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humanoid robot

P. Mittendorfera∗, E. Yoshidab and G. Chenga

aInstitute for Cognitive Systems, Technische Universität München, Munich, Germany; bJoint Robotics Laboratory, CNRS-AIST,
Tsukuba, Japan

(Received 4 January 2014; revised 13 June 2014; accepted 25 July 2014)

In this paper, we present a new approach to realize whole-body tactile interactions with a self-organizing, multi-modal
artificial skin on a humanoid robot. We, therefore, equipped the whole upper body of the humanoid HRP-2 with various
patches of CellulARSkin – a modular artificial skin. In order to automatically handle a potentially high number of tactile
sensor cells and motors units, the robot uses open-loop exploration motions, and distributed accelerometers in the artificial
skin cells, to acquire its self-centered sensory-motor knowledge. This body self-knowledge is then utilized to transfer
multi-modal tactile stimulations into reactive body motions. Tactile events provide feedback on changes of contact on
the whole-body surface. We demonstrate the feasibility of our approach on a humanoid, here HRP-2, grasping large and
unknown objects only via tactile feedback. Kinesthetically taught grasping trajectories, are reactively adapted to the size
and stiffness of different test objects. Our paper contributes the first realization of a self-organizing tactile sensor-behavior
mapping on a full-sized humanoid robot, enabling a position controlled robot to compliantly handle objects.
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1. Introduction

1.1. Motivation

Human naturally handles whole-body contacts during
everyday life – e.g. manipulating large objects with the
whole body. Robots instead are commonly limited to
manipulations with their end effectors. Besides cognitive
capabilities, robots lack a primary sense for handling those
close encounters ? whole-body tactile sensing. Compen-
sating the lack of artificial skin with other senses is hardly
possible. Vision cannot directly measure force, suffers from
occlusion and a lack of precision for fine manipulation.
With joint-level force sensing, it is difficult to differenti-
ate internal from external forces and difficult/impossible to
resolve multiple simultaneous contact points or collinear
forces. Sensitive skin instead, can provide a rich and direct
feedback, from numerous simultaneous contact points and a
large area of contact. Sensitive skin is thus a key component
to bring robots into contact rich everyday life – be it as
work companion or service robot. Due to a magnitude of
challenges, deploying and effectively utilizing a high num-
ber of tactile sensors, on large and arbitrary 3D surfaces,
whole-body tactile sensing is not yet solved.

1.2. Related works

Detailed requirements for tactile sensing date back to the
early 1980s,[1] but today’s robots still lack the effective
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utilization of tactile skin.[2] Artificial skin is not just a high
density sensor matrix,[3] but a highly distributed sensor
system.[4] Systematic aspects like distributed computing,
sensor [5] and power wiring,[6] robustness,[7] and manu-
facturability have to be taken into account.[4] A long-term
desire is the so called system on a chip,[8] but costs and
complexity are so far limiting a breakthrough in this area.
Existing full-body skins are only modular at the level of
individual patches of skin,[9–12] giving way of some of the
flexibility. Before utilization, artificial skin has to be spa-
tially calibrated.[13] Manually calibrating a growing num-
ber of distributed sensors on a large and arbitrarily shaped
surface is error prone and cumbersome. Robots should uti-
lize their own sensors and action capabilities to build their
body knowledge.[14] The strongly linked kinematic cali-
bration is heavily biased towards manipulator arms obs-
erved by a camera [15] – a solution that is not viable for opti-
cally in-discriminable skin. Tactile point probing
approaches are limited by the reachability of the robot and
commonly shown in simulation only.[16] A real world
implementation in [17], requires a fully calibrated force/
torque sensor at the shoulder and ‘tedious’ manual probing.
Although accurate explicit models would be optimal for
standard control approaches,[15] coarse implicit models
seem a good alternative to represent the own body [18]
and to enable sensory guided motor control.[19] Common
tactile control schemes are optimized towards certain tasks
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Figure 1. A non-compliant robot (HRP-2) holding a large and
unknown object, adaptively grasped via tactile feedback and a
self-explored body knowledge.

– e.g. to follow contact trajectories [20] or to trigger motion
primitives.[21] Only few groups managed to bring whole-
body tactile sensing to the application level. In [22,23],
tactile sensors are utilized to control the contact between
a human-like object and the arms of a nursing robot. The
approach is currently limited to fine manipulation around an
initial contact state. In [24], tactile feedback and additional
contact points enable a humanoid to lift heavy objects and in
[25] a multi-axis soft tactile sensor suit is utilized to detect
contact states for receiving and releasing objects from and to
human. Alas, both papers are not very precise on the haptic
control strategy – we estimate tactile feedback solely serves
to switch between pre-computed procedures.

In parts, this paper is also based on our own previous
works. We utilized the second version of our tactile
modules,[26] first introduced in [27]. The self-acquired
kinematic knowledge in this paper is based on our kinematic
tree algorithm explained in [28] and our postural sensory-
motor mapping, first introduced in [29]. Our work on grasp-
ing large, unknown objects with HRP-2 [30] and the Stack
of Tasks,[31] has been previously published in [32].

