that the force sensor is
mounted on both feet, (6) can be described as follows.


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where,
• jYOb( j = b, r, l) represents the regress matrices for the

three kinematic sub-chains equations: the trunk-side link
segments, the right foot, and the left foot,

• jϕb is the minimal set of inertial parameters that
correspond to the link segments of each sub-chain,

• jJk f s(k = r, l) represents the Jacobian matrices of the
position and orientation of force sensor k with respect
to the generalized coordinates of sub-chain j,

• jJOp(p = 1, 2) represents the Jacobian matrices of the
contact points and the orientations with respect to the
generalized coordinates of sub-chain j,

• Fk f s is the force/moment (or wrench) acting on force
sensor k,

• FOp is the set of external forces.
Because FO1 and FO2 are not detected, (7b) and (7c) can

only distinguish the swing phase. In the following discussion,
(7a) is expressed as follows.

Mϕb = F (8)

C. Online estimation using the weighted least squares
method

When each observed signal is represented by a differ-
ent unit of measure or has a different signal/noise ratio,
the weighted least squares method performs better perfor-
mance than the least squares method. We, therefore, use the
weighted least squares method for online identification.The
observation error is defined as ε ∈ R6×1 at time t, and (8)
can be written as follows.

Ft =Mtϕb |t + ε (9)

From all observations until t, the estimation value ϕ̂b |t to
minimize ε is calculated using the least squares method.

ϕ̂b |t =Ht
−1Bt (10)

where Ht and Bt are defined below.

Ht =Ht−1 +M
T
t ΣtMt (11)

Bt = Bt−1 +M
T
t ΣtFt (12)

Weight matrix Σt ∈ R6×6 at time t is calculated according
to reference to[9].
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(13)

σi |t = ϕ̂T
b |t−1(Ai |tϕ̂b |t−1 − 2Bi |t ) + Ci |t (14)

Ai |t = Ai |t−1 +m
T
i |tmi |t (15)

Bi |t = Bi |t−1 +m
T
i |t fi |t (16)

Ci |t = Ci |t−1 + fi |t2 (17)

where the i-th row element in Mt is expressed by mi |t , and
the i-th row element in Ft is expressed as fi |t ; in addition, the
initial values of A∗|0, B∗|0, and C∗|0 are set to appropriate
a zero matrix.

III. SIMULATIONS

To evaluate the proposed method, the total CoM, LM,
and AM were estimated using a dynamic simulation with
humanoid robot HRP-4 [18]. The dynamic simulations have
been performed by Choreonoid [19] on an Intel(R) Core(TM)
i7-6820HQ CPU. HRP-4 had 37 DOF in its joints, and the
number of identifiable parameters in it was Nb = 255. This
is the same number of minimal set of inertial parameters in
(7a). As the motion for verification, the robot executed a mo-
tion that included a chest segment exciting motion [20] (10
s), a squat motion (20 s), and an arm exciting motion (10 s).
The total time, including the interpolation between motions,
was approximately 47 s. The simulation was executed by
1000 Hz, and the control rate of the robot was 200 Hz. We
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used the robot sensor values in the simulation environment
and the same programming implementation of the real robot
for the signal filtering and differential. Figure 4 provides the
base link coordinate definition on the robot. In this paper,
the initial values of the estimated base parameters are were
set to zero in order to check the convergence property of the
proposed on-line estimation.

First, we verified the parameter estimation precision. Table
I shows the root-mean-square error (RMSE) of the initial 10
s, the final 10 s, and the entire interval of the estimated
CoM, LM, and AM. Figure 3 shows the estimated values
(Blue dotted lines) after commencement of the identification
of the inertial parameters. The values are plotted in the base
link (waist link) coordinate. As shown, the RMSE of COMx

and COMy is less than 3 mm. This result indicates that the
values were accurately estimated. Compared to the initial 10
s RMSE and the final 10 s RMSE, the error gradually became
smaller, which indicates the precision of the estimated values
improved as the robot made more motions.

However, the error for the COMz increased and finally
reached 78 mm. In addition, a comparison of the entire
interval RMSE of LMz with the other LM shows that LMz is
the larger value. Regarding the excitation in the z-axis, the
squat motion is the most intense among the test motions.
This indicates that only the squat motion is insufficient

X

Y

Z

Fig. 4. The base link coordinate definition for the robot

Fig. 5. Computation time of sequential identification at each time instance.
Red dotted line denotes the average computation time.



for identification in the z-axis. In previous work of online
identification and CoM estimation for humans [9], exciting
motion for the z-axis included a push-up motion. As a result,
COMz provided a good performance. Finding a feasible
motion that includes sufficient excitation in the z-axis is
important future work.

The entire interval RMSE of AMx is approximately as
large as AMy . AMx may considerably change when the waist
link spins around the y-axis, and an AMy fluctuation occurs
when the link spins around the x-axis. Test motion does not
have excitation that includes the waist link. This might be
the reason for the errors in AMx and AMy .

Next, we verified the computational cost. Figure 5 shows
the computational time required for inertial parameter identi-
fication and CoM and momentum estimation for each frame.
As shown in the figure, the average computing time was 23
ms, and the maximum time was 69 ms. This means the robot
can estimate dynamic mass property changes within 10 Hz,
which is enough for practical tasks of object manipulation or
handling. Thus, the simulation results verified that the pro-
posed method could estimate the online CoM and momentum
in a sufficiently precise manner.

TABLE I
THE ROOT-MEAN-SQUARE ERROR (RMSE) OF THE CENTER

OF MASS (COM), LINEAR MOMENTUM (LM), AND ANGULAR
MOMENTUM (AM) IN THE SIMULATIONS

COMx (m) COMy (m) COMz (m)
RMSE (initial 10 s) 0.01732 0.03736 0.03224
RMSE (final 10 s) 0.00311 0.00037 0.09660

RMSE (entire time) 0.00255 0.00287 0.07799
LMx (Ns) LMy (Ns) LMz (Ns)

RMSE (initial 10 s) 0.12335 0.08312 0.49151
RMSE (final 10 s) 0.03651 0.01302 0.05665

RMSE (entire time) 0.21734 0.09002 0.48519
AMx (Nms) AMy (Nms) AMz (Nms)

RMSE (initial 10 s) 0.64532 0.32717 0.12343
RMSE (final 10 s) 0.01792 0.11671 0.00518

RMSE (entire time) 0.16150 0.22477 0.02019

IV. EXPERIMENTS

To verify that the proposed method detects the CoM
fluctuation due to increasing external weights, we conducted
experiments for a situation in which the mass properties were
intentionally changed. The experiment utilized humanoid
robot HRP-4. To verify the estimation precision, the robot
recorded the sensor data once, and it was used for CoM
estimation using an online method. Figure 6 shows the
external weights (each weight was 1.25 kg) and their mounter
so that the robot could hold them. Because the mounter was
attached to the trunk, the CoM fluctuation occurred when the
chest link moved. The position between the chest link and
the weight was measured by motion capture. The definitions
of the coordinates and identification model are the same as
in the simulation. When additional weights were attached
on the robot, its motion was usually generated and changed
according to the weights to maintain its balance. In this
experiment, we used common conservative robot motion,

which can be performed by the robot without losing balance
in three cases: with no weight, with one weight, and with
two weights. The robot repeated the same joint trajectory in
all experiments, which had no effect on the CoM fluctuation
in any of the three cases. Figure 7 shows photographs of the
robot during the experiment. The CoM fluctuation between
the three was caused only by the movement of the attached
weights, which can be easily calculated by the mass of the
weights and their relative position as measured by motion
capture.