1.3. Contribution

This paper introduces a systematic approach to realize
whole-body tactile sensing on robots. Our main contribu-
tions are: (a) the development of a scalable, multi-modal,
modular artificial sensor skin network; (b) algorithms to
automatically self-organize large area deployments of the
skin on robots with numerous revolute joints; (c) the devel-
opment of a reactive and event driven control framework to
monitor and react on distributed, multi-modal tactile stim-
ulations; (d) the effective utilization of tactile kinesthetic
teaching for whole-body human robot interaction; and (e)
the realization of an exemplary whole-body, close-contact
tactile grasping task. Due to the versatility of our system,

and its plug&play capabilities, we can effortlessly enhance
non-compliant robots with compliance. We made use of a
biped to demonstrate the feasibility of our self-organization
approach – even with dynamic perturbations on an inertial
frame. The chest and arms of the humanoid enabled whole-
body interactions (see Figure 1).

2. Creating whole-body artificial skin

The design of artificial skin from the same intelligent cell
(see Figure 2) has many advantages. Amongst others, a
cellular skin is easily scalable and transferable between
robots and applications.

2.1. Cell design

2.1.1. Shape

Only three uniform shapes can tessellate a plane without
gaps: triangles, rhomboids, and hexagons. We consider the
hexagonal shape optimal. The hexagon allows to establish
physical data and power connections between all neighbors.
The distance of the sensors between neighboring hexagons
is equal. Its close to circular density offers space for large
components, while evenly distributing deformation stress,
especially with flex-rigid solutions.

2.1.2. Flexibility

In order to conform to arbitrary 3D surfaces, artificial skin
must be flexible. We utilize rigid elements, but introduce
bend-ability and stretchability at the flexible interconnec-
tions between those elements. In this way, we can apply
standard rigid electronics as well as future flexible elec-
tronics. Reducing the size of the rigid elements increases
the amount of interconnections and such the flexibility.

2.1.3. Sensors

With multiple sensor modalities, we emulate human cues
of touch (refer to Table 1). Human skin can sense the lightest
touch, we emulate this cue with a proximity sensor. The
advantage of having a sense of pre-touch with robots is
the ability to react before making contact (e.g. to avoid
impacts). We currently utilize an active optical proximity
sensor, measuring the amount of reflected infrared light.
Vibrational cues enable human to discriminate surface prop-
erties and detect impacts. With a 3-axis accelerometer, we
can measure vibrations, motion acceleration, and the ori-
entation towards gravity. The largest benefit of a tri-axial
accelerometer in each skin cell, is the ability to quickly
and automatically acquire body (e.g. kinematic) knowledge
with open-loop motions of the robot. Temperature sensing
plays an important regulatory role with human, but also
contributes with artificial skin. Mechanical sensors must be
compensated for thermal effects – e.g. when placed close
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Figure 2. Electronics board of the modular artificial skin cell, featuring multiple sensor modalities on the front side, and local infrastructure
on the back side.

Table 1. Multi-modal sensor specifications.

Modality Pre-touch Acceleration Temperature Normal force

Sensor VCNL4010 BMA250 LM71 Custom
Size in mm 4.0 × 4.0 × 0.8 2.0 × 2.0 × 1.0 3.0 × 3.0 × 1.0 6.0 × 6.0 × 0.1
Resolution 16 bit 10 bit 14 bit 12 bit
Range 1–200 mm ±2/8/16 g −40 to 150 ◦C >0–10 N
Bandwidth 0–250 Hz 0–1 kHz 0–7 Hz 0–33 kHz
Per cell 1 1 1 3
Power 3.8 mA 0.2 mA 0.7 mA MC internals

Figure 3. Minimalistic electronics for all normal force sensors on the same sensor cell, fully built into the PIC24F micro controller.

Figure 4. Skin layers of the sensor cell: top cover, electronics board and bottom cover.
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Figure 5. Micro-structured top cover of the sensor cell, with a micro-structure of soft and hard materials, to collect and concentrate
distributed forces onto the discrete force sensors.

to active joints that can easily reach 70 ◦C on heavy duty.
The temperature difference of the environment itself can
be utilized to detect tactile properties – e.g. sense wind
chill effects [27] or classify materials via thermal transfer
rates. Artificial skin must be able to quantify the amount
of force in order to control it. Due to a lack of available
solutions, we developed a new normal force sensor, based
on a circular metallic spring.[26] The displacement of the
spring is measured capacitively, with electronics built into
the local micro-controller (see Figure 3). Due to the metal
spring, our sensor shows an almost linear thermal depen-
dency, high dynamics, low hysteresis, and outstanding rob-
ustness. All sensors are promoted and protected by the
three-dimensional structured material stack (see Figures 4
and 5), emulating the functional layers of human skin (e.g.
focusing and filtering spatial stimuli).

2.1.4. Local processing

Parts of the signal processing algorithms, like low-pass
filtering or thresholding, can already be performed locally.
This decreases the repetition frequency and/or length of
packets and thus reduces the network and high-level pro-
cessing load. Digital signal transmissions also largely
increase signal integrity in noisy environments, like on
robots. Therefore, each cell can locally convert analog to
digital signals, pre-process the digital signals, packet the
conversion results, and route packets from cell-2-cell. Local
memory is used to permanently store sensor calibration
values, e.g. offsets, local settings, and the automatically
distributed unique cell identifier (ID).

2.2. Cellular network

2.2.1. Cell-2-cell connection

In order to minimize the wiring effort, we developed a pat-
tern with four non-crossing wires to bidirectionally transfer
data and power between hexagon cells (see Figure 6). Power
is routed passively through the resulting resistor ladder, with
local voltage regulators to compensate the voltage drop and
reduce power noise. With an active data routing scheme,

Figure 6. Port pattern for a direct cell-2-cell connection –
(R)eception, (T)ransmission, (+) and (−) Power.

failures can be isolated – yielding robustness, while mini-
mizing wirings. Since sensor cells behave like network rep-
eaters, the signal does not loose strength and minimalistic
transistor-2-transistor logic levels can be utilized. In a dense
cell-2-cell network, adjacencies can also be inferred to real
world distances, allowing a quick generation of topological
maps.

2.2.2. Network self-organization

In order to efficiently handle a large and arbitrary net-
works, the skin system must automatically organize. Our
network self-organization (see Figure 7) splits into four
phases: First, we initiate a search for active connections.
Next, we enforce directed communication trees with a sink
at each interface port. This tree structure is then utilized to
distribute unique IDs to all sensor cells. Finally, network
adjacencies are acquired and forwarded to the control sys-
tem. Redundancy allows to handle connection failures with
a simple network re-organization, keeping the unique cell
IDs in local memory in order to not to lose spatial
calibration.

2.2.3. Interfacing and latency

Interfacing a smart cellular skin is user-friendly – every
free port of a skin patch can be utilized to feed power and
communication to the network (refer to Table 2).Additional
interface connections improve redundancy, increase com-
munication bandwidth, reduce latency, and strengthen the
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Table 2. Cellular network specifications.

Cell input voltage 3.0–5.5 V Max cell power ≤16 mA/3.0 V
Weight per cell ≤ 3.0 g Skin thickness 3.3 mm
Cell surface 665 mm2 Elastic gap 4.0 mm
Number of interfaces Unlimited Number of cells Unlimited
Cell2cell bandwidth 4 Mbit/s Interface bandwidth 1 Gbit/s
Cell2cell protocol Custom Interface protocol UDP
Cell2cell packets 20 bytes Ports per cell 4
Packet routing Round robin Power routing Resistive

Figure 7. Example of the network organization – Detected active ports, set master ports, distributed IDs, and detected neighbors. Two
boundary ports are connected to the interface.

power supply. On HRP-2, we utilized our Gigabit Ethernet
FPGA interface with five ports, converting all cell packets
to standard UDP and vice versa. The 688 ns time, to transfer
a single-sensor cell data packet via UDP, is neglectable in
comparison to routing delays within the sensor cell network.
The worst-case forwarding delay, with a round robin sched-
uler on each cell, is currently 275 µs. For an update rate of
250 Hz, the depth of the communication tree should not be
more than 14 units, while one interface port can theoretically
handle up to 80 sensor cells.

3. Deploying whole-body artificial skin on robots

3.1. Integrating skin on robots

Integrating cellular artificial skin on robots is a cut&paste
process onto the robot’s surface, limited by the size, and
flexibility of the basic skin element. Ideally, contact is
supported by large deformable areas, which is why robots
should feature smooth and deformable surfaces. Sharp and
rigid edges instead, attract undesirable point contacts and
prevent the grounding of contacts on the sensitive skin.
Surface compliance would also improve safety on close
interaction [33] and loosen control rate constraints. Oth-
erwise forces on a rigid robot, making contact with a rigid

object, would ramp up quickly, limiting manipulation speeds
to undesirably slow values. Robot designers should also
account for the wiring of artificial skin. Ideally, skin can be
integrated locally into the robotic backbone – e.g. connect-
ing it to the motor controllers. This way communication
delays could be lowered and reaction speeds (e.g. safety
stops) enhanced. If this is not possible, a few wire channels
between body parts should be reserved for skin. On HRP-2,
UR-5, and the KUKA LWR arm, we had to run cables on
the outside of the robot, making them prone to be ripped off,
and to interfere with the robot motion and tactile sensation.
With HRP-2, we placed our interface on the back of the
robot, and connected it to the second on board computer
(i686, 1.6 GHz, 2 cores, 3 MB L2, 32 GB RAM, Ubuntu
10.04) and on board power.

3.2. Interfacing the control system

Our control approach is independent of a specific robot, but
limited to common revolute degrees of freedom (DoFs).
The requirements for the control interface are: (i) to publish
the number of revolute degrees of freedom; (ii) to accept
(emulated) velocity control values, and (iii) to give position
feedback. In order to minimize control delays, we prefer an
on board computer in order to locally process all tactile data.
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Figure 8. Components of the accelerometer reading, when
actuating one revolute degree of freedom at a time.

The primary computer of HRP-2, for example, executes a
200 Hz control loop – the stack of tasks (SoT). The SoT
controller generates actuator commands by resolving, in
real-time, a set of prioritized tasks. In our experiments with
HRP-2, equilibrium is achieved by fixing the feet and cen-
ter of mass position to a static position. Redundancy then
allows HRP-2 to realize whole-body manipulation while
satisfying the equilibrium tasks. To generate grasping mo-
tions with the robot upper body, a low-priority task is added
to the SoT, enforcing both arm velocities.