Figure 8 shows the CoM calculated by CAD data, the
external weight position (CCoM), and the estimated CoM
(ECoM) after commencement of identification of the inertial
parameters. It should be noted that the initial values of the
base parameters used in the sequential identification were all
set to zero. Because the inertial parameters from the CAD
data are not true values for a real robot, CCoM and ECoM
did not entirely match. However, concerning CoMx and
CoMy , CCoM and ECoM for the same weight have almost
similarly shaped trajectories. This result indicates that the
CoM estimation succeeded. For more details, we verified the
CoM fluctuation, which depends on the number of weights.
Table II shows the average CoM fluctuations. In CoMx,
the fluctuation of the estimated CoM is very close to the
calculated one. Even if two weights are used, the difference
is 1.5 mm. CCoMy and ECoMy also have similar overall
trajectories and the error for the CoM fluctuations between
the calculated and estimated values is less than 2.5 mm. The
result of CoMx and CoMy is within the allowable range
for planning or analyzing whole-body motions. ECoMz is
assumed to be insufficient excitation, which is similar to the
results of the simulation.

Figure 9 shows the LM and AM calculated by CAD
data, and the identified ones. The LM and AM trajectories
estimated from the identified values in the latter phase (after
around 30 [s]) show the similar patters with respect to
those estimated from CAD data. The results indicate that
the inertial parameters identification has an effectiveness of
estimating the linear/angular momentum of a real robot.

To summarize, the proposed method could appropriately
detect the deviation in the CoM caused by the modeling
error and the change in the mass property. However, as
with the simulation, when the robot excitation motion was
insufficient, the estimation did not offer sufficient precision,
which supports the importance of well-designed excitation
motions.

TABLE II
THE AVERAGE FLUCTUATION OF CENTER OF MASS

BETWEEN NO-WEIGHT WITH ONE-WEIGHT (TOP ROW), AND
BETWEEN NO-WEIGHT WITH TWO-WEIGHTS (BOTTOM ROW)

mean(diff. x) (m) mean(diff. y) (m) mean(diff. z) (m)
CCoM 0.0091967 0.00012 -0.00946
ECoM 0.0094137 -0.00165 -0.00776

mean(diff. x) (m) mean(diff. y) (m) mean(diff. z) (m)
CCoM 0.0179567 0.00024 -0.01847
ECoM 0.0194788 -0.00117 -0.00511



Fig. 6. External weights and weight mounter attached to the chest segments

V. CONCLUSION

We proposed a novel method to estimate the total CoM
and momentum using online inertial parameter identification,
which is useful for whole-body motion control. The proposed
method is based on a real-time identification method for
humans. Using only the robot’s internal sensors, we executed
(1) a separation in the robot link chain and multiple segments
for the boundary formed by the force sensor. To achieve
online implementation, we executed (2) inertial parameter
identification using the sequential least squares method.

The configured system was verified by a dynamic simula-
tion; the result shows that it can cope with changes in mass
properties of approximately 10 Hz. The experimental results
revealed that the CoM fluctuation due to additional weights
can be accurately detected in the horizontal direction. In this
environment, the error for CoM fluctuation in the horizontal
direction was less than 2.5 mm. The precision is enough for
robot control. Because the proposed method utilizes whole-
body dynamics, it is possible to estimate various dynamical
indices for model-based control. However, we confirmed that
the estimation error becomes large for specific estimated
values due to a lack of excitation trajectories.

In this study, conservative motion was chosen as the
motion for the experiment. Because this excitation is not
enough, more dynamic excitation motion is required. If a
robot is to execute dynamic motion instead of falling down,
it must have accurate mass properties. Nevertheless, mass
properties are unknown before their identification. Therefore,
in the future, we will construct a motion generation frame-
work in which its motion becomes gradually dynamic and
corresponds to the progress of the identification. The detailed
accuracy analysis on each identified parameter will be also
investigated in our future work.
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Fig. 7. Photographs of the experiment
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Fig. 8. Experimental results. CoM (Calculated) (top row) and CoM (Estimated) (bottom row). Red lines denote the CoM under no weight. Blue lines
denote the CoM under one weight (1.25 kg). Green lines denote the CoM under two weights (2.5 kg).
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Fig. 9. Experimental results. Linear momentum (top row) and Angular momentum (bottom row) time trajectories with no weights. X-axis (left col),
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