4. Automatically acquiring kinematic knowledge

4.1. Using open-loop motion and distributed accelerom-
eters

Open-loop motions and distributed accelerometers are an
efficient way to acquire (kinematic) body knowledge with-
out time consuming, and potentially harmful, external or
self-contacts. Small range open-loop motions can be quickly
and safely executed, even on uncalibrated robots, while
distributed accelerometers can, in parallel (for scalability),
acquire information on the effects of those motions.

4.1.1. Sensor actuator relations

Here, we briefly describe the physical effects of an isolate
revolute joint motion on accelerometers mounted on the
actuated body parts (see Figure 8). Neglecting skin defor-
mations, every sensor cell follows the acceleration of its
mounting point. Given a single static reference body part
(w), a change in velocity

( d
dt

wωd(t) = wαd(t)
)

of a revolute
DoF (d) has a direct influence on the acceleration u �au,d of
sensor cell (u), which superposes three different effects:

(a) The tangential acceleration w�atan
u,d , which is

dependent on the revolute acceleration w �αd and
the radial vector w�ru,d , in between DoF (d) and

the accelerometer (u):
w�atan

u,d = w �αd × w�ru,d (1)

(b) The centripetal acceleration w�acp
u,d , which is

dependent on the angular velocity w �ωd as well
as the vector w�ru,d :

w�acp
u,d = w �ωd × (w �ωd × w�ru,d) (2)

(c) And the gravity vector w �g.

An accelerometer (u) senses all effects at the same time,
in its local coordinate system:

u �au,d = uRw ·
(

w �g + w�atan
u,d + w�acp

u,d

)
(3)

The rotation matrix uRw in between the static reference
frame and the accelerometer, as well as the vector w�ru,d ,
are dependent on the unknown kinematics of the robot.
In this paper, we make use of the fact, that the tangential
acceleration vector is co-linear with the motion vector.

4.1.2. Constraints

We assume joints with one or more revolute DoFs are con-
nected by non-deformable body parts. During the whole
calibration process, one reference body part has to remain
static. With a robotic arm, this is naturally given by the base.
For a humanoid robot, the torso is considered best, as it is a
casual point to fix a humanoid, is located close to the center
of mass and is a relatively central point in the kinematic
tree. The static body part serves as root to the structural
exploration and grounds all reactive motions. During explo-
ration, it is necessary that every degree of freedom (DoF)
can be actuated freely, without self- or environment colli-
sions. Closed loops or under-actuated kinematics cannot be
handled with our methods. The robot needs to be equipped
with at least one sensor cell per body part, to fully explore
its structure.

4.2. Acquiring structural knowledge

The structural self-exploration is an algorithm to automat-
ically discover the robot’s kinematic tree as a sequence of
joints and body parts, carrying the skin. Structural knowl-
edge is an important first step to build body knowledge –
e.g. to assemble kinematic models or decouple body parts.
The input to our structure extraction algorithm is the activity
matrix.

4.2.1. Activity matrix generation

The activity matrix is a binary matrix with the following
entries: (1) a ‘1’ when a sensor cell is affected by the actu-
ator; (2) a ‘0’ when no motion or minor motion is detected
(see Figure 9). In Section. 4.1.1 we summarized the effects
we are able to measure with an accelerometer. Both dynamic
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Figure 9. Steps of the structure exploration algorithm for an activity matrix representing a ‘simulated’ humanoid robot (our test case).

effects vanish if the vector (w�ru,d ) is close to zero. Rotating
a DoF from one to another position, changes the orientation
of all related body parts in the same way. Fixed thresholds
can be applied to the static gravity vectors (u �g) to detect if
a rotation occurred. However, when a DoF axis is closely
aligned to the gravity axis, the measured gravity vectors do

not change and matrix entries are falsely set to ‘0’. To solve
this problem, multiple activity matrices of the same robot
can be combined with an element wise logical ‘or’.Asecure
approach to generate two complementary activity matrices
is to rotate the static segment of the robot around one of the
horizontal axes e.g. a ‘standing’ and a ‘lying’ humanoid.
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4.2.2. Segment and joint merging

Sensor cells that are located on the same body part encounter
the same motion ‘activity’ and can be merged into body
parts (see Figure 9). Similarly, all DoFs between body parts
can be merged into joints. This leads to a merged activity
matrix, correlating joint and body part activities (see Figure
9). The number of rows gives the number of detected body
parts while the number of columns provides the number
of joints. This is common for a tree like robotic structure,
where the number of body parts (S) must be higher than the
number of joints (J), i.e. S = J + 1.

4.2.3. Extracting connectivity

The merged activity matrix must be sortable to a strictly
lower triangular form (see Figure 9). If this does not hold,
one of the given constraints has been violated (refer to
Section 4.1.2), e.g. there are body parts without skin cells.
Our algorithm progresses along the secondary diagonal
(l(n+1)(n), n ∈ N), searching rows that are identical except
for the current diagonal element, which is the joint that
connects the two body parts (in Figure 9, we can observe
that body parts 9 and 11 are connected by joint 8).

4.2.4. Kinematic tree

The extracted joint/body-part connectivity represents a hier-
archical kinematic tree. The static reference body part (root)
of the robot is the null row vector of the merged activity
matrix. End effector body parts (leaves), like the finger
tips of a humanoid, exactly connect to a single joint. Body
parts that connect more than two joints, like the palm of a
humanoid, are inner nodes and can serve as an intermediate
reference for limbs. A limb is a kinematic chain, starting
from a reference body part and ending at an end effector
or inner node. With this information, we can hierarchically
decouple the robot kinematic model, e.g. the two arms of a
humanoid robot like HRP-2.

4.2.5. Experiment on HRP-2

We distributed (U = 74) sensor cells on the upper body
of HRP-2, while having control on (D = 14) degrees of
freedom of the left and right arm. All normalized gravity
vectors �gu,d,p were measured in the initial pose (p) and
final pose (f), when we change the position of a single DoF
(d) one after the other with increments of ϕ� = 0.1rad. If
the distance between both normalized vectors is above the
pre-defined limit (lth), the corresponding entry (amu,d ) in
the binary activity matrix (AM) is set to true:

amu,d =
∣∣∣∣∣

u �g p
u,d

|u �g p
u,d | −

u �g f
u,d

|u �g f
u,d |

∣∣∣∣∣ > lth, amu,d ∈ {0, 1}
(4)

We sampled each vector with an averaging period window
of 1.0 s and a 500 ms delay to attenuate vibrations on the
robot. The total exploration lasted approximately 70 s. A
binarizing threshold of lth = 0.1 m

s2 , which is 10% of the
maximum change of 1.0 m

s2 , proved to be sufficiently sensi-
tive and robust against sensor noise and balancing motions
of the robot. With the HRP-2, we only performed one (po-
sition) incremental run, followed by one decremental run
on all DoFs, combining entries from both (P = 2) postural
runs with an element wise ‘or’. In this case, the simplified
approach worked because the first DoF of each arm is not
aligned with the gravity vector. If this was not the case,
we only need to change the posture of the robot to avoid
this singular condition. We could not detect any error in the
kinematic tree with all (N ≥ 10) runs (see Figure 10).

4.3. Sensory-motor mapping

The sensory-motor map is a set of postural matrices, map-
ping distributed tactile stimulations into joint-level robot
reactions, grounded on the reference body part, e.g. the torso
of a humanoid. In this context, it is a kind of Jacobian-based
inverse kinematic solution for numerous distributed contact
points on the surface of the robot. The map is acquired
automatically and replaces manual calibration efforts for
the robot kinematics, as well as the placement/orientation
of skin sensors on its surface.

4.3.1. Exploration pattern

In order to evaluate the influence of each revolute DoF (d),
on the translational motion of a sensor cell (s), in a pose (p),
the robot applies test pattern to one DoF after the other. Due
to the currently available tactile sensors, i.e. normal force
and proximity, we here focus on the translational component
in direction of the surface normal. For the translational
components, only the tangential acceleration u �atan

u,d can be
utilized, as it is collinear with the local motion vector. The
influence of the centripetal acceleration can be minimized
by keeping the angular velocity ωd low. The influenced
of the rotated gravity vector is nearly constant, and thus
subtractable, when the DoF motion only covers a small
angular range �ϕd . In order to maximize the tangential
acceleration, the angular acceleration αd has to be high. In
order to maintain smooth accelerometer readings, it is nec-
essary to control the angular velocity ωd (t), the acceleration
αd(t), and the jerk ζd(t). It is desirable that the DoF returns
to its initial position ϕd(0) = ϕd(T ) once the exploration
pattern stops at time T. One velocity control pattern ωd(t)
that fulfills all requirement is a sine wave:

ϕd(t) = A

2π f
(1 − cos(2π f t)) (position) (5)

ωd(t) = A sin(2π f t) (velocity) (6)

αd(t) = 2π f A cos(2π f t) (acceleration) (7)
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Figure 10. Structural exploration result for the kinematic tree of HRP-2’s upper body.

Figure 11. Sensory motor map weight extraction from raw
accelerometer data.

ζd(t) = − (2π f )2 A sin (2π f t) (jerk) (8)

These equations help us to dimension the DoF exploration
pattern. The selection of A is limited by the maximum
DoF velocity and the tolerable influence of the centripetal
acceleration. 2π f A has to be lower than the maximum
DoF acceleration and below a value that shows undesired
dynamic side effects. A

2π f has to be small enough to be
able to neglect the influence of the rotating gravity vector
and the postural change of the robot. Still 2π f A, has to be
sufficiently large that the measurement of the accelerometer
u �au,d of sensor cell (u) stands out from its intrinsic sensor
noise. A windowing function W (t) is necessary to cut the
executed pattern in time ωex

d (t) and stop the robot in its
initial posture:

ωex
d (t) = W (t) · ωd(t) (9)

We currently utilize a rectangular function, cutting the os-
cillation after one period (T = 1

f ). Commonly, we make
use of the same empirical values across different robots:
A = 0.4 rad

s , f = 2 Hz and T = 0.5 s, e.g. tested on UR-5,
HRP-2 or the KUKA LWR.

4.3.2. Pattern evaluation

A distinct value quantifies the contribution of a DoF (d),
towards the desired motion of a sensor cell (u) in the cur-
rent pose (p). We first subtract the mean value from all
accelerometer axes, in order to eliminate constant sensor
offsets and the gravity vector u �g. We then apply a digital
low-pass filter, with a bandwidth B larger than 10 times
the pattern frequency f , to eliminate noise and vibrations.
Finding the minimum and maximum, we then calculate the
amplitude for every axis (see Figure 11), here along the
z-axis u �ez of the accelerometer Az

u,d,p:

Az
u,d,p = max(uaz

u,d) − min(uaz
u,d) (10)

In order to discriminate if the desired motion is in-phase
or anti-phase, we evaluate if the minimum or maximum is
located first in time (MATLAB terminology):

sz
u,d,p = sign

(
find

(
uaz

u,d == max(uaz
u,d), ‘first’

)
−find

(
uaz

u,d == min(uaz
u,d), ‘first’

))
(11)

The weight wz
u,d,p, in the local sensor cell surface normal

direction u �ez , is now computed as:

wz
u,d,p = sz

u,d,p · Az
u,d,p

Ax
u,d,p + Ay

u,d,p + Az
u,d,p

(12)

Weights can thus have values between [−1; 1], being close
to ±1 if the DoF motion fully correlates with the desired
translational motion, while being close to 0 in the orthogonal
cases.

4.3.3. Sensory-motor map

The sensory motor map is a container for the explored
weight values, acting as a lookup table for the mapping
of tactile reactions. Each tile of the sensory motor map
is explored in a pose (p), and features up to three sets
of matrices, related to the three translational directions.
The dimension of each matrix is defined by the available
sensor cells and degrees of freedom (U × D). Due to our
current set of sensor modalities, we only make use of the
matrix values wz

u,d,p collinear to the surface normal. Each
tile also contains a vector of the robot pose it has been
explored in. This helps to recall the closest (e.g. quadratic
distance) memorized pose when mapping tactile reactions
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Figure 12. Tactile guidance with the normal force sensors – Stimulations are directly mapped to evasive motor reactions via the sensory-
motor map.

Table 3. Heuristic normalized tactile event levels.

Force cells Pre-contact sensor

Pain force Close contact
0.45 0.80

High force Low proximity
0.30 0.10

Medium force Medium proximity
0.10 0.02

Low force High proximity
0.04 0.01

No force No proximity

into robot reactions. On robots with multiple kinematic
chains, e.g. a humanoid with two arms, dynamic coupling
effects in between moving body parts are likely. In this case,
a post-processing of the postural matrices with the structural
knowledge helps to decouple those body parts. Here, we
element wise multiply (◦) the global activity matrix (AM)
with each sensory motor map matrix (Wp):

Wp,new = AM ◦ Wp (13)

Additionally, small sensor cell reaction vectors ( �wz
u,p) must

be cut, as those reactions cannot be grounded on a static
reference like the torso, but require e.g. locomotion. Vectors
above this suppression threshold must be normalized to bal-

ance the tactile reaction strength along the entire kinematic
chain.

5. Controlling multi-modal, whole-body tactile
interaction

5.1. Multi-modal, cellular reaction primitives

The sense of touch allows to implement meaningful direct
reactions on multi-modal tactile stimulation – e.g. to avoid
self- or environment collisions or to let users kinestheti-
cally guide the robot. The advantage of instantiating one
multi-modal reaction controller for every sensor cell (u) is
the scalability of this approach – tactile behavior can be
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programmed for the smallest piece of skin and expanded to
the whole robot surface. Since all cellular parameters, are
accessible by the high-level control system, spatial reactions
can be set up for a specific task. In this paper, we compute
a proportional motor reaction for every multi-modal (m)
sensor value (ρm) above a pre-defined threshold (tm). All
(M) multi-modal reactions on a cell are then accumulated
and mapped to a desired cellular velocity reaction vector,
via the sensory-motor map. Super-imposing the resulting
velocity vectors from all (U ) sensor cells, leads to a global
tactile robot joint velocity reaction ( �ωtactile):

�ωtactile =
U∑

u=1

(
�wu,p ·

M∑
m=1

(ρm > tm) · (ρm − tm) · Pm

)

(14)
Modalities can be inhibited, promoted or inverted by setting
their gain (Pm,u). The threshold (tm,u) determines the acti-
vation level and is important to suppress sensor noise and
offsets. We, commonly, directly act on persistent sensor data
(e.g. force or proximity), omitting additional reaction delays
and computational efforts. In case smoother reactions are
desired, either the stimuli or the executed response can
be extended/filtered in time, damping the whole system.
With time singular tactile stimulations, e.g. the detection of
impacts via vibrational cues like in [27], a temporal response
is inevitable.

5.2. Cellular tactile events

Centrally monitoring a growing number of tactile sensors,
generates high computational and network overloads. Since
most skin areas are not (or in constant) contact, this effort
is commonly in vain. To prevent this scalability bottleneck,
we pre-process tactile signals into events. Currently, this
is still done on the computer, as we wish to log all raw
experimental data. But by design, CellulARSkin allows to
locally process tactile signals in every sensor cell, extracting
information at the earliest stage. New data packets should
only be generated if sensor values deviate significantly from
sensor noise and recently transmitted samples. Therefore,
all our high-level algorithms make use of abstract tactile
events, while our low-level control algorithms can deal with
varying update rates. For our grasping approach on HRP-2,
we utilized force and proximity events, with a coarse separa-
tion into heuristically pre-defined levels (refer to Table 3).A
new tactile event is only emitted on changes between those
levels, with a small hysteresis to prevent repetitive triggers.
Due to the direct localization of touch, tactile events in
specific areas can trigger robot behaviors or state changes,
e.g. launch a grasping sequence when patted on the shoulder.

5.3. Experiments on HRP-2

The effectiveness of tactile reactions, and their transfer to
motor actions through the sensory-motor map on a hum-

anoid robot, can be best evaluated on kinesthetic tactile
guidance. We currently provide two different modes: (i)
force guidance; and (ii) proximity guidance. Force guidance
takes the force modality into account and thus requires
physical contact with the robot. With the pre-contact sensor,
and thus proximity guidance, the robot will start to react
before the user touches the robot (here ∼5 cm before). In
Figure 12, we show a plot of force guidance with both arms,
first left then right. The activation threshold (tm) of 0.05
raw force cell readings (ρm), approximately relates to 0.6 N,
the chosen force gain (Pm) is 1.0 (see Equation 14).Asingle-
force cell reading of ρF1 = 0.14, relating to a force of 1.0 N,
is transferred to a commanded velocity of �ωre = 0.09rad/s
on a single DoF – which is approximately what can be seen
between 75 s and 85 s with actuator ID1 (neglecting ID4
and 2) and sensor cell ID52. All key poses for the grasping
application have been taught via the pre-contact sensor,
enabling the most pleasant user experience.

6. Application of whole-body tactile interaction

6.1. Grasping approach

Our whole-body grasping approach has been inspired by
observing human. Human commonly pull large and
unknown objects with both arms to the chest. This approach
is very effective, as three distal contact points define a stable
grasp, large and compliant contact areas (CA) distribute
applied forces and provide shear stability, the potentially
large weight is close to the center of mass and short kine-
matic chains reduce the required joint forces. In order to
quickly replicate this human behavior with our artificial skin
system on HRP-2, we had to (1) teach the robot grasping
and pulling trajectories for both arms; (2) define areas to
make contact with and allow forces to be applied within;
(3) coordinate the grasping sequence with a tactile event
driven state machine; and (4) use tactile reactions to adapt
grasping trajectories to the size and stiffness of the object.

6.2. Grasping trajectories

We utilized kinesthetic teaching to interactively drive the
robot to different key poses (see Figure 13). Interpolations
between those key poses were then utilized to generate
the grasping trajectories. The robot starts from the safe
‘home’ key pose. In the ‘open’ key pose, both arms are
opened widely to make space for an object in between. The
‘closed’ key pose brings both arms together so an object in
between is inevitably made contact with. In the ‘pulled’
key pose, both arms are still together, but the arms are
pulled closer to the chest, so any object between the arms
must come into contact with the chest. All key poses are
added to the sensory-motor map, in order to correctly map
tactile reactions around them. The trajectory generator cal-
culates velocity commands to transition the robot in joint
space from the current pose ( �ϕcur) to a desired ( �ϕdes) key
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Figure 13. Grasping trajectory key poses, taught to the robot via tactile guidance.

Figure 14. Touch areas: allocated with specific reactions and monitoring specific events.

Figure 15. State-machine of the grasping sequence: triggered by tactile events, controlling the trajectory generation between key poses
and coordinating the whole-body tactile reaction primitives.

pose. Control parameters define the maximum joint velocity
(ωmax), the desired postural accuracy (ϕacc), the name of
the pose and a flag if the robot should stop once the desired

key pose has been reached. On reaching a desired pose, an
event is sent to the control system. For the overall reaction
of the robot, the tactile reaction velocity vector ( �ωtactile) and
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Figure 16. Objects utilized to test the graping approach: (A) plastic trash bin; (B) sponge rock; (C) moving box; (D) lid of a paper box;
and (E) computer delivery box. The objects have different weights, shape, hardness, and size.

Figure 17. A position controlled HRP-2 humanoid, holding unknown objects with the whole-body, as result of a multi-modal tactile
grasping sequence.

Table 4. Heuristic control parameters of the grasping experiment.

State Force Pre-contact Pose
tF PF tP PP Hash ωmax ϕacc

F-guide 0.05 1.0 – 0.0 – – –
Open – 0.0 0.01 0.4 Open 0.4 0.01
Approach – 0.0 0.01 0.4 Closed 0.4 0.01

Contact – 0.0 –N 0.0 N Closed 0.1 0.010.01 C 0.4 C

Load −N 0.00 N 0.01 N 0.01 N Closed 0.05 0.01−C 0.00 C −C 0.00 C

Pull −N 0.00 N 0.01 N 0.01 N Pulled 0.05 0.010.10 C 0.80 C −C 0.00 C

Hold −N 0.00 N 0.01 N 0.01 N – – –0.10 C 0.80 C – C 0.00 C
Release – 0.0 0.01 0.2 – – –

 



64 P. Mittendorfer et al.

Figure 18. Proprioceptive and tactile feedback while grasping two objects (E/B) with different compliance (hard/soft) and shape
(regular/irregular).

trajectory velocity vector ( �ωtraject) are super-imposed.Which
is why tactile reactions have to be dominant in comparison
to the trajectory speed and/or cancel the current trajectory
execution in case of detected ‘pain’ levels.

6.3. Touch areas

For our grasping approach, we defined three different types
of touch areas (see Figure 14). Every touch area is assigned
with different reaction primitives and event monitors. The
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‘pat’ area acts as a kind of launch or emergency button, a
contact in this area starts or terminates the grasping
sequence and triggers the release of an object. The CA
are parts of the surface, the robot is supposed to contact
and hold the object with. The CA allow touch, while multi-
modal events, in this areas, determine if the ‘approach’ or
‘load’ state have been completed. The chest area serves
as a third explicit contact point. A close contact in this
area completes the grasping sequence. Remaining sensor
cells are automatically allocated to the non-contact areas
(NCA). Contacts in these areas are avoided to prevent self-
or environment collisions.

6.4. Grasp state machine

The whole grasping sequence is split into multiple states of a
sequential state machine (see Figure 15).As an entry action,
every state sends a set of area specific control directives to
the low-level tactile controllers. Changes between states
are triggered by events from the trajectory generator or
tactile events. Emergency situations, e.g. pain level forces,
drive the robot into a safe state. The safest action is not
to stop all upper body motions (lesson learned with two
burnt motors), but to slowly evade all contacts. States with
contact as main objective (e.g. the approach, contact, load,
or pull state), fail if the set key pose can be reached prior
to satisfactory tactile interaction. In the ‘approach’ state,
the object needs to come close to the expected CA, while
forces have to be applicable in the ‘load’ state. In general,
the interaction speed is reduced the closer the robot and
object come together. Here, we specifically make use of
the pre-contact modality to safely increase the speed in the
approach and contact phase (refer to Table 4). Purely relying
on the force sensors, forces could ramp up quicker than
the reaction time of the robot, damaging the robot or the
object. With HRP-2 and CellulARSkin we solved this issue
by: (i) using the on-board computer to minimize delays;
(ii) adding a foam layer between the robot and the skin to
provide (sensor) hysteresis free compliance; and (iii) using
pre-contact sensors to slow down motion before contact.

6.5. Experiments on HRP-2

In Figure 16, we show a set of five objects with different
weight, size, shape, and compliance, which we successfully
tested our approach on (see Figure 17). We applied the same
set of heuristic control parameters for all objects (refer to
Table 4). A grasp succeeded, when the robot was able to
make contact with the object, apply forces on it and pull it
to the chest. Our approach infers that the graspable object is
in between both arms when receiving the launch command.
If there is no object, or the object cannot be pulled, the
robot automatically cancels the grasp. The plastic cover on
the wrist does not support force and is such allocated to the
NCA, where applied forces intentionally cancel the grasp.

Naturally, this limits our success rate when grasping big
objects, like the trash bin or the big moving box, as big
objects are likely to touch the wrist. We wish to emphasize
that no object has been damaged during all experiments.
To demonstrate our trust in the system, we let the robot
‘hug’ human multiple times (first author). The pre-contact
modality allows to speed up motions prior to contact and
robustly detects when the object touches the chest, which is
sufficient to prevent the rotation of grasped objects. The
advantages of our multi-modal approach, triggering and
controlling phases of the grasping approach with different
sensor modalities, can be seen in Figure 18. As a conse-
quence of the similar size, both objects (B and E) are first
contacted after nearly the same time. First light contact
forces also build up in a similar time frame. However, it is al-
ready visible in the pre-contact intensity, that object E has a
symmetric surface, while object B is asymmetric. This obs-
ervation continues within the force profile, where object E
develops and maintains a clear and symmetric contact force
intensity on both arms, while object B remains squishy. Due
to the conformation of object B to the robot’s surface, and
the incomplete coverage with skin, forces for object B are in
parts grounded on insensitive spots, which is visible in the
remaining sensational asymmetry. Both grasps are finalized
with a close contact on the chest, but after a significantly
different time span. This can be explained, as Object B had
to be pulled over a longer distance and compressed for a
longer time to maintain ‘satisfying’ contact pressure.

6.6. Media attachment

We would also like to direct the interested reader to our
attached video. The video introduces a quick overview of
all implemented self-exploration steps, the teach-in process,
and shows exemplary object grasps.

7. Conclusion

For the first time, we applied our multi-modal artificial skin,
and its self-organizing features, on a full-sized humanoid
robot. We explained novel approaches to automatically acq-
uire kinematic knowledge, for a new type of cellular tactile
control algorithms. In comparison to existing approaches,
our grasping algorithm requires little knowledge on the
robot it controls (no kinematic/dynamic model) and the
object it handles (no object model). Utilizing pre-contact
sensors for a novel way of teaching behaviors, it is not
necessary to apply force on the robot or even touch it –
making heavy or position controlled robots featherlight to
interact with. Relying only on artificial skin, no joint-level
force sensing is required.
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